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Abstract 
The utility problem in explanation-based learning 
concerns the ability of learned rules or plans to 
actually improve the performance of a problem 
solving system. Previous research on this prob­
lem has focused on the amount, content, or form 
of learned information. This paper examines the 
effect of the use of learned information on perfor­
mance. Experiments and informal analysis show 
that unconstrained use of learned rules eventually 
leads to degraded performance. However, con­
straining the use of learned rules helps avoid the 
negative effect of learning and lead to overall per­
formance improvement. Search strategy is also 
shown to have a substantial effect on the contribu­
tion of learning to performance by affecting the 
manner in which learned rules arc used. These ef­
fects help explain why previous experiments have 
obtained a variety of different results concerning 
the impact of explanation-based learning on per­
formance. 

1. Introduct ion 
The utility problem in explanation-based learning 

concerns the ability of learned rules or plans to actually 
improve the performance of a problem solving system 
[Minton87J. The concern that too much learned information 
might eventually degrade problem solving performance was 
init ially expressed in the work on learning macro-operators 
in STRIPS [Fikes72]. Since then, several studies have 
found that the unrestricted learning and use of rules or 
macro-operators can degrade rather than improve overall 
performance [Markovitch88, Minton85, Minton88a]. This 
decrease in performance is due to time wasted trying to 
apply learned rules or macro-operators in situations in 
which they are incapable of efficiently solving the problem 
at hand. However, other experiments have revealed only 
overall performance improvement from explanation-based 
learning even though no attempt was made to l imit the 
number or form of learned rules [0'Rorke87, Shavlik88|. 

* This research was supported by the Department of Comput-
er Sciences and University Research Institute of the University of 
Texas at Austin. 

This paper presents experimental results and informal 
analysis that may help explain this apparent contradiction in 
the existing empirical data. The proposed explanation relies 
on the fact that how learned rules are actually used in prob­
lem solving can greatly affect their tendency to improve or 
degrade overall performance. This focus on the use of 
acquired knowledge differs from previous attempts at 
addressing the utility problem, which have focused on for­
getting or selectively retaining learned knowledge or on 
translating it into a more efficient form [Markovitch88, 
Minton85, Minton88b]. 

The paper is organized as follows. Section 2 
describes the performance system under investigation, a 
Horn-clause theorem prover that learns macro-rules (com­
positions of existing rules). Section 3 presents the basic 
experimental methodology used to examine the effect of 
learning on performance and describes the problem sets 
used in the experiments. Section 4 compares two 
approaches to using learned rules. It shows that unrestricted 
use of macro-rules can degrade overall performance; how­
ever, l imiting chaining on learned rules can help alleviate 
the negative impact of learning and lead to overall perfor­
mance improvement. Section 5 shows how different search 
techniques such as depth-first and breadth-first can greatly 
affect the impact of learning on performance by changing 
how learned rules are used. Section 6 concludes and 
presents some problems for future research. 

2. The Performance System 
Unfortunately, comparing different explanation-based 

learning systems is difficult because they generally employ 
different underlying performance elements and knowledge 
representation schemes. However, a performance element 
that has been used in a number of systems is a backward-
chaining, depth-first, Horn-clause theorem prover (like Pro­
log) [Hirsh87, Kedar-Cabelli87, Mooney88, Pricditis87], a 
general, well-understood, and popular performance system 
in A I . 

The system used in the current experiments is a ver­
sion of EGGS [Mooney86, Mooney88] that includes a 
Horn-clause theorem prover as a performance component. 
When EGGS finds a proof for a query by chaining together 
several existing rules, the proof is generalized using stan­
dard explanation-based techniques [DeJong86, Mitchell86] 
and compiled into a macro-rule. In the system's list of 
available rules for each predicate, learned rules are placed 
before the original rules in the domain theory so that using 
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learned rules is preferred to solving a problem from scratch. 
However, new rules are placed at the end of the set of 
learned rules so that rules learned from problems encoun­
tered earlier in system's experience are tried first (since they 
probably represent more typical problems). This approach 
has been empirically found to work better than adding new 
rules to the beginning of the list of learned rules 
[Shavlik88]. 

