
An Experimental Comparison of 
Symbolic and Connectionist Learning Algorithms 

Raymond Mooney 
Computer Sciences 
University of Texas 
Austin, TX 78712 

Jude Shavlik 
Computer Sciences 

University of Wisconsin 
Madison, WI 53706 

Geoffrey Towell 
Computer Sciences 

University of Wisconsin 
Madison, WI 53706 

Alan Gove 
Computer Sciences 
University of Texas 
Austin, TX 78712 

Abstract 
Despite the fact that many symbolic and connec­
tionist (neural net) learning algorithms are ad­
dressing the same problem of learning from 
classified examples, very little Is known regarding 
their comparative strengths and weaknesses. This 
paper presents the results of experiments compar­
ing the ID3 symbolic learning algorithm with the 
perceptron and back-propagation connectionist 
learning algorithms on several large real-world 
data sets. The results show that ID3 and percep­
tron run significantly faster than does back-
propagation, both during learning and during 
classification of novel examples. However, the 
probability of correctly classifying new examples 
is about the same for the three systems. On noisy 
data sets there is some indication that back-
propagation classifies more accurately. 

1. Introduction 
Both symbolic and connectionist (or neural network) 

learning algorithms have been developed; however, there 
has been little direct comparison of these two basic 
approaches to knowledge acquisition. Consequently, 
despite the fact that symbolic and connectionist learning 
systems frequently address the same general problem, very 
little is known regarding their comparative strengths and 
weaknesses. 

The problem most often addressed by both connec­
tionist and symbolic learning systems is the inductive 
acquisition of concepts from examples. This problem can 
be briefly defined as follows: given descriptions of a set of 
examples each labelled as belonging to a particular class, 
determine a procedure for correctly assigning examples to 
these classes.1 Within symbolic machine learning, numerous 
algorithms have been developed for learning decision trees 

* This research was partially supported by the University of 
Texas at Austin's Department of Computer Sciences, by a grant 
from tile University of Wisconsin Graduate School, and by a gra­
duate fellowship to one of the authors (A.G.) supported by the 
Army Research Office under grant ARO-DAAG29-84-K-0060. 

*In the connectionist literature, this problem is frequently re­
ferred to as supervised or associative learning. 

[Quinlan86] or logical definitions [Michalski80] from 
examples, both of which can be used to classify subsequent 
examples. These algorithms have been tested on problems 
ranging from soybean disease diagnosis [Michalski80] to 
classifying chess end games [Quinlan83]. Within connec-
tionism, several algorithms have been developed for train­
ing a network to respond correctly to a set of examples by 
appropriately modifying its connection weights [Rosen-
blatt62, Rumelhart86]. After training, a network can be 
used to classify novel examples. Connectionist learning 
algorithms have been tested on problems ranging from con­
verting text to speech [Sejnowski87] to evaluating moves in 
backgammon [Tesauro88]. 

Connectionist and symbolic systems for learning from 
examples generally require the same input, namely, 
classified examples described as feature vectors. In addi­
tion, their performance is generally evaluated in the same 
manner, namely, by testing their ability to correcdy classify 
novel examples. Despite this situation, until this conference 
there were no published experiments that directly compared 
the two approaches on "real world" data. There have been 
several experimental comparisons of different symbolic 
learning systems (e.g., [Rendell89]); however, none of these 
experiments included connectionist algorithms. 

This paper presents the results of experiments com­
paring the performance of the ID3 symbolic learning algo­
rithm [Quinlan86] with both the perceptron [Rosenblatt62] 
and back-propagation [Rumelhart86] connectionist algo­
rithms. All three systems are tested on several large data 
sets from previous symbolic and connectionist experiments, 
and their accuracy on novel examples and run-time perfor­
mance are measured. One surprising result is that the per­
ceptron learning algorithm, which has well-known limita­
tions, performs quite well. In general, its accuracy and 
run-time are comparable to ID3's. Although the back-
propagation algorithm generally takes one to two orders of 
magnitude more time to train than the other two algorithms, 
its accuracy on novel examples is always comparable or 
superior to that of the other algorithms. 

