
Acquiring Recursive Concepts with Explanation-Based Learning 

Jude W. Shavlik 
Computer Sciences Department 

University of Wisconsin 
Madison, WI 53706 

Abstract 
Explanation-based generalization algorithms need 
to generalize the structure of their explanations. 
This is necessary in order to acquire concepts 
where a recursive or iterative process is implicitly 
represented in the explanation by a fixed number 
of applications. The fully-implemented BAGGER2 
system generalizes explanation structures and 
produces recursive concepts when warranted. 
Otherwise the same result as standard 
explanation-based generalization algorithms is 
produced. BAGGER2'S generalization algorithm is 
presented and empirical results that demonstrate 
the value of acquiring recursive concepts are 
reported. These experimental results indicate that 
generalizing explanation structures helps avoid 
the recently reported negative effects of learning. 
The advantages of the new approach over 
previous approaches that generalize explanation 
structures are described. 

1. Introduction 
Explanation-based learning (EBL) systems acquire new 
concepts by generalizing explanations to specific solutions. 
It has been recognized that explanation structures that 
suffice for understanding a specific solution are not always 
satisfactory for generalizing the solution. Instead, the 
explanation structure must often be augmented if a useful 
generalization is to be produced lShavlik88]. This paper 
addresses the important issue in EBL of generalizing to N 
[Cheng86, Cohen88, Prieditis86, Shavlik85, Shavlik87]. 
This can involve generalizing such things as the number of 
entities involved in a concept or the number of times some 
action is performed. This type of generalization is 
necessary in order to acquire concepts where a general 
iterative or recursive process is implicitly represented by a 
fixed number of applications in the specific problem's 
explanation. 

BAGGER2 is a fully-implemented system designed to 
generalize the structure of explanations. This system is the 
successor to an earlier structure-generalizing EBL system 
[Shavlik87] that learned iterative concepts (manifested as 
linear chains of rule applications). Unlike its predecessor, 

This research was partially supported by a grant from the 
University of Wisconsin Graduate School. 

BAGGER2 is capable of acquiring recursive concepts 
involving arbitrary tree-like applications of rules, can 
perform multiple generalizations to N in one example, and 
can integrate the results of multiple examples. 

The next section presents the BAGGER2 algorithm. 
Subsequent sections illustrate the new algorithm with a 
simple example, compare what it learns to the result of more 
standard EBL systems, present empirical evidence of the 
value of generalizing explanation structures, and compare 
BAGGER2 to other systems that generalize number. 

2. The BAGGER2 Algorithm 
BAGGER2 extends the EGGS algorithm [Mooney86J, a 
standard EBL algorithm. Both algorithms assume that, in 
the course of solving a problem, a collection of pieces of 
general knowledge (e.g., inference rules, rewrite rules, or 
plan schemata) are interconnected, using unification to 
insure compatibility. In EGGS, the resulting explanation 
structure is generalized by first stripping away the details of 
the specific problem and then determining the most general 
unifier that allows the general pieces of knowledge to be 
connected in the same way. This involves replacing the 
constants in the specific explanation with constrained 
variables. The result is a new composite knowledge 
structure that contains the unifications that must hold in 
order for the knowledge pieces to be combined in the given 
way. Assuming tree-structured explanations, if the leaf 
nodes can be satisfied, the root (goal) node will also be 
satisfied. There is no need to again reason about combining 
the pieces of knowledge together to achieve the goal. Since 
a substantial amount of work can be expended constructing 
the original solution, the new knowledge structure can lead 
more rapidly to a solution. Notice, though, that the structure 
of the explanation is not changed. If some process is 
repeated three times in the specific problem's explanation, it 
will be repeated exactly three times in the concept acquired 
by EGGS. 

BAGGER2 generalizes explanation structures by looking 
for repeated intcr-dependent sub-structures in an 
explanation. Figure 1 schematically presents this process. 
Assume that in explaining how a goal is achieved, the same 
general sub-problem (P) arises several times. The full 
explanation can be grouped into several qualitatively 
different portions. First, there arc the sub-explanations 
where an instantiation of P is supported by the explanations 
of other instantiations of the general problem P. In the 
figure, these are the sub-explanations marked 1 and 4. 
Second, there are the sub-explanations where an 

688 Machine Learning 



instantiation of P is explained without reference to another 
instantiation. These arc the sub-explanations labelled 3, 5, 
and 6. Finally, there are the portions not involving P (sub-
explanation 2). 

