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A b s t r a c t 
Abstract ion has proven to be a powerful tool 
for control l ing the combinatorics of a problem-
solving search. It is also of crit ical importance 
for learning systems. In this article we present, 
and evaluate experimentally, a general abstrac­
t ion method — impasse-driven abstraction -
which is able to provide necessary assistance to 
both problem solving and learning. It reduces 
the amount of t ime required to solve problems, 
and the t ime required to learn new rules. In 
addi t ion, it results in the acquisition of rules 
that are more general than would have other­
wise been learned. 

1 I n t r o d u c t i o n 
Abstract ion has proven to be a powerful tool for control­
l ing the combinatorics of a problem-solving search [Korf, 
1987]. Problem solving using abstract versions of tasks 
can provide cost-effective search heuristics and evalua­
tions for the or ig inal , or " f u l l " , tasks which significantly 
reduce their computat ional complexity, and thus make 
large problems tractable [Gaschnig, 1979, Kibler, 1985, 
Pearl, 1983, Val tor ta , 1981]. 

Abstract ion is also of cr i t ical importance for learning 
systems. Creat ing abstract rules can reduce the cost of 
matching the rules, thus improving their operationali ty 
[Keller, 1988, Zweben, 1988]. Abstract rules can transfer 
to a wider range of situations, thus potential ly increas­
ing their usabi l i ty and ut i l i ty . Abstract rules may also 
bo easier and/or cheaper to create, thus simpli fying the 
learning process and/or making it more tractable. 

In this article we are concerned wi th abstraction tech­
niques that assist in both problem solving and learning. 
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The four key requirements such a technique should sat­
isfy are: 

1. Apply in any domain. 

2. Reduce problem solving time. 
3. Reduce learning t ime (therefore help in intractable 

domains). 
4. Increase the transfer of learned rules. 

The first requirement implies that the technique must 
be a general weak method that is applicable to domains 
without additional domain-specific knowledge about how 
to perform the abstraction. Most problem solvers that 
utilize abstractions do so only when the appropriate ab­
stractions have been prespecified for them. The second 
requirement implies that, on average, the t ime to solve 
problems wi th abstraction should be less than the t ime 
without. Impl ic i t in this requirement is also that this 
should be true even if only one problem is being solved; 
that is, abstraction should help immediately, on the first 
problem seen in the domain. The th i rd requirement im­
plies that abstraction should be integral to the rule cre­
ation process. If the problem-solving t ime necessary to 
learn a rule is to be reduced, an approach that simply 
abstracts the output of the normal learning algor i thm 
wi l l not be sufficient. The fourth requirement implies 
that abstraction should result in the creation of general­
ized rules. Even if the rule creation process is a just i f ied 
method, such as explanation-based learning [Mitchel l et 
a/., 1986], this can lead to a form of unjustified induction 
(though a useful one). 

In this article we describe and evaluate an abstrac­
tion method which meets these four requirements. The 
following sections provide a description of the basic 
method, a discussion of how abstraction propagates 
through a problem, experimental results from an imple­
mentation of the method in two domains, and a set of 
conclusions and future work. 

2 T h e A b s t r a c t i o n M e t h o d 
The abstraction method is based on the integration of 
learning and problem solving found in the Soar system 
[Laird et a/., 1987]. In Soar, problems are solved by 
search in problem spaces. Decisions are made about how 
to select problem spaces, states, and operators, plus how 
to apply operators to states to yield new states (oper­
ator implementation). Decisions are normally based on 
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knowledge retrieved f rom memory by the f ir ing of pro-
ductions. However, if this knowledge is inadequate, an 
impasse occurs, which the system then tries to resolve 
by recursive search in subgoals. Th is leads to hierarchi­
cal processing in which control decisions can be based on 
mul t ip le levels of look-ahead searches, and complex op­
erators can be implemented by mul t ip le levels of simpler 
operators (an operator aggregation hierarchy). Learn­
ing occurs by converting subgoal-based search into rules 
that generate comparable results under similar condi­
t ions. Th is chunking process is a form of explanat ion-
based learning in which the explanation is derived f rom 
a trace of the search that led to the results of the subgoal 
[Rosenbloom and La i rd , 1986]. 