2. Experimental Methodology 
This section motivates the choice of the particular 

algorithms used in the study and describes the data sets used 
to test them. Next, the versions of the systems used are dis­
cussed and the method for choosing appropriate input 
encodings and parameter settings is described. Finally, the 

Mooney, Shavlik, Towel l and Gove 7 7 5 



exact experiments conducted and data collected are 
reported. 

2.1. Choice of Algorithms 
In order to experimentally compare connectionist and 

symbolic algorithms for learning from examples, the ID3, 
perceptron, and back-propagation algorithms are chosen as 
representative algorithms. The choice of these particular 
algorithms is based on several factors. 

ID3 is chosen because it is a simple and popular sym­
bolic algorithm for learning from examples. It has been 
extensively tested on a number of large data sets and is the 
basis of several commercial rule induction systems. In 
addition, ID3 has been augmented with techniques for han­
dling noisy data and missing information [Quinlan86]. 
Finally, in experimental comparisons with other symbolic 
learning algorithms, ID3 generally performs about as well 
or better than the competition [Rendell89]. 

As is well known, the perceptron learning procedure 
(one of the first "connectionist" learning algorithms) is 
incapable of learning concepts that are not linearly separ­
able [Minsky67]. Despite this fact, early results indicated 
that it performed quite well on data sets used to test other 
learning systems. For example, it performed well on a 
popular data set for diagnosing soybean diseases 
|Reinke84], which was found to be linearly separable. Con­
sequently, perceptron is included to determine to what 
extent this simple algorithm can handle real-world data. 

Over the past several years, a few connectionist learn­
ing algorithms have been developed that overcome the res­
trictions of the perceptron. Back-propagation (also called 
the generalized delta rule) [Rumelhart86] is currently the 
most popular of these procedures. Its ability to train "hid­
den units" allows it to learn concepts that are not linearly 
separable. Back-propagation has proven more efficient than 
learning procedures for Boltzmann machines and has been 
tested on several large-scale problems [Sejnowski87, 
Tesauro88]. Consequently, it is chosen to represent the new 
connectionist learning algorithms. 

2.2. Data Sets Used 
Four different data sets are used to test the three algo­

rithms. Three have been previously used to test different 
symbolic learning systems and one has been used to test 
back-propagation. 

The three data sets previously used with symbolic 
learning systems describe soybean diseases [Reinke84], 
chess end games [Shapiro87j, and audiological disorders 
[Bareiss88]. These data sets involve, respectively: 50, 36, 
and 58 features; 289, 591, and 226 examples; 17, 2, and 24 
categories. 

The NETtalk data set [Sejnowski87] is a training set 
for converting text to speech. It consists of a 20,012 word 
dictionary with corresponding phonetic pronunciation. 
Each letter of each word and the surrounding three letters on 
each side form a training example and each phoneme/stress 
pair constitutes a category. A seven letter window is 
insufficient to uniquely identify the sound/stress pair 

attributable to the central letter. As a result, the data can be 
considered to be noisy. While this is not a problem for 
back-propagation, it is a problem for the standard ID3 algo­
rithm. To handle noise in ID3, the chi-square technique 
suggested by Quinlan [Quinlan86] is used with this data set. 

Unfortunately, the full dictionary is too extensive to 
tractably analyze in a manner equivalent to the other 
domains. Instead, a smaller data set is extracted by looking 
at the 1000 most common English words (as reported in 
[Kuchera67]) and keeping those that appear in the NETtalk 
dictionary. This intermediate data set is further pruned by 
only keeping the examples involving " A " sounds. This 
produces 444 examples that fall into 18 sound/stress 
categories. This data set is called NETtalk-A. 

A single test is also done for each algorithm using the 
full dictionary as a test set. The subset of the 1000 most 
common English words that appear in the dictionary is the 
training set. This set - called NETtalk-full - contains 808 
words, which produce 4,259 examples classified into 114 
categories. The test set involves roughly 143,000 examples. 

2.3. Implementation Details 
Both ID3 and perceptron are implemented in Com­

mon Lisp and although some attention was paid to 
efficiency, the code was not carefully optimized. All exper­
iments are run on Sun 4/110's with 8 Mbytes of memory. 

Two versions of ID3 that learn to discriminate multi­
ple categories are used. For the noisy NETtalk data, a chi-
square version is used with a confidence level of 99% 
[Quinlan86]. In the other domains, a no-noise version of 
ID3 is used. Experiments with the noise-handling version 
of ID3 on the noise-free domains indicated that the no-noise 
version consistently performed better. 