The explanation in figure 1 can be viewed as the trace of 
a recursive process. This is exactly what must be 
recognized in the explanation of a specific example if a 
recursive or iterative concept is to be learned. The 
generalizations of sub-explanations 1 and 4 form the 
recursive portion of the concept, while the generalizations 
of sub-explanations 3, 5, and 6 produce the termination 
conditions. BAGGER2 partitions explanations into groups as 
illustrated by figure 1, from which a new recursive concept 
is produced. 

The BAGGER2 generalization algorithm appears in 
figure 2. This algorithm is expressed in a pseudo-code, 
while the actual implementation is written in Common Lisp. 
The remainder of this section elaborates the pseudo-code. 
In the algorithm back arrows (<—) indicate value 
assignment. The construct 

for each element in set do statement 
means that element is successively bound to each member 
of set, fol lowing which the statement is evaluated. 

The BAGGER2 algorithm assumes explanations arc 
derivation trees (e.g., something that could be produced by 
a Horn clause theorem prover such as Prolog). As is 
standard in explanation-based algorithms, an explanation 
structure is first produced from the specific problem's 
explanation. To build the explanation structure, each 
instantiated rule in the explanation is replaced by a copy of 
the original general rule. (I f the same general rule is used 
multiple times, each time it appears in the explanation 
structure its variables are renamed. This prevents spurious 
equalities among variables in the explanation structure.) 

The algorithm starts at the root of the explanation 
structure. If something that unifies with the general goal 
appears elsewhere in the explanation structure, then a 
recursive rule (called a recurrence) is produced starting at 
the root node. Otherwise, the general version of the 
antecedents arc collected and a new rule produced. A 

recurrence can also arise within an explanation structure, 
and this discussion wi l l assume the root node does not 
directly lead to a recurrence. 

Collect GeneralAntecedents produces the necessary 
requirements for the consequent of a rule to hold. Ignoring 
for a moment the possibility of recurrences being 
constructed, this entails traversing through the explanation 
structure and stopping at operational [Keller88] nodes. 
Along the way all the unifications necessary to connect the 
rules in the explanation structure are collected (thus 
eliminating the need to check these when the acquired rule 
is later applied). Operational nodes are either antecedents 
satisfied by a problem-specific fact or antecedents somehow 
judged to be easily satisfied. This portion of the algorithm 
is merely a rehash of the EGGS algorithm. Hence, notice 
that when BAGGER2 detects no potential generalizations 
to TV it produces the same result as the EGGS algorithm. 

More interesting is what happens when a potential 
recurrence is detected. This is done by seeing if, in the 
derivation of a general antecedent, a unifiable version of the 
antecedent appears (e.g., the P's in figure 1). If so, the 
explanation structure headed by the general antecedent is 
partitioned into two types of sub-explanations. Those 
terminal proofs where a version of the antecedent docs not 
appear in its proof and those recursive proofs where at least 
one does. In the recursive proofs, the recursive sub-
explanations arc replaced by a call to the recurrence being 
constructed. These calls contain the term that must be 
unified with the consequent of the recurrence. Hence, in 
figure 1, when cutting out sub-explanation 1, sub-
explanations 3 and 4 are removed. Notice, then, that the 
cut-out sub-explanations are non-overlapping. 

Once the sub-explanations are produced, each is 
generalized by again calling the BAGGER2 algorithm. This 
means that another recurrence can be found within a sub-
explanation, allowing multiple generalizations to N in a 
single example. When generalizing the sub-explanations, 
the necessary unifications between the root of the sub-
explanation and the recurrence are collected. The 
generalizations of the sub-explanations are disjunctively 
combined and a recurrence produced. Since two sub-
explanations may generalize to the same result, duplicate 
disjuncts arc removed from the acquired recurrence. 

The recurrence is a separate entity from the rule produced 
for the full explanation. Because of this, they support 
transfer of the the results learned during one task to the 
performance of another, provided the two tasks involve 
common sub-tasks. Recurrences being separate entities also 
supports learning from multiple examples. If a new method 
for satisfying the consequent of a recurrence is encountered, 
it can be merged with the previous disjuncts.1 

1 This may lead to poor performance if too many disjuncts are 
learned. The user of BAGGER2 can decide when a concept is 
sufficiently learned and tell the system to " f reeze" all of its 
recurrences. After that, new recurrences wi l l be built even if they 
have the same consequent as an existing one. 

Shavlik 689 



Before BAGGER2 produces a new rule, it reorganizes the 
antecedents. This involves removing redundant antecedents 
and reordering them to increase the efficiency of future 
retrievals. In recurrences, if an antecedent (one independent 
of the variables in the recurrence's consequent) appears in 
every terminal disjunct, it can be removed from the 
recursive disjuncts. 

Assuming that explanations are logical proofs, the 
BAGGER2 algorithm can be proved correct. 