Abstract ion occurs in this framework in the service of 
control decisions. If an impasse occurs because of a lack 
of knowledge about how to make a selection, the result­
ing search is performed abstractly. Consider a simple 
example f rom a toy robot domain. Suppose that among 
the operators in the domain are ones that allow a robot 
to push a box to a box (push-box-to-box(BOX1,130X2)) 
and go to a box (goto(BOX)). The preconditions of the 
push-box-to-boxoperator are that the robot is next to the 
first box and that the boxes are in the same room. The 
precondit ion of the goto operator is that the robot is in 
the same room as the box that it wants to reach. The 
goal is to reach a state where the two boxes ( b o x l and 
b o x 2 ) are next to each other. In the in i t ia l state, the 
robot and the two boxes are in the same room together, 
but at different locations. 

Given this in i t ia l state, a control decision must be 
made that w i l l result in the selection of an operator. 
W i t h part ial means-ends control knowledge (encoded as 
rules), the system can determine that the push-box-to-
b o x ( b o x l , b o x 2 ) operator is one of the possible alterna­
tives, but it may not be able to el iminate all of the other 
alternatives, leading to an impasse, and thus a subgoal. 
In the subgoal, a search wi l l be performed by t ry ing out 
each alternative unt i l one is found that leads to the goal. 
When the push-box-to-box operator is t r ied, it w i l l fai l 
to apply because one of its preconditions — that the 
robot is next to the first box — is not met. However, if 
this precondition is abstracted away, then the operator 
can apply abstractly, as the robot itself couldn't ac­
tual ly do this and the goal of the abstract search w i l l 

be achieved. From this abstract search, the informat ion 
that the push-box-to-box operator is the r ight one to se­
lect is returned, and used to make the original control 
decision. Simultaneously, a control rule is learned which 
summarizes the lesson of the abstract search. Figure 1 
i l lustrates this process. 

Though the basic idea of abstracting w i th in control 
searches is simple, its consequences are far-reaching. One 
consequence is that the abstract search is likely to be 
shorter than the ful l search would have been because 
less now needs to be done. If the abstract searches are 
shorter, yet s t i l l return adequate control knowledge, then 
the t ime to solve the problem wi l l be reduced (Require­
ment 2) — as in the toy robot example. Addi t ional con­
sequences arise because learning occurs via the chunking 
of subgoal-based search. If chunking is done over an ab­
stract search, then the t ime required to learn about the 
task is reduced because of the reduced t ime to generate 
the explanation (Req. 3). In addi t ion, because abstract 
searches lead to abstract explanations, the rules acquired 
by chunking abstract searches wi l l themselves be ab­
stract, and thus be able to transfer to more situations 
(Req. 4). These generalized control rules effectively form 
an abstract plan for the task. Though these rules may 
not always be completely correct, l im i t ing abstraction 
to control decisions ensures that unjustif ied abstractions 
wi l l not lead to incorrect behavior — control knowledge 
in the Soar framework affects only the efficiency wi th 
which a goal is achieved, not the correctness. 

The actual abstraction of the control search occurs 
by impasse-driven abstraction. When an impasse occurs 
dur ing the control search, it is resolved by making an 
assumption, instead further problem solving in an­
other level of subgoals. Impasse-driven abstraction be­
longs to the general class of abstractions that involve 
removing, or abstracting away, some aspects of the prob­
lem in question. ( In the taxonomy provided by [Doyle, 
1986], our techniques fall under the category of approxi­
mation.) For example, in the toy robot example above, 
when the precondit ion of the push-box-to-box operator 
failed dur ing the control search, leading to an impasse, 
the system simply assumed that the precondition was 
met, and continued the abstract search as best it could. 
(Another way of looking at this is that the system d idn ' t 
care if the precondit ion was met) . W i t hou t abstraction, 
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the impasse would lead to a subgoal in which the sys­
tem would search for a state to which the operator could 
legally apply (by applying the goto operator). 

Impasse-driven abstraction is a general technique that 
can be applied to arbi t rary domains wi thout domain-
specific abstraction knowledge; that is, it is a general 
weak method (Requirement 1). W i t h i t , the default ab­
straction behavior for the problem solver is to abstract 
away those parts of an operator which are not already 
compiled into rules, and which therefore generate im­
passes and require subgoals to achieve. This behavior 
results in abstraction of operator preconditions and ab-
straction of operator implementations. The former leads 
to a form of abstraction similar to that obtained in Ab-
strips [Sacerdoti, 1974], while the latter leads to behav­
ior that is best described as successive refinement [Ste-
f ik, 1981]. As an example of the latter, consider what 
happens when there is a complex operator for which a 
complete set of rules does not exist a priori about how 
to perform i t . When such an operator is selected, some 
rules may fire, but an impasse wi l l st i l l occur because 
of what is left undone. Wi thout abstraction the system 
would enter a subgoal where it would complete the imple­
mentation by a search w i th a set of sub-operators. W i t h 
abstraction, the system assumes that what was done by 
the rules was all that needed to be done. It then pro­
ceeds from the abstract state produced by this abstract-
operator implementat ion. 