The version of perceptron used in the experiments 
includes cycle-detection. Once a set of weights repeats, the 
algorithm stops, indicating that the data is not linearly separ­
able. The perceptron cycling theorem [Minsky671 guaran­
tees this will eventually happen if the data is not linearly 
separable. (However, due to simulation time restrictions, 
the perceptron is also stopped if it cycles through the train­
ing data 5000 times.) One perceptron is trained for each 
possible category to distinguish members of that category 
from all other categories. A test example is classified by 
passing it through all the perceptrons and assigning it to the 
category whose perceptron's output exceeds its threshold by 
the largest amount. 

The version of back-propagation used in the experi­
ments is the C code supplied with the third volume of the 
PDP series fMcClelland87]. The learning rate is set to 0.25 
in an attempt to avoid local minima. The momentum term 
is set at 0.9. Networks contain one output bit for each 
category and the number of hidden units is 10% of the total 
number of input and output units, a number which was 
empirically found to work well. When testing, an example 
is assigned to the category whose output unit has the highest 
value. Training terminates when the network correctly 
classifies at least 99.5% of the training data or when the 
number of passes through the data (i.e., the number of 

776 Machine Learning 



epochs) reaches 5000. 

Examples are represented as bit vectors rather than 
standard feature vectors. For each possible value of each 
feature there is a a bit which is on or off depending on 
whether the example has that value for that feature. Nor­
mally, exactly one bit in the set of bits comprising a single 
feature w i l l be on. However, if the feature is missing, then 
all the bits in the set are off, and no special processing for 
missing features need be done. 

This binary representation was initially used only on 
the connectionist algorithms which require binary inputs. 
However, the binary encoding was found to consistently 
improve the classification performance of ID3 as well, and 
therefore is used for all of the learning algorithms. ID3's 
improved performance with the binary encoding may be due 
to several factors. First, since every feature has only two 
values, the binary encoding eliminates the gain criterion's 
undesirable preference for many-valued features [Quin-
lan86]. Second, it allows for more general branching deci­
sions such as red vs. non-red instead of requiring nodes to 
branch on all values of a feature. This may help overcome 
the irrelevant values problem [Cheng88] and result in more 
general and therefore better decision trees. However, since 
the binary encoded examples have more features, ID3's run 
time is increased somewhat under this approach. 

2.4. Description of Experiments 

Each data set (except for NETtalk-full) is separated 
into a collection of training and testing sets. After each sys­
tem processes a training set, its performance is measured on 
the corresponding test set. To reduce statistical fluctuations, 
results arc averaged over ten different training and testing 
sets produces by randomly placing two-thirds of the exam­
ples for each category in the training set and the others in a 
corresponding test set. Again to reduce statistical fluctua­
tions, each run of back-propagation uses a different seed 
random number which determines the initial network 
weights. 

During training, CPU time, the number of cycles 
through the training data, and the final classification correct­
ness for the training data are measured. ID3 only processes 
the data once, while back-propagation and perceptron 
repeatedly process the data until one of the stopping criteria 
described above is met. During testing, CPU time and 
correctness on the testing data are measured. 

Due to computational resource limitations, NETtalk-
full is not converted into ten randomized data sets. Rather, 
the 808 most common words are processed by each system 
and the results tested on the full dictionary (minus the 808 
training words). Because of the size of the training set, 
training restrictions are required. Back-propagation is l im­
ited to 100 epochs and perceptron is only allowed to cycle a 
maximum of 100 times on each category before terminating. 

3. Experimental Results 
Figures 1 and 2 contain the experimental results. The 

first figure reports the training times of the three systems 
(normalized to the time taken by ID3). Correctness on the 

test data is reported in figure 2. The actual numbers, their 
standard deviations, and several other statistics are given in 
[Shavlik89]. The means of all 40 training times (everything 
but NETtalk-full) are 144 seconds (ID3), 373 seconds (per-
ceptron), and 21,000 seconds (back-propagation). For 
correctness, the means are 81.0% (ID3), 79.4% (percep-
tron), and 83.6% (back-propagation). For the single run 
with NETtalk-full, the correctness figures are 53.5% (ID3), 
51.5% (perceptron), 60.7% (back-propagation) and the 
training times are 6,350 seconds (ID3), 10,300 seconds 
(perceptron) and 168,000 seconds (back-propagation). 