Theorem: The BAGGER2 algorithm is sound. That is, the 
rules it learns will never derive anything that cannot be 
derived by the initial domain theory (see [Shavlik89] for the 
proof). 

There are several shortcomings of the BAGGER2 
algorithm. One, explanations must be trees. Two, 

690 Machine Learning 



recurrences may not terminate. Three, when a concept 
involves multiple recurrences, better performance often can 
be obtained by merging the recurrences together. Four, 
there can be redundant computation in some cases. Five, a 
recurrence can acquire too many disjuncts, thereby 
decreasing its utility. Approaches to these problems are 
discussed in [Shavlik89]. 

3. An Example 
An sample application of the BAGGER2 algorithm appears in 
this section. Circuit design is the domain used. Rules 
(appearing in the appendix) determine how to implement a 
circuit depending on the type of gates available. Assume 
only AND and NOT gates are available. DcMorgan's law 
must be repeatedly applied in order to implement a circuit 
involving a collection of OR gates, in which the final output 
is negated. An explanation of how this task can be 
accomplished can be produced using the rules provided. 

If the EGGS algorithm is applied to the resulting 
explanation, the rule in figure 3 results. Notice that this rule 
not only requires a fixed number of inputs, but also a fixed 
topology. Clearly the explanation structure needs to be 
generalized. 

The result produced by BAGGER2 appears in figure 4. In 
this problem, the full explanation leads to a single 
recurrence. The recurrence (which is given a "gensym'ed" 
name) involves four disjuncts. The first applies when only a 
single application of DeMorgan's rule is necessary. AND 
gates must be available if the resulting circuit is to be 
implemented. The remaining three disjuncts are recursive. 
The second and third disjuncts apply when one input is a 
wire. In this case, the rule recurs on the other input. In the 
final disjunct, recursion is needed for both inputs. (If the 
training example was simpler, all of these conditions may 
not have been encountered and multiple examples would be 
needed to learn the complete concept.) 

A couple of points about the notation in figure 4 are 
necessary. The match predicate unifies its two arguments. 
The italicized or's and and's describe the meaning of the 
rule, while the others refer to gates in the circuit being 
designed. The special predicate call calls the recurrence 
named in its first argument (recall that there can be 
recurrence calls within recurrence calls, which is why the 
name is needed). The second argument is unified with the 
consequent of the recurrence upon the recursive call. 
Finally, BAGGER2 renames the variables in recurrences. 
Variables starting with v appear in the consequent, while the 
e variables arc " local" variables. 

The rule learned by BAGGER2 can be viewed as a general 
version of DcMorgan's law. It converts the negation of an 
N-input OR gate into an N-input AND gate. Notice that it 
applies to a much larger class of problems than does the rule 
learned by EGGS. 

Notice that the acquired recurrence does not refer to any 
of the initial rules. It is self-contained and is topologically 
similar to a recursive Lisp function. The consequent 
specifics the parameters and the antecedents form 
something like a Lisp COND. This ''function" is produced 
from a collection of simple declarative Prolog-like rules. 
Rules are called explicitly rather than seeing which rules in 
a large rulebase may be applicable. Hence, BAGGER2 
provides a way to transform a simple, but inefficient, logic 
program into a program in a more efficient language. 

4, E m p i r i c a l Analysis 
A question arises. Is it worthwhile to generalize 
explanation structures? Generalizing explanation structures 
leads to acquiring more general rules, but because the 
resulting rules are more complicated, applying them entails 
more work. This question involves the relationship between 
the operaiionality and generality of acquired rules 
[Keller88]. Experiments reported in this section investigate 
whether it is better to the learn a more general recursive rule 
or whether it is better to individually learn the subsumed 
rules as they are needed. 

Using the circuit design rules, three systems are 
compared: BAGGER2, EGGS, and no-learn (a system that 
does not learn any new rules). The two learning systems arc 
given some number of circuits to convert and if they use 
more than one rule to solve a problem, they generalize the 
resulting explanation and save the new rule. Following this 
training phase, all three systems try to solve a new 
collection of ten problems, with the learning systems giving 

Shavlik 691 



priority to their acquired rules. During this testing phase no 
learning occurs. Al l three systems use the same backward-
chaining problem solver, which is basically a Lisp 
implementation of Prolog augmented to handle explicit calls 
to BAGGER2's recurrences. Each experiment is repeated ten 
times. Hence, each point plotted in the figures below is the 
mean of 100 measurements. 

In the first experiment, training problems consistent of 
randomly generated implementations of 8-input OR gates 
using binary OR} The final output is negated. As in the last 
section, the task is to implement this gate using only NOT 
and binary AND gates. 

