Discovering Admissible Heuristics by Abstracting and Optimizing:
A Transformational Approach

Jack Mostow and Armand E. Prieditis*
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

Abstract

We present an implemented model for discov-
ering a class of state-space search heuristics.
First, abstractions of a state-space problem are
generated by dropping information from the
problem definition. An optimal solution path
for any such abstracted problem gives a lower
bound on the true distance to the goal. This
bound can be used as an admissible evalua-
tion function for guiding the base-level search.
Moreover, if the abstracted goal is unreach-
able from an abstracted state, the original state
can safely be pruned. However, using exhaus-
tive search to evaluate the abstracted problem
is generally Therefore, optimization
is used to speed up the computation of the
lower bound (or solvability test), for example
by factoring the abstracted problem into in-
dependent subproblems. We analyze the con-
ditions under which the resulting heuristic is
faster than brute force search. Our implemen-
tation, named ABSOLVER, has several general
transformations for abstracting and simplifying
state-space problems, including a novel method
for problem factoring. ABSOLVER appears to
be the first mechanical generator of heuristics
guaranteed to find optimal solution paths. We
have used it to derive known and novel heuris-
tics for various state space problems, including
Rubik's Cube.

too slow.

*The research reported here was supported in part by the
Defense Advanced Research Projects Agency (DARPA) un-
der Contract number N00014-85-K-0116, in part by the Na-
tional Science Foundation (NSF) under Grant Number DMC-
8610507, and in part by the Center for Computer Aids to In-
dustrial Productivity (CAIP), an Advanced Technology Cen-
ter of the New Jersey Commission on Science and Technology,
at Rutgers University, Piscataway, New Jersey. The opinions
expressed in this paper arc those ofthe authors and do not re-
flect any policies, either expressed or implied, of any granting
agency. We thank Saul Amarel, Tony Bonner, Alex Borgida,
Christina Chang, Jan Chomicki, William Cohen, Mukesh
Dalai, Richard Korf, Michelle Kraus, Pat Langley, Sridhar
Mahadevan, Tom Mitchell, Stan Raatz, Lou Steinberg, Chris
Tong, and Bob Webber for their helpful comments.

1 Introduction

Finding optimal (least cost) solutions to large state-
space problems is generally intractable without good
admissible heuristics (evaluation functions that return
lower-bound estimates of distance to goal). When cou-
pled with search algorithms that ensure optimality, like
A* [Nilsson, 1980] or iterative-deepening A* (IDAY)
[Korf, 1985a], such heuristics can reorder the search so
that solutions are found much earlier. They can also
reduce search by pruning states that lie more than a
specified distance from the goal. This distance may be
the exact solution length for problems where it is known
a priori, an upper bound on acceptable solution length,
orjust infinity, in which case the predicate tests whether
the goal is reachable at all from a given state.

However, good admissible heuristics can be hard to
find. For example, after extensive study, Korf was un-
able to find a single good heuristic evaluation function
for Rubik's Cube [Korf, 1985b]. He concluded that "if
there does exist a heuristic, its form is probably quite
complex."

The long-term goal of our research is to develop a sys-
tem that can discover good admissible heuristics auto-
matically, or at least with less user effort than discover-
ing them by hand. The main contribution of this paper
is a model for discovering such heuristics, and its par-
tial implementation in a system called ABSOLVER. We
next describe how it works, and then evaluate it as an
explanatory model, as a generative model, and as an au-
tomatic discovery engine.

2 ABSOLVER

Our approach, illustrated in Figure 1, derives admissi-
ble heuristics from abstractions of a state-space problem.
ABSOLVER is initially given a STRIPS-like representa-
tion ofa problem class. The distinction between a prob-
lem class and a problem instance is important because
the effort ofdiscovering a heuristic can be amortized over
all instances of the problem class.

ABSOLVER generates abstractions by dropping infor-
mation from this description via a series of abstracting
transformations chosen from a catalog. An optimal so-
lution path for any resulting abstracted problem gives a
lower bound on true distance to goal. This lower bound
can then be used as an admissible evaluation function

Mostow and Prieditis 701

Prohlem Class
iid
| BEPRESENT |
J

| ABSTRACT |

4 it
Admissible Heuristic

4
Problem Instance = |SEARCH | = Optimal Solution

Figure 1: ABSOLVER’s Model of Discovery

for guiding the base-level search. Moreover, if the ab-
stracted goal is unreachable from an abstracted state
(within the specified upper bound), the original state
can safely be pruned.