Another way to understand what impasse-driven ab­
straction is doing is to look at its effect on the explana­
t ion structure created as a byproduct of abstract search 
(and upon which the learning is based). Figure 2 shows a 
simplified version of the explanation structure for the toy 
robot example. Wi thou t abstraction, the rule learned 
from this explanation is: 

o p e r a t o r is push-box-to-box(b1 ,b2) A 
in~same- room(b l ,b2 ) A 
i n - s a m e - r o o m ( b l , r o b o t ) A 
¬ n e x t - t o ( b l , r o b o t ) 

=> g o a l success . 
W i t h abstraction, informat ion that would normally be 
needed for the generation of the result is essentially ig­
nored, and some subtrees of the unabstracted explana­
t ion tree — the circled substructure in the figure — no 
longer need to be expanded for the goal to be "proved". 
(Another way of looking at this is that some nodes in the 

proof tree are effectively replaced wi th the value TRUE. 
Alteration of a proof tree in this manner has been pro­
posed by [Keller, 1988] as a method of forming approxi­
mate concepts.) The abstracted rule becomes: 

opera to r is push-box-to-box(bl ,b2) A 
in-same-room(bl ,b2) 

=> goa l success. 
Alteration of the explanation structure in this way has 
made the rule more general, and thus able to apply to a 
larger number of situations. 

The same abstraction techniques extend, wi th no ad­
dit ional mechanism, to multi-level abstraction of both 
preconditions and implementations. The levels of refine­
ment grow naturally out of the dynamic hierarchy of sub-
goals that are created during problem solving. Consider 
multi-level precondition abstraction, for example. In the 
toy robot problem above, the abstract search that was 
performed was at the most abstract level — the search 
was cut off at the highest level of precondition subgoals. 
Once this search is done, and the push-box-to-box oper­
ator is selected, it is necessary to do another search to 
determine what sequence of operators wi l l satisfy its pre­
conditions. In this particular example, the goto operator 
would be among the candidates. Here no impasse of the 
goto operator application would occur, because its pre­
conditions are already met. However, if an impasse did 
occur during this new search, it would lead to abstrac­
tion in the search. This new abstract search is one level 
more detailed than was the original one. The same cy­
cle continues unti l a complete plan is generated in which 
nothing has been abstracted. 

Note that there is nothing in the impasse-driven ab­
straction techniques which prevents the problem solver 
from making use of additional domain-specific knowledge 
about what to abstract. The existence of such knowledge 
can certainly improve performance. However, domain-
specific, abstraction knowledge is not often available. If 
it is not, then the impasse-driven techniques, as a weak 
method, are able to provide useful abstract problem-
solving behavior when it would not otherwise have been 
possible. 

3 Abstraction Propagation 
Thus far, we have presented the effects of impasse-driven 
abstraction on problem solving and learning. However, 
this is only part of the picture. An important feature 
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of impasse-driven abstraction is the way in which the 
abstraction occurs dynamically dur ing problem solving. 
Each t ime an impasse occurs dur ing a control search, 
some aspect of the problem gets abstracted. However, 
these bits of abstraction in i t ia l ly happen only locally — 
jus t because part of one part icular operator appl icat ion 
gets abstracted dur ing one search step does not neces­
sarily mean that the rest of the problem space wi l l au­
tomatical ly be abstracted in a compatible fashion. Once 
some part of a problem has been abstracted away, the 
effects must be propagated to later aspects of the prob­
lem, including the goal test. Consider, for example, what 
would happen if the goal in the toy robot domain was to 
have two boxes adjacent and in the same room, but al l 
of the " in - room" informat ion in the problem space was 
abstracted away. If the " f u l l " , non-abstract goal test 
was used dur ing abstract search, it would never succeed, 
and the abstract search would never terminate (unless 
all options became exhausted, or some moni tor ing pro­
cess decided to k i l l i t ) . It would be more desirable if 
the goal test of the abstract search was to be compat ib ly 
abstracted, so that it cared only about whether the two 
boxes were adjacent. 