The percentage of test problems solvable using each 
systems acquired rules is plotted in figure 5. Clearly, 
BAGGER2 needs many fewer training examples to learn the 
concept being taught. 

The next issue, a more important one, is how long it takes 
each of the systems to solve a new problem. The learning 
systems are trained on OR circuit problems of various sizes. 
The number of randomly-generated training examples for 
each problem type equals the possible number of binary 
circuits with that total number of inputs (see the formula in 
the previous footnote), EGGS organizes its rules according 
to the number of inputs involved (i.e., in six groups) and 
only possibly relevant rules are checked during problem 
solving. Figure 6 contains the mean solution time on the 
test problems. (For EGGS, only the time spent on problems 
solved by a learned rule is recorded. Both this and the 
assumption about rule organization favor EGGS.) 

Figure 6 shows that merely learning all possible cases is 
worthwhile if there are only a few possible cases. However, 
as the number of possible cases grows, it soon becomes 
worthwhile to learn recursive rules. Note that after awhile, 
it would be better to have not learned at all than to use 
EGGS. A structure-generalizing EBL algorithm such as 
BAGGER2 helps avoid the negative effects of learning 
recently reported [Minton88]. 

BAGGER2 has also been run on blocks-world problems 
(see [Shavlik89] for details). The task is to teach a system 
how to build towers of a range of heights. Figure 7 
presents, on a logarithmic scale, the performance of the 
three systems on this task as the maximum tower height 
increases. (At each point, enough training examples are 
presented so that both learning systems completely learn the 
concept.) Again, as the complexity of problems increases, 
BAGGER2 begins to out-perform EGGS. 

5. Related Work 
Besides BAGGER [Shavlik87] (which only learns iterative 
concepts) and BAGGER2, several other explanation-based 
approaches to generalizing number have been recently 
proposed. 

Prieditis [Prieditis86] developed a system that learns 
macro-operators representing linear sequences of repeated 

STRIPS-like operators. Recursive rules are not learned, nor 
are disjunctive ones. In the FERMI system [Cheng86], 
cyclic patterns are recognized using empirical methods and 
the detected repeated pattern is generalized using 
explanation-based learning techniques. However, unlike the 
techniques implemented in BAGGER2, the rules acquired by 
FERMI are not fully based on an explanation-based analysis 
of an example, and so are not guaranteed to always work. 
Cohen [Cohen88] recently developed and formalized 
another approach to the problem of generalizing number. 
His system generalizes number by constructing a finite-state 
control mechanism that deterministically directs the 
construction of proofs similar to the one used to justify the 
specific example. His approach can acquire recursive and 
disjunctive concepts, as well as learn from multiple 
examples. However, his approach assumes that no new 
relevant facts or rules are added to the database after 
learning. This means that, unlike BAGGER2, a new concept 
cannot be learned in the presence of one set of facts and 
then applied under a new set of facts (e.g, from one blocks-

692 Machine Learning 



world scene to another). Finally, in Physics 101 [Shavlik88] 
the need for generalizing number is motivated by analyzing 
mathematical calculations. 

The problem of generalizing to N has also been addressed 
within the paradigms of empirical (or similarity-based) 
learning (e.g., [Sammut86]) and automatic programming 
(e.g., [Summcrs77]). A general specification of number 
generalization has been advanced by Michalski 
[Michalski83]. He proposes a set of generalization rules 
including a closing interval rule and several counting 
arguments rules which can generate number-generalized 
structures. The difference between such empirical 
approaches and BAGGER2's explanation-based approach is 
that the newly formed similarity-based concepts typically 
require verification from corroborating examples, whereas 
the explanation-based concepts are immediately supported 
by the domain theory. 

6. Conclusion 
Explanation-based learning systems must generalize 
explanation structures if they are to be able to fully extract 
general concepts inherent in the solutions to specific 
examples. A general approach for doing so has been 
presented. The BAGGER2 algorithm is capable of learning 
complicated recursive concepts, can integrate results from 
multiple examples, and has been shown to perform better 
than a standard EBL algorithm (EGGS). Experimental 
results indicate that generalizing explanation structures 
helps avoid the recently reported negative effects of 
learning [Minton88]. On problems where learning a 
recursive rule is not appropriate, the system produces the 
same result as the EGGS algorithm. Applying the recursive 
rules learned only requires a minor extension to a Prolog-
like system, namely, the ability to explicitly call a specific 
rule. This research brings EBL closer to its goal of being 
able to acquire the full concept inherent in the solution to a 
specific problem. 