However, using brute-force search to solve the ab-
stracted problem is generally too expensive. Suppose
that using the abstracted problem to estimate distance
to goal reduces the branching factor of the base level
search from b to ¢. Base level depth is unchanged, so
¢? base level states must be expanded and evaluated.
Without optimization, it costs b3 to perform each eval-
uation by searching an abstracted space with branching
factor b, and depth d,. This strategy pays off only if
¢? #bd= < b4, Therefore an optimization phase is needed
to speed up the computation of the heuristic, for exam-
ple by factoring the abstracted problem intoindependent
subproblems.

Finally, since this model can generate good and bad
heuristics, the effectiveness of a heuristic is evaluated on
sample instances of the problem.

We now use a running example to illustrate each com-
ponent of this model in more detail.

2.1 Representation

Our model starts with a STRIPS-style problem class rep-
resentation consisting of a goal and a set of operators.
To avoid anomalous abstractions, we exclude negation
and universal quantifiers, and require the delete list to
be a subset of the precondition list. An individual prob-
lem instance consists of finding a sequence of operator
applications leading from = specified initial state to a
state matching the goal.

For example, the Eight Puzsle can be represented in
terms of the predicates at(T, S) (tile T is on square S),
blank(S) (square S is blank), and adj(S, S') (square S 1s
adjacent to square S’). The goal is represented as a list
of subgoals, e.g., {at(a, 1),at(d,2),...,| blank(6) {}, where
tiles are lettered @ through g and squares are numbered
1 through 9. A single operator suffices:

move(T, S, S’) — move T from square S to 5’
pre: al{T,S)| blank(5') L ady(S, S')

add: o(T, S’), dlank(S)
del: ai(T, S)| blank(S’)
The boxes will be explained later.

702 Machine Learning

The heuristics generated by ABSOLVER depend to
some extent on the initial representation. For example,
ABSOLVER produces somewhat different results given a
Cartesian representation in terms of the following pred-
icates. The predicate zloc(T, X) holds if tile T is at
z-coordinate X; yloc(T,Y) if tile T is at y-coordinate
Y; zloch(X) if the blank is at z-coordinate X; ylocb(Y)
if the blank is at y-coordinate Y, and adj(U, V) if U and
V are adjacent z ot y coordinates. The same goal now
looks like

{zloc(a, 1}, yloc(a,1),. . .,

zloch(2),ylocd(3) [},

where z and y coordinates are numbered 1 through 3.
Two operators suffice for this representation:

egmove(T, X, X') — move T from column X to X'
pre: zloc(T, X), yloc(T,Y),

zloch(X'), ylock(Y) |adj(X, X')
add: zloc(T, X'}, 2loch(X)
del: 2loc(T, X}, zloch(X')

ymorve(T,Y,Y’) — move T from row Y to ¥’
pre: zloc(T, X), yloc(T,Y),

zloch(X), yloch(Y') |,adj(Y,Y")
add: yloc(T,Y'}} ylock(Y)
del: yloe(T,Y) | ylock(Y"')

Other representations are also possible, for example, by
treating the blank like a tile that happens to satis{y a
predicate ishlank(T}.

2.2 Abstraction

English Paraphrase

drop all instances of predicate
P from problem description
drop subgoal G from goal
drop precondition P of op O
replace predicate P by number
of objects that satisfy it
replace two numbers

by their sum

drop all instances of number
N from problem description
replace number N

with its parity

replace two parities

by their sum

drop all instances of parity

B from problem description

Transformation
drop_predicate{P)

drop_goal(G)
drop_precondibion({F, 0}
count{F)

compose_numbers(M,NJ

drop_number(N)

number_to_parity(N)

compose_parities(B,C)

drop_parity(B)

Table 1: Catalog of Abstracting Transformations

Given a particular problem class representation, AB-
SOLVER generates abstractions of it by applying trans-
formations chosen from the catalog shown in Table 1.
These transformations resemble generalisation rules like
those in [Michalski, 1983], except that they apply to
siate-space problems rather than concept descriptions.
For example, ABSOLVER can derive a heuristic that is

functionally equivalent to Manhattan Distance by apply-
ing the drop_predicate transformation to the blank pred-
icate in the single-operator representation, or to xloeb
and yloeb in the Cartesian representation. In either case,
the abstraction is formed by dropping the boxed pred-
icates from the operators and goal. In the abstracted
problem space, each tile can move to adjacent squares
regardless of where the other tiles and blank are.