A relevant statistical test for these problem results is a 
two-way analysis of variance. This test is designed to deter­
mine the source of variation in the observed correctness 
over each of the four domains. The two way analysis of 
variance returns two values: the likelihood that the variation 
can be explained by the different training sets, and the likel­
ihood that the variation can be explained by differences 
between training methods. 

For NETtalk-A and soybeans (where back-
propagation performs best) and chess (where ID3 performs 
best), it is possible to conclude at the 0.5% level (i.e., with 
99.5% confidence) that the variation in observed correctness 
results from the difference in training methods rather than 
random error. Results are less conclusive for audiology 
(where back-propagation out-performs the others). There it 
is only possible to conclude with 95% confidence that the 
training method is the source of the variation. 

Mooney, Shavlik, Towell and Gove 777 



4. Discussion of Results 
The results indicate that the three systems performed 

remarkably similarly with respect to classification of novel 
examples. However, ID3 and perceptron train much faster 
than back-propagation. There is some indication that back-
propagation works better on the noisy NETtalk data. 

4.1. Perceptron Performance 
One surprising result of these experiments is how 

well the simple perceptron algorithm performs. The percep­
tron was largely abandoned as a general learning mechan­
ism about twenty years ago because of its inherent limita­
tions, such as its inability to learn non-linearly-separable 
concepts [Minsky67]. Nevertheless, it performed quite well 
in these experiments. Except on the NETtalk data, the accu­
racy of the perceptron is hardly distinguishable from the 
more complicated learning algorithms; and even on the 
NETtalk data, it performs about as well as ID3. In addition, 
it is very efficient. On all but the chess data and NETtalk-
full, perceptron's training time is less than ID3's. 

These results indicate the presence of a large amount 
of regularity in the training sets chosen as representative of 
data previously used to test symbolic learning systems. The 
categories present in both the soybean and audiology data 
are linearly separable for all ten randomly chosen training 
sets. The two categories in the chess data are linearly separ­
able for four of the ten training sets and almost linearly 
separable on the rest (average correctness on the training set 
is 97.5%). Despite the fact that the data sets are large and 
represent real categories, their regularity makes them rela­
tively "easy" for even simple learning algorithms like the 
perceptron. 

One possible explanation for the regularity in the data 
is that it is reflecting regularity in the real-world categories. 
In other words, members of a real category naturally have a 
great deal in common and are relatively easy to distinguish 
from examples of other categories. Another possible expla­
nation is that the features present in the data have been very 
carefully engineered to reflect important differences in the 
categories. For example, formulating features for chess end 
games which were appropriate for learning required consid­
erable human effort [Quinlan83]. The actual explanation is 
probably a combination of these two important factors. 

Regardless of the reason, data for many "rear' prob­
lems seems to consist of linearly separable categories. 
Since the perceptron is a simple and efficient learning algo­
rithm in this case, using a perceptron as an initial test system 
is probably a good idea. If a set of categories are not 
linearly separable, the perceptron cycling theorem [Min-
sky67] guarantees that the algorithm will eventually repeat 
the same set of weights and can be terminated. In this case, 
a more complicated algorithm such as ID3 or back-
propagation can be tried. The perceptron tree error correc­
tion procedure [Utgoff88a] is an example of such a hybrid 
approach. This algorithm first tries the perceptron learning 
procedure and if it fails splits the data into subsets using 
ID3's information-theoretic measure and applies itself 
recursively to each subset. 

4.2. Equivalence of Classification Accuracy 
In general, all three learning systems are remarkably 

similar with respect to classifying novel examples. Despite 
the obvious differences between decision trees and connec-
tionist networks, their ability to accurately represent con­
cepts and correctly classify novel instances appears to be 
quite comparable. Data from other recent experiments sup­
port this general conclusion [Fisher89, Weiss89]. Learning 
curves presented in [Fisher89] suggest that that ID3 per­
forms better on relatively small amounts of data; however, 
this is an artifact of how incremental training was per­
formed in back-propagation. If back-propagation is always 
run to "convergence" this difference disappears 
[Shavlik89]. Fisher and McKusick also found that once 
back-propagation converges, it consistently attains a 
correctness a few percentage points above ID3. However, 
they did not use binary input encodings for ID3, conse­
quently ID3 and back-propagation were given different 
encodings of the inputs. We found that using the binary 
encoding for ID3 can improve correctness by a few percen­
tage points and may account for some of the difference 
observed by Fisher and McKusick. 