Appendix - Initial Rules for the Circuit Problem 
implement-by(not(not(?x))),?y) : -

implcment-by(?x,?y). 

implement-by(not(and(?x,?y)),nand(?a,?b)) :-
have-nands, implcmcnt-by(?x,?a), implement-by(?y,?b). 

implement-by(not(?x),nand(?y, 1)) :-
havc-nands, implement-by(?x,?y). 

implement-by(and(?x,?y),nand(nand(?a,?b), 1)) :-
havc-nands, implement-by(?x,?a), implement-by(?y,?b). 

implement-by(not(?x),not(?y)) :-
have-nots, implement-by(?x,?y). 

implement-by(or(?x,?y ),or(?a,?b)) : -
havc-ors, implement-by(?x,?a), implcment-by(?y,?b). 

implement-by(or(?x,?y),nand(?a,?b)) :-
have-nots, havc-nands, 
implement-by(not(?x),?a), implement-by(not(?y),?b). 

implcment-by(not(or(?x,?y)),and(?a,?b)) :-
have-ands, 
implemcnt-by(not(?x),?a), implcmcnt-by(not(?y),?b). 

implement-by(?wire,?wirc) :- wire(?wire). 

References 
lCheng86] P. Cheng and J. G. Carbonell, "The FERMI System: 

Inducing Iterative Macro-operators from 
Experience," Proceedings of the National 
Conference on Artificial Intelligence, Philadelphia, 
PA, August 1986, pp. 490-495. 

[Cohen88] W. W. Cohen, "Generalizing Number and Learning 
from Multiple Examples in Explanation-Based 
Learning," Proceedings of the Fifth International 
Conference on Machine Learning, Ann Arbor, M I , 
June 1988, pp. 256-269. 

[Jacobson51] N. Jacobson, Lectures in Abstract Algebra, Vol. 1, 
Von Nostrand, Princeton, NJ, 1951. 

[Kcller88] R. M. Keller, "Defining Operationality for 
Explanation-Based Learning," Artificial Intelligence 
35, 2 (1988), pp. 227-241. 

[Michalski83] R. S. Michalski, "A Theory and Methodology of 
Inductive Learning," Artificial Intelligence 20, 2 
(1983), pp. 111-161. 

[Minton88] S. Minton, "Quantitative Results Concerning the 
Util ity of Explanation-Based Learning," 
Proceedings of the National Conference on 
Artificial Intelligence, St. Paul, M N , August 1988, 
pp. 564-569. 

[Mooney86] R. J. Mooney and S. W. Bennett, "A Domain 
Independent Explanation-Based Generalizer," 
Proceedings of the National Conference on 
Artificial Intelligence, Philadelphia, PA, August 
1986, pp. 551-555. 

[Prieditis86] A. E. Prieditis, "Discovery of Algorithms from 
Weak Methods," Proceedings of the International 
Meeting on Advances in Learning, Les Arcs, 
Switzerland, 1986, pp. 37-52. 

lSammut86] C. Sammut and R. B. Banerji, "Learning Concepts 
by Asking Questions.," in Machine Learning: An 
Artificial Intelligence Approach, Vol. II, R. S. 
Michalski, J. G. Carbonell and T. M. Mitchell (ed.), 
Morgan-Kaufmann, Los Altos, CA, 1986, pp. 167-
192. 

[Shavlik851 J. W. Shavlik and G. F. DeJong, "Building a 
Computer Model of Learning Classical Mechanics," 
Proceedings of the Seventh Annual Conference of 
the Cognitive Science Society, Irvine, CA, August 
1985, pp. 351-355. 

[Shavlik87] J. W. Shavlik and G. F. DeJong, "BAGGER: An 
EBL System that Extends and Generalizes 
Explanations," Proceedings of the National 
Conference on Artificial Intelligence, Seattle, W A , 
July 1987, pp. 516-520. 

[Shavlik88] J. W. Shavlik, "Generalizing the Structure of 
Explanations in Explanation-Based Learning," 
Ph.D. Thesis, Department of Computer Science, 
University of Il l inois, Urbana, IL , January 1988. 
(Also appears as UILU-ENG-87-2276, AI Research 
Group, Coordinated Science Laboratory, University 
of Ill inois at Urbana-Champaign.) 

[Shavlik89] J. W. Shavlik, "Acquiring Recursive and Iterative 
Concepts with Explanation-Based Learning," 
Technical Report, Department of Computer 
Science, University of Wisconsin, Madison, W I , 
1989. 

[Summers77] P. D. Summers, "A Methodology for LISP Program 
Construction from Examples," Journal of the 
Association for Computing Machinery 24, (1977), 
pp. 161-175. 

Shavlik 693 