2.3 Optimization

Name English Paraphrase
Jactor{P) Factor problem F

into independent subproblems
merge_operators(X,Y) | Merge two identical

operators X and ¥V
ecliapse({Op) Collapse non-branching search

to closed form of cost

Table 2: Catalog of Optimizing Transformations

An abstracted problem can be sped up by one or more
of the optimizing transformations listed in Table 2—
provided it satisfies their preconditions. Unfortunately,
most abstractions do not; Section 3.3 discusses the dif-
ficult problem of finding abstractions that can be opti-
mized.

In our example, we can use the factor transforms
tion to split the abstracted problem into 8 independent
subproblems, one for each tile. Next, factor simplifies
each subproblem by restricting the set of operators to
those that are relevant to achieving the subgoal. For
example, the first subproblem has the goal at(a, 1) and
the restricted operator move(a, 5, S). For an n by n ver-
sion of the Eight Puzzle, this step reduces the abstracted
problem from a search space containing (n?—1)" states
(n? possible locations for each tile) to (n2 — 1) indepen-
dently solvable problems of size n? which can be solved
in total time oO(n").

If we use the Cartesian representation, we can obtain
further speedup by applying drop .precondition to xloc
in the yrnove operator and yloc in the xmove operator,
and factoring into separate subproblems for the x and y
dimensions. The resulting problem has 2n? —2 indepen-
dent subproblems, one for each tile and each dimension.
For example, the first subproblem has the goal xloc(a, 1)
and the restricted operator xmove(a, X, X). Each sub-
problem has a search space of size n, corresponding to
the number of columns (or rows). Thus the total time
to evaluate Manhattan Distance is reduced to 0(n3). In
comparison, the standard closed-form formula for Man-
hattan Distance takes time O(n?, the number of tiles.

2.3.1

The factor transformation partitions the goal into mu-
tually independent sets of subgoals, and identifies the op-
erators relevant to each set. The independence property
ensures that the sum of the optimal solution costs for
achieving each set is optimal for achieving their union,
and is therefore admissible.

Thus in order for factor to be practical, we need an
efficient way to check that two sets of goals, g; and g,

Testing Factorability

satisfy the following property:
{Vs) dist(s,0: Ugs}) = dist(s,g,)+ disifs, g;) (1)

Here dist(s,g) denotes the length of an optimal path
from state s to goal g.

ABSOLVER computes a sufficient condition for (1)
by overestimating the interactions among operators that
might affect the various goals. The iden is that two goals
are independent if no operator affects them both. To
formalise this sufficient condition, we introduce the fol-
lowing relations:

Canhelp(g:, 92) iff some operator that adds g, also
adds a precondition of some operator that adds (a con-
Jjunct of) g,.

Canhelp* iz defined as the transitive closure of the
Canhelp relation.

Affects{op, g) iff op ndds or deletes a predicate p such
that Canhelp*(p,g).

Indep(gy, g3) iff (—Jop) Affects{op, g1} A Affects(op, g2).

Indep(g, g3) is the desired sufficient condition for (1).

To prove Indep(gi,g2), ABSOLVER computes the
transitive closure of Canhelp. Without function symbols
or negation, this closure is finite, but can be expensive
to compute exactly. Therefore, ABSOLVER uses & form
of aymbolic evaluntion that over-estimates the Canhelp”
relation. To form the set of goals that can help achieve n
predicate p, ABSOLVER backchains through every op-
erator that can add p, inserting its preconditions in the
set. For example, when ABSOLVER backchains from
the goal at(a, 1) through the absiracied move operator,
which adds at(T, '}, it binds T to a and forms the set
{at{a, ANY), adj(ANY, ANY)}. This set is closed un-
der the backchaining operation. A similar technique is
used to identify the operators relevant to achieving a
given set of goals. For the goals here, the only relevant
operator is move(a, S, 57).