The general approach that we have taken is to develop 
a set of restrictions on the construction of problem spaces 
which, if fol lowed, ensure appropriate propagation of the 
abstraction. The two restrictions -— problem-space fac-
torization and assumption-based goal tests — do not l im i t 
what can be expressed, only how it is expressed. 

A problem space is factored if it is designed so that the 
descriptions of problem space components (states, oper­
ators, or goals) are separated into any independent sub­
parts which compose them; for example, by creating one 
product ion per sub-part. When problem-space compo­
nents are factored, they may st i l l be part ia l ly applicable 
to the task at hand, even if some of the problem-space 
knowledge is missing or ignored. For example, if an op­
erator is composed of a number of sub-actions, and if 
each sub-action is described separately, some of the sub-
actions may be able to apply even though there is not 
enough informat ion available to allow the operator to 
apply in its entirety. In this way the operator applies 
abstractly. 

For an example of operator factor izat ion, consider 
the fol lowing simplif ied "robot domain" operator, which 
moves a robot through a door to a new room, and in the 
process keeps track of how many robots are currently in 
each room. The operator's preconditions are not shown 
here. If i t is true that the operator "may apply" , its pre­
conditions are either met or have been ignored through 
abstraction. Unfactored, the operator is: 

Thus, i f in format ion about the number of robots in 
either room is not available, the rest of the operator 
can st i l l apply. Addi t ional ly , if because of abstraction 
the previous location of the robot was unknown, it can 
st i l l be "moved" to its new room. Factorization enables 
abstract problem-solving behavior to be propagated dy­
namical ly; whatever can be done wi l l be done, while 
what can't be done because of previously abstracted in­
format ion is simply ignored. Then, when part of a pro­
cess is ignored, this in turn may cause new problem-space 
in format ion to become abstracted. (There is some indi ­
cation that factorization is not specifically an abstrac­
t ion issue — if a problem space is factored, then more 
generalized learning can occur regardless of whether or 
not abstraction takes place). Note that a factorization 
determines what may be abstracted in a problem space 
— the set of possible abstractions. It is the impasses 
that arise dur ing problem solving which determine what 
actually is abstracted. 

Assumption-based goal testing refers to the problem-
solver's abi l i ty to make assumptions about whether or 
not goals have been achieved during abstract problem 
solving. To do this, it is necessary to be able to de­
tect that a goal has not been met, in addi t ion to be­
ing able to detect that it has been met. Under normal 
circumstances, the problem solver has enough informa­
t ion about a state to determine one or the other; that 
is, that the state either does or does not achieve the 
goal. However, when the problem is abstracted, neither 
test may succeed. Under these conditions, the problem 
solver needs to make a default assumption as to whether 
the goal is met or not. Such default assumptions can 
be made about a goal as a whole, or if it is factored, 
about ind iv idual conjuncts of the goal. To do this prop­
erly, the problem solver needs to be supplied w i th ad­
di t ional in format ion about which goals, and goal con­
juncts , should be assumed true and which should be as­
sumed false. Rare terminat ion conditions, for example, 
should be assumed by default to be unmet. This addi­
t ional assumption in format ion is not knowledge about 
what to abstract, or any part icular abstraction. Rather, 
it plays a part in determining the behavior of the system 
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once abstraction has occurred. 
The restrictions which support abstraction propaga­

t ion are independent of what is abstracted, or what is 
expected to be abstracted. In fact, they are independent 
of whether problem information is missing because of 
deliberate abstraction, or because of some other reason 
(such as bad instrument readings, etc.). Therefore, the 
problem spaces in which these restrictions have been fol­
lowed could provide a more robust support for problem 
solving in noisy domains, and make assumptions based 
on the best data at hand, regardless of whether or not 
abstraction is deliberately used. 