The Horn clauses initially given to EGGS as a domain 
theory are simply assumed to be a set of declarative facts 
rather than a well-ordered Prolog program which is 
guaranteed to terminate (as in PROLEARN [Prieditis87] 
and PROLOG-EBG [Kedar-Cabelli87]). In order to prevent 
depth-first search from getting lost (possibly in an infinite 
recursion), the theorem prover is given a depth bound that 
limits the number of rules it is allowed to chain together. 
Another feature of the system is the ability to heuristically 
order the antecedents of learned rules in an attempt to make 
them more efficient. Antecedents that have a greater per­
centage of variables that are likely to be already bound (by 
occurring in the consequent or a previous antecedent) are 
positioned earlier in the list. 

3. Experimental Methodology 
The effect of learning on performance is empirically 

examined by having both learning and non-learning systems 
solve a sequence of problems in a particular domain and 
comparing their performance. The learning system learns 
rules from its solutions which are available for solving sub­
sequent problems in the sequence. Since search is limited 
by a depth-bound, not all problems will necessarily be 
solved. Consequently, performance is compared by 
measuring both the number of problems solved and the total 
effort expended on the complete problem set (in terms of 
both CPU time and search nodes generated). Time spent on 
the generalization and learning process itself is generally 
minimal (less than 0.1% of the overall time) and is not 
reported. This simple methodology seems cleaner and 
fairer than a complicated methodology involving stages in 
which learning is turned on and off on different selected sets 
of problems (e.g. [Minton88a]). Al l experiments were run 
on a Texas Instruments Explorer II with 12 MB of main 
memory. 

Two problem domains are used to test EGGS and 
compare its performance with learning to its performance 
without learning. One problem domain is proving theorems 
in propositional logic. The problem set used in this domain 
consists of 52 problems from Principia Mathematica 
[Whiteheadl3] that were first used in experiments with the 
Logic Theorist (LT) [Newell63]. Experiments on this prob­
lem set with an explanation-based learning version of LT 
(EBL-LT) [0'Rorke87] showed overall performance 
improvement due to learning even though no attempt was 
made to limit the number of learned rules. For use in 
EGGS, all implies in the theorems were rewritten in terms 
of not (-i) and or (V)) and the system was given the follow­
ing domain theory for constructing proofs. 

The other problem domain used to test the system is 
blocks-world planning. Standard blocks-world problems 
can be solved with a Horn-clause theorem prover by stating 
them as theorems in situation calculus. The blocks-world 
theory used for the current experiments is a simplified ver­
sion of the rules used to test the BAGGER system 
[Shavlik88]. Since blocks-world problems are quite 
difficult to solve using a theorem prover and axioms in 
situation calculus, the problem sets are restricted to building 
stacks of one to three blocks given a randomly generated 
scene with five blocks. The procedure described in 
[Shavlik88] is used to randomly generate problems and ini­
tial states. Complete problem sets are produced by ran­
domly generating a sequence of 30 stacking problems. 

Although a Horn-clause theorem prover is a weak 
problem solver and can perform quite poorly in certain 
domains (e.g. planning domains), this does not affect its sui­
tability as a performance element for a learning system. 
The goal of learning is to improve performance and a weak 
problem solver simply has more room for improvement. 
The important factor is not absolute performance but the 
relative performance of learning and non-learning systems. 

4. Full Versus Limited Use of Learned Rules 
One approach to using learned rules is to treat them 

exactly like rules in the original domain theory. As a result, 
learned rules can be combined arbitrarily with domain rules 
and with other learned rules. This approach may seem 
promising since it allows for the greatest possible use of 
learned information. Unfortunately, it can quickly lead to a 
great deal of effort being spent trying to use a learned rule 
before eventually giving up and trying another path in the 
search tree. Minton has referred to the fact that, in the gen­
eral case, matching the antecedents of a learned rule to a set 
of facts is NP-Complete [Minton88bj. Using arbitrary 
theorem proving to prove them is, of course, even worse 
(i.e. undecidable). 