2.4 Using Heuristics

Since the cost-effectiveness of heuristics derived by AB-
SOLVER is generally difficult to predict, they must be
evaluated empirically. ABSOLVER's performance ele-
ment inputs an initial state, a problem to solve, and
optionally a heuristic. The problem is represented as
a list of one or more subproblems, each consisting of a
subgoal and a set of operators with which to achieve it.
The IDA* search algorithm is used to solve each sub-
goal, guided by the heuristic (or breadth-first if none is
given).

The heuristic is represented as an abstract problem.
It is evaluated by recursively invoking the same search
procedure on the abstract problem and returning the
length of the optimal solution. Thus the computation
of the heuristic can itself be guided by a hierarchy of
successively more abstract problems.

To illustrate, consider the "X-Y Heuristic," which is
derived by factoring an abstracted Cartesian representa-
tion of the Eight Puzzle into two subproblems, one for
each dimension. However, instead of dropping the blank
predicate to achieve factorability, the drop-precondition
transformation is used to drop information about the
X dimension from the subproblem for the Y dimension,

Mostow and Prieditis 703

and vice versa. In effect, each subproblem projects the
puzzle onto one dimension. Thus a horizontal move is
allowed only into the column containing the blank, and a
vertical move is allowed only into the row containing the
blank. X-Y is therefore more accurate than Manhattan
Distance, which ignores the blank completely.

Although X-Y yields a base-level branching factor of
only 1.19 for the Eight Puzzle (on a set of 18 random
instances), it requires a considerable amount of search
to compute. This search can be guided by Manhattan
Distance. Unfortunately, even with such guidance the
overall search time turns out to be about six times slower
than using Manhattan Distance alone. It remains to
be seen whether additional optimizations can make X-
Y better than Manhattan Distance, which is the best
known heuristic for Eight Puzzle.

3 Evaluating ABSOLVER

We now evaluate ABSOLVER from three perspectives:
first, as an explanatory model that can rationally recon-
struct existing heuristics, thereby verifying admissibility
by construction; next, as a generative model, helpful for
suggesting new heuristics; and finally, as an automatic
discovery engine.

3.1 ABSOLVER as an Explanatory Model

Domain Heuristic Derivation
Manhattan drop zloch, yloch;
Distance zloc of ymove;
[Pearl, 1984} yloc of zmove;
factor tiles, X & Y
n-Max>wap drop ady
[Gaschnig, 1979]
Eight n-Swap repr. blank as tile;
Pussle [Gaschnig, 1979] drop blank, ady
Misplaced Tilcs drop blank, ady;
[Pearl, 1984] factor tiles
Euchdean Dhstance based on geo-
[Pearl, 1984] metry knowledge
Sequence Score not derivable:
[Nilsson, 1980) not admissible
Misplaced Disks drop clear,
[Amarel, 1983] smaller
Towers Alternating not derivable:
of Hanoi Disks predicate on moves,
[Berlckamp et al., 1982] | not states
Blocking hska not derived:

: [Amnarel, 1983) based on algorithm
Mutilated Colored repr. square colors;
Checker- Squares count red & black;

Board [Kibler, 1985] collapse to
[Korf, 1980) closed form

Table 3: Derivations of Known Heuristica

An explanatory model should be evaluated by its gen-
erality and coverage. A general model applies to a wide
class of domains. Within that class, a good model covers
alarge proportion of the phenomena to be explained. We
tested ABSOLVER's generality by applying it to several
puzzle domains. We tested its coverage by trying to red-
erive all published heuristics for three ofthem: the Eight

704 Machine Learning

Pussle, Towers of Hanoi, and Mutilated Checkerboard.
The results are summarized in Table 3.

This evaluation simultaneously tested the model at
three different levels of specificity. First, it tested the
generality and coverage ofthe particular catalog of trans-
formations across several domains. Since we knew our
initial catalog was incomplete, we were also interested
in identifying useful new transformations. In fact, these
problems served as our "training data" for developing
the catalog in Table 1, so they should not be taken as a
test ofits coverage, though they do demonstrate the gen-
erality of the transformations used in multiple domains.
Second, it tested the problem representation language,
since some heuristics might not be derivable in that rep-
resentation. Finally, it tested the general model of ab-
straction plus optimization, which might fail to explain
some heuristics.