One possible explanation for the similarity in perfor­
mance is that most reasonable procedures which correctly 
classify a particular set of training instances (possibly 
allowing for some noise) are about equally likely to classify 
a novel instance correctly. Another possible explanation is 
that the inductive biases inherent in connectionist and sym­
bolic representations and algorithms reflect implicit biases 
in real categories equally well. For example, all three sys­
tems share some form of an "Occam's Razor" bias and, at 
least to some degree, prefer simpler hypotheses. However, 
for perceptron and back-propagation, the complexity of the 
hypothesis is constrained by the user who must initially 
select an appropriate network for the problem. Unlike most 
symbolic learning systems which explicitly search for a 
simple hypothesis, connectionist systems simply search for 
a correct hypothesis which fits into a user-specified network. 
Although both generally use hill-climbing search to guide 
learning, connectionist systems hill-climb in "correctness 
space" while symbolic systems hill-climb in "simplicity 
space." An interesting development would be a connection­
ist learning algorithm which explicitly tries to learn simple 
networks, for example by eliminating unnecessary hidden 
units and/or slowly adding hidden units as they are needed 
[Honavar88]. Such a system would help ease the burden of 
having to initially specify an appropriate network for a 
problem. 

4.3. Performance on the NETtalk Data 
In addition to being by far the largest data set, the 

NETtalk data set is the only one that involves noise. On 
NETtalk-A and especially NETtalk-full, back-propagation 
performs better than perceptron and the noise-handling ver­
sion of ID3. Although it is not clear actually which proper­
ties of the NETtalk data lead to back-propagation's superior 
performance, one hypothesis is that back-propagation's 
ability to perform in the presence of noisy training data is 
better than ID3's. Experiments on the effect of noise on 

778 Machine Learning 



both ID3 and back-propagation tend to support this 
hypothesis [Fisher89, Shavlik89]. 

In [Sejnowski87], the sound/stress outputs in 
NETtalk-full are encoded for back-propagation as a 
sequence of 26 bits (as opposed to one bit for each of the 
114 categories). The first 21 bits are a distributed encoding 
of the 51 phonemes contained in the dictionary. Each bit is 
a unary feature describing one of: position of the tongue in 
the mouth, phoneme type, vowel height, or punctuation. 
The remaining five bits form a local encoding of the five 
types of stresses used in the dictionary. A final category is 
obtained by choosing the one that makes the smallest angle 
in feature space with the 26 output bits. (This is the "best 
guess" metric used in [Sejnowski87].) 

Sejnowski's setup was repeated with the NETtalk-full 
data, using 120 hidden units. Running this for 30 epochs (as 
in [Sejnowski87]) takes 180,000 seconds. Correctness is 
95% on the training set and 7 1 % on the testing set. (These 
numbers are the best of five runs. Due to the random initial 
weights, twice after 30 training epochs back-propagation's 
correctness on the both the training and test sets were less 
than 10%.) This is significantly better than using the origi­
nal output encoding of one bit per category, which results, 
after 100 epochs and 168,000 seconds, in correctnesses of 
84% percent on the training set and 6 1 % on the testing set. 
Further investigation has shown that the distributed output 
encoding can also be used to improve the performance of 
ID3; however, not to same the extent that it improves back-
propagation's performance rShavlik89]. 

4.4. Slowness of Back-Propagation 

Although back-propagation performs about as well or 
better than the other systems at classifying novel examples, 
it consistently takes a lot more time to train. Averaged 
across all four data sets, back-propagation takes about 500 
times as long to train as ID3. (Testing in back-propagation 
takes about 10 times longer.) These factors would probably 
increase if one optimized the ID3 code, which is not coded 
efficiently compared to the C version of back-propagation. 