Consider the following case in which unrestricted use 
of learned rules is applied to blocks-world problems. First, 
given the situation shown in Figure la, the system is asked 
to build a three block tower on Table-2. It solves the prob­
lem (transfer(A,Table-2), transfer(B,A), transfer(CB)) and 
learns a rule for building a tower of three blocks on a table 
by inverting an existing tower of three blocks on another 
table. Next, it is given the same goal with the initial state 
shown in Figure lb. Since the goal matches the consequent 
of the rule that was just learned, the system backward-
chains on this rule and tries to achieve its antecedents. This 
requires constructing a tower of three blocks that can then 
be inverted. The system wil l waste a great deal of effort 
trying to achieve this subgoal before eventually finding it is 
impossible and attempting to solve the problem from 
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scratch. The result is a significant decrease in performance 
due to learning. Since the antecedents of a learned rule fre­
quently involve more constraints than the original goal, 
using arbitrary problem solving to achieve them is generally 
much more trouble than it is worth. 

In logic theorem proving, since learned rules are sim­
ply generalized theorems (facts) rather than rules with 
antecedents, one might suspect that such problems do not 
arise. However, matching a subgoal to a learned fact may 
require that variables in the subgoal be bound to particular 
formulae. These bindings may cause problems in subse­
quent subgoals and cause the system to backtrack on the 
decision to use the learned fact (after possibly having 
wasted a lot of time trying to use it). For example, imagine 
the system has learned the fact: Theorem(-iX V (x V y)). 
Given the problem Theorem(PV-TP), the system might use 
rule 6 above to generate the subgoals: Theorem(¬x V (P V 
¬P)) and Theorem(x). If the first subgoal is matched to the 
learned theorem, then the second subgoal becomes: 
Theorem(P). The system may waste a great deal of time 
trying to prove this impossible subgoal which was generated 
due to the attempt to use the learned fact. Consequently, 
even the use of learned facts that do not have any 
antecedents may cause considerable wasted effort. 

In order to prevent the possibility of spending too 
much time trying to use learned rules, limiting the use of 
what is learned is perhaps a better alternative. An extreme 
approach is to only allow a learned rule to be used if it com­
pletely solves the problem at hand without being combined 
with other rules. In other words, the problem solver is not 
allowed to backchain on the antecedents of learned rules nor 
is it allowed to use a learned rule (or fact) to solve a 
subgoal, since both of these actions may result in a great 
deal of wasted effort if the learned information is not actu­
ally relevant. This is a very strict schema-based or script-
based approach; a learned plan either solves a problem com­
pletely or it is simply not used. 

Table 1 presents empirical data (CPU time and search 
nodes generated) on various versions of the EGGS system 
proving 52 logic theorems from the Principia with depth 
bounds of 3 and 4. The conditions shown are: no learning, 
learning with unrestricted use of learned facts (Full-use), 
and learning with no chaining with learned facts (Limited-
use). Full-use learning takes more time than the non-
learning version; however, it solves more problems. This is 
an ambiguous result with respect to the effectiveness of this 

method. Some clear advantage of full-use learning is shown 
by the fact that the full-use version with a depth-bound of 
three expends less than a tenth of the effort of the non-
learning version with a depth-bound of four and yet solves 
three more problems. However, the results are hard to inter­
pret since both search effort and correctness vary. On the 
other hand, limited-use learning is incapable of solving 
more problems than no-learn since, unlike full-use learning, 
it does not use learned rules to search even deeper into the 
search tree defined by the original domain theory. How­
ever, learned rules can be used to more quickly handle prob­
lems solvable by the original theory within the depth bound. 
The data in Table 1 shows that limited-use learning does 
increase speed relative to no learning without changing 
correctness and that its relative advantage increases with the 
size of the search space (i.e. the depth bound). 