What does it mean to rederive a heuristic? Clearly, it
is not necessary to rederive specific code. On the other
hand, functional equivalence alone is insufficient, since
an abstraction-based heuristic computed using search
may be much less efficient than the original version. We
therefore compared their computational complexity.

The results can be summarized as follows. We were
able to rederive functional equivalents with ABSOLVER
for 6 of the 10 published heuristics, though with varying
efficiency relative to the original versions.

The derived versions of # of Misplaced Tiles, # of
Misplaced Disks, and Colored Squares were all compu-
tationally equivalent to the originals.

Three of the derived heuristics were less efficient than
the original versions, owing to limitations in the chosen
problem representations and deficiencies in the catalog
of optimizing transformations. The derived Manhattan
Distance was slower by 0(n) (for n by n puzzles) because
it uses search to compute the number of moves needed
to get from row % to row i". We have derived the closed
form expression \i — i'| on paper, but only by exploiting
the numerical relationships implicit in the adj relation to
induce a recurrence relation. Implementing this deriva-
tion in ABSOLVER would require a more sophisticated
representation and an optimizing transformation capa-
ble of inducing the recurrence relation. Similarly, the
derived versions of n-MaxSwap and n-Swap are slower
by 0(n*) because they search for an ordered permuta-
tion instead of counting the number of swaps performed
by an efficient sorting algorithm. A challenging direc-
tion for future work is automatically recognizing when an
abstracted problem can be solved by adapting a known
algorithm.

Two of the heuristics have the wrong form: Sequence
Score is non-admissible, and Alternating Disks is a
heuristic on moves, not states.

Euclidean Distance breaks our model in an interesting
way, because it comes from adding knowledge about ge-
ometry. Our current model only generates abstractions
by dropping information from the problem definition.

The Blocking Disks heuristic is defined only for states
in which two of the pegs are empty. It was originally
derived by analyzing a recursive algorithm for Towers of
Hanoi to compute the exact number of moves required.

We see no way to derive this formula by abstracting
the problem representation. However, extending AB-
SOLVER to find special-case heuristics might be worth-

while.

3.2 ABSOLVER as a Generative Model

Jomalin Heuristic Derivation
32323 Center- drop edges; factor
Rubik’s Corner into center
Cube & corner
drop zloc, zloch of
XY ymove; yloc, yloch
of zmovwe; factor
intoX &Y
Eighi Distance drop zioc, yloc;
Pussle of zloch of ymove;
Blank yloch of smove;
factorinto X & Y
Out ol Col. | drep adj, zloch, yloch;
+ zloc of ymove;
Out of Row | yloc of zmove;
factorinto X & Y
Jagged Border- count in partitions;
Square Interior merge operators
Diameter compose oppomte
Fool’a Sum radii sumns
Disk Combined cornpose diam-
Diameters meter sums
Instant Opposite repr, colors as #'s;
Insanity Sides compose opposite
sides
Think-A-Dot | Dropped Gates | drop gate parities

Table 4: Novel Heunristics Derived

How good is our model at suggesting new heuristics?
Table 4 attempts to answer this question for several do-
mains. For each of these domains only "good" heuristics
are listed; several other heuristics were derived but ap-
peared worse in terms of overall search time.

We were able to discover the first known (non-trivial)
admissible heuristic for the 3x3x3 Rubik's Cube. For
this problem, we started with a represention that par-
titions the Cubies into center, edge, and corner ones.
Dropping the edge predicate allows the operators to be
factored into those that affect corner Cubies and those
that affect center Cubies.

How good is this Center-Corner heuristic? For 13
problems randomly scrambled to depth 6 or less, it
reduces the branching factor from 9 (for breadth-first
search) to 5.9. The heuristic is computed by solving
the two subproblems. The subproblem for the six cen-
ter Cubies has three operators and is cheap to solve.
The subproblem for the eight corner Cubies is equivalent
to a 2x2x2 version of Rubik's Cube. Since our Prolog
implementation of IDA* only expands about 10 states
per second, we have not yet evaluated the Center-Corner
heuristic on deep random solvable instances of the Cube.

We were also able to derive some new admissible
heuristics for the Eight Puzzle. We have already de-
scribed the X-Y heuristic, which is more accurate than
Manhattan Distance. Similarly, # Out of Column + #

Out of Row is more accurate than # Misplaced Tiles,
and takes only twice as long to compute.