One obvious way back-propagation can be made fas­
ter is to exploit its intrinsic parallelism. The networks used 
in these experiments contained an average of about 175 
units. Consequently, assuming one processor per unit and 
perfect speedup, the training time for back-propagation 
could possibly be made competitive with ID3's. However, 
ID3 is a recursive divide-and-conquer algorithm and there­
fore also has a great deal of intrinsic parallelism. In addi­
tion, in perceptron each output bit is learned independently, 
one simple source of parallelism for this method. Compar­
ing the training time for parallel implementations of all 
three algorithms would be the only fair way to address this 
issue. 

4.5. Addi t ional Issues 

There are several other differences between the three 
systems and between symbolic and connectionist 
approaches in general. For one, given a collection of 
input/output training pairs, ID3 and percepu-on can be 

directly run. On the other hand, in order to run back-
propagation, a network architecture must be chosen, 
currently much more of an art than a science. Not only 
must the number of hidden units be chosen, but the number 
of hidden layers must also be specified. In addition, the 
learning rate and the momentum term must be specified. 
Performance may depend greatly on the initial randomly-
selected weights and several runs with different initial 
weights may be necessary to get a good final result. Finally, 
a criterion for stopping training must be chosen. Our 
experience has shown that if parameters are inappropriately 
set or if initial weights are unfavorable, back-propagation 
may fail to converge efficiently. However, it should also be 
mentioned that many symbolic learning systems have 
parameters which must be appropriately set to insure good 
performance [Rendell89]. 

Another issue is the human interpretability of the 
acquired rules. Symbolic learning can produce interpretable 
rules while networks of weights are harder to interpret. 
However, large decision trees can also be very difficult to 
interpret [Shapiro87]. Finally, connectionist models are 
neurally-inspired, while symbolic models are not. Hence, 
connectionist models may shed more light on human neuro­
physiology. 

5. Conclusions 
A current controversy is the relative merits of sym­

bolic and connectionist approaches to artificial intelligence. 
Although, symbolic and connectionist learning systems 
often address the same task of inductively acquiring con­
cepts from classified examples, their comparative perfor­
mance has not been adequately investigated. In this paper, 
the performance of a symbolic learning system (ID3) and 
two connectionist learning systems (perceptron and back-
propagation) are compared on four real-world data sets. 
These data sets have been used in previous experiments. 
Three in symbolic learning research (soybeans, chess, and 
audiology) and one in connectionist research (NETtalk). 
Experimental results indicate that ID3 and perceptron run 
significantly faster than does back-propagation, both during 
learning and during classification of novel examples. The 
probability of correctly classifying new examples is about 
the same for the three systems, although there is indication 
that back-propagation classifies more accurately on noisy 
complex data sets. 

Follow-up experiments reported in [Shavlik89] have 
confirmed that back-propagation handles both noise and 
missing feature values more reliably than either ID3 or per­
ceptron. Although on some data sets all three systems 
degrade equally as noise or missing data is introduced, 
back-propagation shows significantly less degradation on 
particular data sets. Another issue is how well the algo­
rithms learn as a function of the amount of training. 
Perhaps some methods perform better with relatively little 
training data while others perform better on large training 
sets. In [Shavlik89] "learning curves'' are presented which 
indicate that relative amount of training is not a distinguish­
ing factor. A third issue is incremental learning without 
requiring the complete storage of all previous examples. 

Mooney, Shavlik, Towell and Gove 779 



Incremental versions of ID3 have been proposed [Schlim-
mer86, Utgoff88b] and back-propagation can be performed 
incrementally by processing each new example some 
number of times and then discarding it. Comparison of 
various incremental approaches is an area for future 
research, as is investigation of parallel approaches. Further 
investigation will hopefully lead to a better understanding of 
the relative strengths and weaknesses of the symbolic and 
connectionist approaches to machine learning. 

Acknowledgements 
The authors would like to thank the fol lowing people for 

supplying data sets: Bob Stepp and Bob Reinke for the soybean 
data; Ray Bareiss, Bruce Porter, and Craig Wier for the audiology 
data which was collected with the help of Professor James Jerger 
of the Baylor College of Medicine; Rob Holte and Peter Clark for 
Alen Shapiro's chess data; and Terry Sejnowski for the NETtalk 
data. Elizabeth Towell assisted with the analysis of variance. Rita 
Duran, Wan Yik Lee, and Richard Maclin contributed to the imple­
mentations. 