Correctness can be completely controlled by using 
only the problems that can be solved by the original domain 
theory within the given depth-bound. In this case, only the 
time to solve the problems varies and can be used as the 
basis of a fair comparison. Table 2 presents data in which 
correctness has been controlled in this manner. These 
results clearly show the negative effects of full-use learning 
and the advantage of limited-use learning. For a depth 
bound of three, full-use is 1.1 times as slow as no-learn 
while limited-use is 1.4 times as fast. For a depth bound of 
four, full-use is 2.4 times as slow as no-learn while limited-
use is 2.0 times as fast. The fact that the speedup actually 
increases with the size of the search space for limited-use 
while it decreases for full-use underlines the conclusion that 
limited-use learning is best. 
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An issue that has been raised regarding the LT prob­
lems is that, as a sequence of problems from the Principia, 
they are explicitly ordered so that later problems build on 
earlier ones [Minton88b]. In order to address this issue and 
present a more detailed picture of the performance of the 
various methods, Figure 2 shows cumulative time curves for 
random orderings of the problems. Cumulative time is the 
the total time spent solving all problems up to that point. 
The curves are for the 48 problems solvable by all versions 
with a depth bound of four. Each curve is the average of 
five random orderings of the problems. Not surprisingly, 
the full-use learning system performs even poorer on ran­
domly ordered problem sets. For the fu l l set, full-use takes 
on average 4.9 times as long as no-learn while limited-use 
takes 0.46 as long. One would not expect problem ordering 
to have an effect on limited-use learning since if the rule 
learned from problem A is capable of completely solving 
problem B, then the same rule can be learned from problem 
B and applied to problem A if the order of the two problems 
is reversed. 

Figure 3 shows cumulative time curves for the 
blocks-world domain. These curves are the average of five 
randomly generated sets of 30 stacking problems. A l l prob­
lems can theoretically be solved within the depth-bound of 7 
supplied to all systems. However, due to time constraints, 
the full-use learning version was stopped after it had spent 
about 15 hours on a problem set. In this time, it never got 
past the third or fourth problem in the set. Backward chain­
ing on the antecedents of a learned rule consistently caused 

the system to get lost in a huge search space. In order to 
increase the applicability of learned rules in the limited-use 
case, a minimal amount of chaining is allowed with learned 
rules. Specifically, a few efficient rules for concluding vari­
ous static properties of blocks can be used to prove the 
antecedents of learned rules. Unl ike the abysmal perfor­
mance of full-use learning, on average the limited-use ver­
sion solves all 30 problems in one third the time of the no 
learning version.1 

Therefore, avoiding or severely l imit ing chaining with 
learned rules is clearly preferable to the unrestricted use of 
learned rules. The explanation-based learning experiments 
on blocks-worlds problems presented in |Shavlik88] also 
allowed only very l imited chaining on learned rules. The 
current experiments indicate that the limited use of learned 
rules was crucial to the overall beneficial effects of learning 
obtained in these experiments. 

5. The Effect of Search Methods 
Although the previous section presents data that 

unrestricted acquisition and use of learned rules degrades 
performance on the Principia problems, experiments with 
EBL-LT on this problem set showed only positive effects of 

1 The average number of search nodes explored to solve all 
30 problems is 1,184,512 for no-learn and 426,556 for limited-use 
learning. 
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learning [0 'Rorke87]. L imi t ing the use of learned rules in 
the manner discussed in the previous section does not 
explain this apparent contradiction since EBL-LT treated 
learned theorems just l ike the initial axioms in the domain 
theory. 

There are a number of differences between EBL-LT 
and EGGS that could account for the inconsistent results. 
For example, unlike EGGS, EBL-LT is only capable of con­
structing linear proof trees and it is allowed to learn from 
unproven theorems. However, a difference between the two 
systems that greatly affects the use of learned rules is the 
fact that EBL-LT uses breadth-first search while EGGS 
(like Prolog) uses depth-first. When a learned rule is tried 
with a depth-first theorem prover, the system exhaustively 
tries to prove its antecedents and may waste a great deal of 
time if they cannot be proven. A breadth-first prover, on the 
other hand, pursues all paths " i n parallel ' ' and does not 
spend an inordinate amount of time first trying to exhaust 
the use of learned rules before eventually resorting to the 
initial domain theory (like depth-first does). Like the 
approach described in the previous section, breadth-first 
search limits the use of learned rules compared to depth-first 
search. 