We also used the techniques reported in this paper to
help demonstrate the unsolvability of a once-open lay-
out problem known as the Jagged Square Pussle, shown
in Figure 2. The task is to tile the 80-square figure us-

Key

1 [J——

- Fdgr Square

It jf Inretior -Houndery Squate
“ & i [Soquare

Figure 2: The Jagged Square Puzzle

ing each pentomino once—or to prove that it cannot be
done. When we attacked this problem, we believed it
was still open. After proving it impossible, we found a
published proof that relies on remarkably similar tech-
niques [Golomb, 1965].

We started with a problem representation that parti-
tions the squares into those in the interior of the Jagged
Square, those bordering the outer edges, and those bor-
dering the inner "hole." (We later added "corners").
Next, we applied the count transformation to each par-
tition. Unfortunately, it turned out that the resulting
admissible heuristic was not strong enough to prove the
problem impossible, i.e., the abstracted initial state ap-
peared solvable. We then hand-generated every possible
placement of the four most constraining pentominoes;
taking symmetry into account, there were only a dozen
or so. Finally, we executed exhaustive search in the ab-
stract space on each of these partial layouts to show the
impossibility of completing any of them.

Table 4 also lists novel heuristics derived for some GPS
domains [Ernst and Goldstein, 1982]: Fool's Disk, In-
stant Insanity, and Think-A-Dot.

One lesson of these examples is the frequent impor-
tance of clever partitioning in the initial problem rep-
resentation: the border and interior squares in Jagged
Square; the corner, center, and edge Cubies in Ru-
bik's Cube; and the red and black squares in Mutilated
Checkerboard. At present such partitioning is supplied
as part of the initial representation.

3.3 ABSOLVER as an Automatic Discovery
Engine

As an automatic discovery engine, ABSOLVER must be
evaluated by the fractability of finding good heuristics

Mostow and Prieditis 705

in the space defined by the catalog of transformations.
There is a tradeoff between tractability and coverage,
since enlarging the catalog expands the space ofderivable
heuristics but makes it costlier to explore.

The full space defined by ABSOLVER's current cata-
log of transformations is far too huge to explore exhaus-
tively. For example, the drop transformations alone can
be applied to any combination of subgoals and operator
preconditions. For our nine-operator representation of
the 3x3x3 Rubik's Cube, there are 126 subgoals and 312
preconditions: the number of combinations is astronom-
ical.

As a compromise between coverage and tractabil-
ity, we implemented an exhaustive generator using the
coarser-grained drop-predicate as the only abstracting
transformation and factor as the only optimizing trans-
formation. For the Eight Puzzle, it took this generator
a few CPU seconds to test all combinations of dropped
predicates. For the three-predicate, single-operator rep-
resentation, the only combinations with more than one
factor yielded Manhattan Distance and # Out of Place
Tiles (subject to the efficiency limitations discussed in
Section 3.1). The five-predicate, two-operator Carte-
sian representation yielded more heuristics: Horizontal
Distance, Vertical Distance, Manhattan Distance (their
sum), analogs of all three for Distance of Blank, # Out
of Column + # Out of Row, and Blank Out of Column
+ Blank Out of Row. For our three-predicate, nine-
operator representation of Rubik's Cube, the generator
took over five hours, since our independence test for
factorability currently takes time quadratic in the size
of the largest transitive closure formed by the symbolic
backchaining step described in Section 2.3.1. Somewhat
surprisingly, there is only one factorable combination—
the Center-Corner heuristic.

To escape from the coverage-tractability tradeoff, we
must use a better strategy than exhaustive generate-and-
test to find efficiently computable abstractions. We arc
investigating the use of means-ends analysis to identify
which abstracting transformations will enable optimiza-
tions. In particular, if we can efficiently identify which
applications of dropsubgoal and drop_precondition will
make it possible to apply factor, we will be able to find
the factorable abstractions without generating and test-
ing all combinations of dropped goals and preconditions.

4 Relation to Previous Work

Figure 3 relates several previously reported proper-
ties that can hold between abstractions and heuristics
[Nilsson, 1980, Pearl, 1984].