4 Exper imental Results 
E x p e r i m e n t s have been r u n w i t h impasse-dr iven abstrac­
t i o n in t w o d i s t i n c t task d o m a i n s : a S t r i ps - l i ke r o b o t do­
m a i n and a c o m p u t e r - c o n f i g u r a t i o n d o m a i n ( R I - S o a r ) 
[Rosenb loom et a/., 1985]. T h e r o b o t d o m a i n is s im i l a r 
to the one in the e x a m p l e presented ear l ier , b u t s l i g h t l y 
m o r e c o m p l i c a t e d : there are t w o robo ts and t w o r o o m s , 
w i t h t w o doors between t h e m , as we l l as t w o boxes. T h e 
R l - S o a r c o m p u t e r - c o n f i g u r a t i o n d o m a i n was based on a 
r e - i m p l e m e n t a t i o n o f a p o r t i o n o f the classic R I exper t -
sys tem [ M c D e r m o t t , 1982]. T h e t w o doma ins were cho­
sen because they cover b o t h a classical s e a r c h / p l a n n i n g 
d o m a i n ( t he r o b o t d o m a i n ) and a classical exper t sys-
t e m d o m a i n ( c o m p u t e r con f i gu ra t i on ) . Moreove r , the 
doma ins also di f fer in t h a t the robo t d o m a i n stresses 
abs t rac t ions based on opera to r p recond i t i ons , wh i l e the 
R l - S o a r d o m a i n stresses abs t rac t ions based on opera to r 
implementations. 

T o achieve fu r t he r v a r i a t i o n , t w o d i f ferent p rob lems 
were r u n i n the r o b o t d o m a i n , w i t h the same goa l , b u t 
w i t h d i f ferent i n i t i a l s tates. I n b o t h p rob lems the con­
j u n c t i v e goal was to have the t w o boxes pushed nex t to 
each o ther , and to have the t w o robo ts "shake hands" ( t o 
do th i s the robo ts had to be nex t to each o the r ) . T h e 
key dif ference in the i n i t i a l states was t h a t in the sec-
ond p r o b l e m one o f the doors was locked , and there was 
no key. ( T h i s second p r o b l e m shou ld cause some a d d i ­
t i o n a l c o m p l e x i t y i f t he sys tem abst rac ts away whether 
the doors are un locked . ) For each p r o b l e m , the a m o u n t 
o f search-con t ro l know ledge t h a t was d i r ec t l y ava i lab le 
to the p r o b l e m solver was also va r i ed . In one vers ion , 
the p r o b l e m solver s ta r t ed w i t h means-ends know ledge 
t h a t a l lowed i t t o d i r ec t l y recognize w h i c h opera to rs 
he lped solve w h i c h subgoals . In the o ther vers ion, the 
p r o b l e m solver cou ld detect when a subgoal had been 
so lved , b u t knew n o t h i n g d i rec t l y a b o u t wh i ch opera to rs 
he lped solve w h i c h subgoals . I n the R l - S o a r d o m a i n , t w o 
c o m p u t e r - c o n f i g u r a t i o n p r o b l e m s were also r u n . Once 
aga in , the goal was the same — to have a conf igured 
c o m p u t e r — b u t t he i n i t i a l s tates were va r i ed . 

T h e p r o b l e m spaces for these doma ins were designed 
accord ing to the res t r i c t ions discussed in Sect ion 3 . T h e 
key issues to be addressed by these expe r imen ts are the 
degree to w h i c h i rnpasse-dr iven abs t rac t i on meets the 
fou r a b s t r a c t i o n requ i remen ts presented in the i n t r o d u c ­
t i o n . 

T h e f i r s t r equ i r emen t was t h a t t he m e t h o d shou ld be 
app l i cab le in any d o m a i n . T h e evidence to date i s t h a t 