A breadth-first Horn-clause theorem prover is used to 
test the hypothesis that switching from depth-first to 
breadth-first search can change the effect of learning on per­
formance. Table 3 presents data on the performance of a 
breadth-first prover given the LT domain theory and prob­
lem set used in the previous experiments. In order to l imit 
run-time, each system is only allowed to generate a certain 
number of search nodes for each problem. If this l imit is 
exceeded, the system gives up and goes on to the next prob­
lem. Results are presented for limits of 1000, 3000, and 
5000 nodes per problem. Unlike the results reported for 
depth-first search, the learning system shows significant 
improvement in performance compared to the non-learning 
version. The learning system solves about twice as many 
problems in 1/2 to 1/3 the time and its relative performance 
improves as the search space gets larger. Comparing the 
data in Tables 1 and 3 shows that breadth-first search with 
learning can solve more problems with less search than 
depth-first with limited-use learning. However, breadth-first 

takes more time per search node because of the extra 
memory operations required. It is also important to notice 
that without learning, the performance of breadth-tirst 
search in terms of both run-time and search is significantly 
worse than depth-first since it requires more memory and 
cannot take advantage of rule-ordering. The overall poor 
performance of breadth-first search on problems requiring 
relatively deep proofs prevented the possibility of running it 
on blocks-world problems. 

6. Conclusions and Future Research 
The data and informal analysis presented in this paper 

demonstrate that the use of learned information can have a 
large impact on the utility of explanation-based learning. 
Previous research on the utility problem has focused on the 
amount or form of learned information rather than on its use 
in problem solving. Unconstrained use of learned rules can 
clearly lead to degraded performance. However, appropri-
ately l imiting the use of learned information can help avoid 
the negative effects of learning and help insure overall per­
formance improvement. Various properties of the perfor­
mance element can have a significant impact on how 
learned information is used and consequently on the effect 
of learning on performance. For example, allowing chain­
ing on learned rules in a depth-first system leads to 
degraded performance while allowing chaining on learned 
rules in a breadth-first system does not. Therefore, it is 
unwise to generalize utility results on one performance sys­
tem to different performance systems. 

One important area for future research is finding a 
workable compromise between the extremes of ful l use and 
no-chaining on learned rules. A good compromise wi l l 
allow greater use of learned knowledge while avoiding the 
problems with unrestricted use. Al lowing a limited amount 
of chaining with learned rules (as in the experiments with 
the blocks-world) is one promising approach. In domains 
like logic theorem proving where learned information takes 
the form of facts or theorems instead of rules with 
antecedents, methods are needed for being able to effec­
tively use these facts as lemmas. Sometimes a subgoal can 
be satisfied by a learned theorem without the risk of creating 
other difficult subgoals. A problem only arises if matching 
the subgoal to a learned theorem creates bindings for vari­
ables in the subgoal that may not satisfy the remaining 
antecedents (see section 4). Therefore, a good approach 
may be to allow a subgoal to be proven by matching a 
learned fact only if the match does not bind any variables 
occurring in the subgoal. This would allow the use of lem­
mas without the risk of having to eventually backtrack on 
this decision. Initial experiments with this approach on the 
LT problems have given promising results. 

As shown by the above experiments, both depth-first 
and breadth-first search strategies have advantages and 
disadvantages with respect to being a successful search stra­
tegy for a system which learns macros. Depth-first 
iterative-deepening [Korf85] exhibits some of the advan­
tages of both depth-first and breadth-first and may be a good 
strategy for a learning system. Some additional specific 
issues which need further study are the effect of the 
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ordering of learned rules2 and their antecedents and the 
effect of learning rules for subgoals and subsequences of 
solutions. Another important research area concerns the 
effect different domains and problem solving architectures 
have on the relative performance of various approaches 
such as learning heuristic control rules versus learning 
macro-operators [Minton88a]. Further investigations will 
hopefully result in even better ways for insuring that 
explanation-based learning improves overall system perfor­
mance. 
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