The relation of certain abstractions to state-space
search heuristics was first suggested by Guida and So-
malvico [Guida and Somalvico, 1979] and Gaschnig
[Gaschnig, 1979], who described how such heuristics
might arise by using the depth of solutions in edge
supergraphs of the original state-space search graph
as lower-bounding heuristics. Such edge supergraphs
naturally arise from dropping operator preconditions.
Later, Valtorta [Valtorta, 1984], Pearl |Pearl, 1984],
and Kibler [Kibler, 1985] each proved that abstractions
such as those resulting from dropped operator precondi-

706 Machine Learning

UPWARD SOLUTION PROPERTY
Abstracting any solution path gives a solution
path for the abstracted problem [Tenenberg, 1988].

ft
ABSTRACTION:
Abstracted state space adds edges to the base
problem space [Gaschnig, 1979) or merges nodes.

§
MONOTONICITY:
dist(s', g') < dist(s,t) + dist(t',g")
{s', ¢, t' are abstractions of #,,t; t is a descendant of)

Y

ADMISSIBILITY:

disgs’, g’} < diat{s,g)
Y

SOUNDNESS:
Solvable(s, g) = Solvable(s’,g’)

Figure 3: Properties of Abstracted State Space Problems

tions would guarantee monotone (and hence admissible)
heuristics. Our abstracting transformations extend the
edge supergraph model of abstraction to include node-
merging.

Valtorta proved that using a dropped-precondition ab-
straction directly as a heuristic will always expand more
total states in the two spaces than simply using breadth-
first search in the base space [Valtorta, 1984]. Pearl later
pointed out that this liability might be overcome by fac-
toring the abstracted problem into independent or serial-
izable subproblems, which might be possible even when
the original problem is not factorable [Pearl, 1984]. Fac-
toring reduces the total search complexity from the prod-
uct of exponentials to their sum. Though elegant, these
methods were not implemented: the abstracting and op-
timizing transformations were performed by hand.

Some work has been done on automatic generation
of abstractions in planning [Sacerdoti, 1974, Knoblock,
1988, Unruh et a/., 1987], but not for the class of admissi-
ble heuristics addressed here. For example, ABSTRIPS
used abstract solutions as skeletons for base solutions,
which tends to reduce planning time but can produce
sub-optimal plans. Furthermore, ABSTRIPS discards
abstract solutions that cannot be refined into more con-
crete ones. In contrast, ABSOLVER uses abstractions
solely to compute lower bounds and check solvability,
thereby not discarding potentially valuable information
from non-refinable abstract solutions. Other systems
have been reported for serializing GPS subgoals [Ernst
and Goldstein, 1982], but they do not guarantee the op-
timally of the solution paths.

In sum, while a few techniques have previously been
reported for abstracting and simplifying state-space
problems, ABSOLVER constitutes a novel attempt to
automate, integrate, extend, and evaluate these tech-
niques.

5 Conclusion

ABSOLVER appears to be the first mechanical genera-
tor of state-space heuristics guaranteed to find optimal
solution paths. It achieves this admissibility property by

decomposing the problem of discovering heuristics into
generating abstractions and optimizing their evaluation.

ABSOLVER can be viewed at more than one level.
First, its transformational model provides a unifying
framework for characterizing and exploring a broad class
of admissible heuristics and understanding when they
are actually useful. Second, we have grounded the model
by implementing a catalog of abstracting and optimizing
transformations and using them to derive a number of
heuristics. Third, we have demonstrated an automatic
generator that uses two of these transformations to find
efficiently computable heuristics.

As an explanatory model, ABSOLVER's coverage is
encouraging in one sense but deficient in another. While
its small catalog of abstracting transformations is ade-
quate to derive functional equivalents for many of the
published heuristics we looked at in several puzzle do-
mains, its optimizing transformations are too weak to
compute some of them as efficiently as the originals. We
do not claim the catalog is complete, and in fact expect
it to grow as we try to improve evaluation cost, derive
more heuristics, and explore other domains. The few
heuristics that did not match ABSOLVER's underlying
model suggest interesting directions in which to extend
it.

As a generative model, ABSOLVER has yielded some
novel heuristics, notably the first non-trivial admissible
heuristic for Rubik's Cube, and an interesting Eight Puz-
zle heuristic that is more accurate than the best known,
though somewhat less cost-effective. Although all the
transformations reported here are fully implemented, the
techniques used in ABSOLVER are useful for generating
heuristics even when applied by hand. In fact, that is
how we actually discovered most of the novel heuristics,
and how we proved the impossibility of a published lay-
out problem we thought was still open. Subsequent im-
plementation of the derivations served to verify their cor-
rectness and to expose the use of additional techniques.
Thus the implementation is actually of secondary impor-
tance for discovering new heuristics, except to the extent
that it makes the techniques easier to apply.