the abs t rac t ion m e t h o d has been app l ied to these t w o 
qu i te d i f ferent doma ins . In b o t h doma ins i t was possi­
ble to app l y the impasse-dr iven abs t rac t ion techniques. 
In the r o b o t d o m a i n i t was no t necessary to add any 
abst ract ion-speci f ic knowledge. W i t h R l - S o a r , i t t u r n e d 
ou t t h a t a l t hough the m e t h o d was app l i cab le , i t was 
necessary to add a sma l l a m o u n t o f a d d i t i o n a l k n o w l ­
edge abou t the abs t rac t i on , to p revent r a n d o m behav­
ior . R l - S o a r is designed so t h a t comp lex opera tors are 
i m p l e m e n t e d by m u l t i p l e levels o f s imp le r opera to rs , to 
f o rm an opera tor aggregat ion h ierarchy. I f abs t rac t i on 
occurred at the level o f the top opera to r , then there was 
no t enough i n f o r m a t i o n r e m a i n i n g in the p r o b l e m space 
(a l l con f igu ra t i on work occurred in lower subgoals) to 
make an i n fo rmed con t ro l decis ion. T h a t is, the de­
cisions became r a n d o m . There fore , we i ns t ruc ted the 
p rob lem-so lver not to abst ract a t the top level i n R l -
Soar. De fau l t abs t rac t ion behav ior a t o ther levels of the 
opera to r h ie rarchy was not affected. I t w o u l d be prefer­
able for the prob lem-so lver to be able to de te rm ine m o r e 
i n te l l i gen t l y ( t h r o u g h e x p e r i m e n t a t i o n , and the cu r ren t 
a m o u n t o f chunked vs. unchunked knowledge in the sys­
t e m ) , a useful level a t w h i c h to beg in abs t r ac t i on . We 
are cu r ren t l y w o r k i n g on an abs t rac t i on m e t h o d wh i ch 
bu i lds on the impasse-dr iven abs t rac t ion techniques, and 
a l lows the p rob lem solver to make such a d e t e r m i n a t i o n . 

T h e second requ i rement on the abs t rac t i on m e t h o d 
was t h a t abs t rac t ion shou ld reduce the p r o b l e m so l v ing 
t i m e requ i red . Tab le I shows the n u m b e r of decisions 
t h a t the p r o b l e m solver requ i red to solve each o f t he 
p rob lems , and the ra t i o o f the pe r fo rmance w i t h abstrac­
t i o n to t h a t w i t h o u t 1 . Because several o f the p rob lems 
were comp le te l y i n t r ac tab le , an a r b i t r a r y cu to f f was set 
at 3000 decisions. 

T h e overa l l t rend revealed by these results is t h a t ab­
s t rac t ion does reduce the p r o b l e m so lv ing t i m e , when 
measured in t e rms o f n u m b e r o f decisions. Moreover , the 
harder the p r o b l e m , in te rms o f the a m o u n t o f search re­
qu i red w i t h o u t abs t rac t i on , the more abs t rac t i on helps. 
Even in the second r o b o t p r o b l e m , where the p r o b l e m 
solver does indeed abs t rac t away the test o f whe the r i t 
can get t h r o u g h the locked door , abs t rac t i on helps. I t 

2 I n the Rl-Soar runs, a few chunks learned were altered 
to avoid problems generated by the way the current version 
of Soar copies informat ion to new states. Th is dif f iculty is 
unrelated to the abstraction issues, and wil l be fixed in the 
next version of Soar. 
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turns out that this abstraction does not make the prob­
lem solver noticeably less efficient when doors are locked, 
since when it does not use abstraction it is st i l l forced, 
dur ing its search, to go to the door and t ry to open it 
before it realizes this is not possible. Wha t abstraction 
was not able to do was to make all of the intractable 
tasks tractable. 

Hidden in the Rl-Soar numbers is another interest­
ing phenomenon. In problem 4, abstraction reduced 
the amount of t ime required to generate a configuration, 
but the configuration was not as good as the one gener­
ated without, abstraction. The goal test for Rl-Soar is 
that there be a complete and correct configuration. Not 
tested is the cost of the configuration. Instead, Rl-Soar 
uses control knowledge to guide it through the space of 
part ia l configurations so that the first complete configu­
rat ion it reaches is l ikely to be a cheap one. This use of 
control knowledge to determine opt imal i ty is a soft v io-
lat ion of the constraint that control knowledge not de­
termine correctness, and thus abstraction can (and does) 
have a negative impact on i t . A recoding of Rl-Soar to 
incorporate opt imal i ty testing into the goal test could 
avoid this, or it could simply be lived w i th as an ef­
fo r t /qua l i t y trade-off. 

To return to requirement 2, the normal assumption 
in Soar is that the t ime per decision is fa i r ly constant, 
so the decision numbers should be directly convertible 
into times. However, it turns out that decisions for deep 
searches are considerable more expensive than ones for 
shallow searches because of the amount of addit ional 
informat ion in the system's working memory. Table 2 
shows the actual problem solving times for the two R l -
Soar problems, w i th and w i thout abstraction. These 
numbers show that when actual run times are compared, 
the advantage of abstraction is even greater. 