As an automatic discovery engine, ABSOLVER is lim-
ited by the intractability ofexploring the space generated
by its full catalog oftransformations. Its exhaustive gen-
erator uses only one abstracting transformation and one
optimizing transformation, thereby achieving tractabil-
ity at the cost of coverage. Nonetheless, it finds inter-
esting heuristics in more than one domain.

Of the many possible directions for extending AB-
SOLVER, two seem especially compelling. First, means-
ends analysis may make it possible to explore a richer
space of possible heuristics automatically. Second, AB-
SOLVER's sensitivity to the initial problem representa-
tion, and the importance ofclever partitioning in discov-
ering novel heuristics, suggest that a few transformations
for representation-shifting might significantly enrich the
space of discoverable heuristics.

References

[Amarel, 1983] S. Amarel. Representations in problem-
solving. In Methods of Heuristics. Lawrence Erlbaum

and Associates, Palo Alto, CA, 1983.

[Berlekamp et al, 1982] E. Berlekamp, J. Conway, and
R. Guy. Winning Ways for your Mathematical Plays:
Volume II. Academic Press, London, 1982.

[Ernst and Goldstein, 1982] G. Ernst and M. Goldstein.
Mechanical discovery of classes of problem-solving
strategies. JACM, 29(l):1-23, 1982.

[Gaschnig, 1979] J. Gaschnig. A problem-similarity ap-
proach to devising heuristics. In Proceedings IJCAI-
6, pages 301-307, Tokyo, Japan, 1979. International
Joint Conferences on Artificial Intelligence.

[Golomb, 1965] S. Golomb. Polyominoes. Charles Scrib-
ners and Sons, New York, 1965.

[Guida and Somalvico, 1979] G. Guida and M. Soma-
Ivico. A method for computing heuristics in problem
solving. Information Sciences, 19:251-259, 1979.

[Kibler, 1985] D. Kibler. Natural generation of heuris-
tics by transformating the problem representation.
Technical Report TR-85-20, Computer Science De-
partment, UC-Irvine, 1985.

[Knoblock, 1988] Craig A. Knoblock. Automatically
generating abstractions for planning. In Proceedings of
the First International Workshop in Change of Rep-
resentation and Inductive Bias, Briarcliff, NY, 1988.
Philips Laboratories.

[Korf, 1980] R. Korf. Towards a model ofrepresentation
changes. Artificial Intelligence, 14(1):41-78, 1980.

[Korf, 1985a] R. Korf. Depth-first iterative-deepening:
An optimal admissible tree search. Artificial Intelli-
gence, 27(2):97-109, 1985.

[Korf, 1985b] R. Korf. Learning to Solve Problems by
Searching for Macro-Operators. Pitman, Marshfield,
MA, 1985.

[Michalski, 1983] R.S. Michalski. A theory and method-
ology of inductive learning. In Machine Learning,

pages 83-134. Palo Alto, CA: Tioga Publishing Com-
pany, 1983.

[Nilsson, 1980] N. J. Nilsson. Principles of Artificial In-
telligence. Morgan Kaufman n, Palo Alto, CA, 1980.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem-Solving. Addison-
Wesley, Reading, MA, 1984.

[Sacerdoti, 1974] E. Sacerdoti. Planning in a hierarchy
of abstraction spaces. Artificial Intelligence, 5:115-
135, 1974.

[Tenenberg, 1988] J. Tenenberg. Abstraction in Plan-
ning. PhD thesis, University of Rochester, 1988.

[Unruh et ai, 1987] A. Unruh, P. Rosenbloom, and

J. Laird. Dynamic abstraction problem-solving in
Soar. In Proceedings of the Third Annual Confer-
ence on Aerospace Applications of Artificial Intelli-

gence, Dayton, OH, October 1987.

[Valtorta, 1984] M. Valtorta. A result on the compu-
tational complexity of heuristic estimates for the A*
algorithm. Information Sciences, 34:47-59, 1984.

Mostow and Prieditis 707