The th i rd requirement was that abstraction should re­
duce the t ime required to learn. To evaluate this, we 
need to look at how long it takes to acquire control 
chunks, w i th and w i thout abstraction. Table 3 presents 
the relevant data. It shows the number of decisions that 
occurred before the control chunk for the first operator 
t ie was learned, for one robot problem and one Rl-Soar 
problem. In both cases, abstraction greatly reduced the 
amount of effort required before the control rule could 
be learned. 

The four th requirement was that abstraction should 
increase the transfer of learned rules. Rather than eval­
uate transfer directly, what we shall do is i l lustrate this 
effect by comparing a corresponding pair of abstract and 
non-abstract chunks f rom the robot domain (Figure 3). 
The two have identical tests up to a point ; however, the 
non-abstract chunk cares whether the robot is next to the 
box to be pushed, and whether the robots, rooms, and 

doors are arranged so that the robots wi l l later be able 
to get together to shake hands. These extra conditions 
l im i t the domain of appl icabi l i ty of the non abstract rule 
w i th respect to the abstract rule. 

Together these experimental results provide support, 
though not yet conclusive support, for the abi l i ty of 
impasse-driven abstraction to meet the four key require­
ments on an abstraction method. 

5 Conclusions and Future Work 
In earlier work we showed how an abstraction, once cho­
sen, could be made to dynamical ly propagate through 
a problem space [Unruh et a/., 1987]. In this article we 
have bu i l t on that work, by turn ing it in to a general 
weak method that does not require manual specification 
of how the problem spaces and goal tests are to be ab­
stracted; the key ideas being impasse-driven abstraction 
and restrictions on problem space construction. We have 
also shown how this technique can yield mult i - level ab­
straction and successive refinement. 

Another impor tan t way that the earlier results have 
been extended is by the performance of a set of experi­
ments in two task domains. These experiments provided 
evidence for the satisfaction of four key requirements on 
an abstraction mechanism: that it should be applicable 
in any domain, that it should reduce problem solving 
t ime, that i t should reduce learning t ime, and that i t 
should increase the transfer of learned rules. However, 
in the Rl-Soar domain, the problem solver was provided 
w i th addi t ional abstraction knowledge beyond the de­
faul t which prevented it f rom abstracting at the highest 
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level of the domain's operator hierarchy. This knowl­
edge was necessary to make the abstraction useful; it 
prevented random control decisions stemming from too 
l i t t le in format ion. 

Despite progress w i th the general weak method pre­
sented here, a number of issues remain to be addressed. 
The most impor tant issue is how the weak method can 
be strengthened by using addit ional knowledge about 
domains and their abstractions. Impasse-driven abstrac­
t ion does appear to be a plausible technique to use 
in many situations. Due to the experiential nature of 
chunking, those parts of the problem space that are fa­
mil iar w i l l be encoded as compiled knowledge, and thus 
won' t generate the impasses which ini t iate abstractions. 
If the heuristic holds that " famil iar" is " impor tan t " , the 
default abstraction behavior may be quite useful. 

But because the current method is weak, there must, 
be many circumstances in which it wi l l not cause the 
most appropriate behavior to occur. We plan to try to 
use the combinat ion of the weak method and experiential 
learning (chunking) to bootstrap the system to a richer 
theory of abstractions by learning about the ut i l i ty of 
the abstractions that the system tries. One promising 
avenue of current research is the technique referred to 
in Section 4, by which the system tries to determine 
through experimentation a helpful level of abstraction 
for a given problem context. There are many other ways 
to learn about an abstraction's u t i l i t y as well. One possi­
b i l i ty is empirical observation over a sequence of related 
tasks. Al ternat ively, the problem solver might notice 
that an abstraction has caused a problem in a particu­
lar context, and "explain" to itself why this is the case, 
using its domain knowledge (failure-driven refinement 
of the abstraction " theory".) A final option would be 
for the problem solver to analyze its domain, if it has 
t ime to do so, and at tempt to come up with a part ial ly 
pre-processed abstraction theory, as in [Benjamin, 1989, 
E l lman, 1988, Knoblock, 1989, Tenenberg, 1988]. 

A second i tem of future work is the extension of the 
experiments, both in breadth and depth. We wil l be 
looking at abstraction in a number of domains, and try­
ing to empirical ly evaluate how domain characteristics 
impact the u t i l i t y of abstraction. 

A final i tem wi l l be to evaluate the extent to which the 
restrictions on problem space construction presented in 
Section 3 can improve the robustness of problem solving 
in noisy domains. 
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