References 
[Bareiss88] 

[Cheng88] 

[Fisher89] 

[Honavar88J 

[Kuchcra67J 

[McClelland87J 

[Michalski80] 

[Minsky67] 

E. R. Bareiss, "PROTOS: A Unified Approach to 
Concept Representation, Classification and 
Learning," Ph.D. Thesis, Department of 
Computer Science, University of Texas, Austin, 
TX , 1988. (Available as Technical Report 
AI88-83.) 

J. Cheng, U. M. Fayyad, K. B. Irani and Z. Qian, 
"Improved Decision Trees: A Generalized 
Version of ID3," Proceedings of the Fifth 
International Conference on Machine Learning, 
Ann Arbor M I , June 1988, pp. 100-106. 

D. H. Fisher and K. B. McKusick, "An Empirical 
Comparison of ID3 and Back-propagation," 
Proceedings of the Eleventh International Joint 
Conference on Artificial Intelligence, Detroit, 
M I , August 1989. 

V. Honavar and L. Uhr, "A Network of Neuron-
Like Units that Learns to Perceive by Generation 
as Wel l as Reweighting of its Links," in 
Proceedings of the 1988 Connectionist Models 
Summer School, G. E. Hinton, T. J. Sejnowski 
and D. S. Touretzky (ed.), Morgan Kaufmann, 
San Mateo, CA, 1988. 

H. Kuchera and W. N. Francis, Computational 
Analysis of Modern-Day American English, 
Brown University Press, Providence, R I , 1967. 

J. L. McClelland and D. E. Rumelhart, 
Explorations in Parallel Distributed Processing: 
A Handbook of Models, Programs, and 
Exercises, M I T Press, Cambridge, M A , 1987. 

R. S. Michalski and R. L. Chilausky, "Learning 
by Being Told and Learning from Examples: an 
Experimental Comparison of the Two Methods 
of Knowledge Acquisition in the Context of 
Developing an Expert System for Soybean 
Disease Diagnosis," Policy Analysis and 
Information Systems 4, 2 (June 1980), pp. 125-
160. 

M. L. Minsky and S. Papert, Perceptrons, M I T 
Press, Cambridge, M A , 1967. 

[Quinlan83] J. R. Quinlan, "Learning Efficient Classificauor 
Procedures and their Application to Chess Enc 
Games," in Machine Learning: An Artificia 
Intelligence Approach, R. S. Michalski, J. G 
Carbonell, T. M. Mitchell (ed.), Tioga Publishing 
Company, Palo Alto, CA, 1983. 

[Quinlan86] J. R. Quinlan, "Induction of Decision Trees,' 
Machine Learning 1,1 (1986), pp. 81-106. 

[Reinke84] R. Reinke, Knowledge Acquisition ant 
Refinement Tools for the ADVISE Meta-Exper 
System, M.S. Thesis, University of Ill inois a 
Urbana-Champaign, 1984. 

[Rendell89] L. A. Rendell, H. H. Cho and R. Seshu 
"Improving the Design of Similarity-Based 
Rule-Learning Systems," International Journa 
of Expert Systems 2 ,1 (1989), pp. 97-133. 

[Rosenblatt62] F. Rosenblatt, Principles of Neurodynamics 
Spartan, New York, 1962. 

[Rumelhart86J D. E. Rumelhart, G. E. Hinton and J. R 
Wil l iams, "Learning Internal Representations b; 
Error Propagation," in Parallel Distribute 
Processing, Vol. I, D. E. Rumelhart and J. L 
McClelland (ed.), M I T Press, Cambridge, MA 
1986, pp. 318-362. 

[Schlimmer86] J. C. Schlimmer and D. Fisher, "A Case Study o 
Incremental Concept Induction," Proceedings c 
the National Conference on Artificia 
Intelligence, Philadelphia, PA, August 1986, pp 
496-501. 

[Sejnowski87] T. J. Sejnowski and C. R. Rosenberg, "Paralle 
Networks that Learn to Pronounce English 
Text," Complex Systems I, (1987), pp. 145-168. 

[Shapiro87J A. Shapiro, Structured Induction in Exper 
Systems, Addison Wesley, Reading, M A , 1987. 

[Shavlik89] J. W. Shavlik, R. J. Mooney and G. Towel] 
"Symbolic and Neural Net Learning Algorithms 
An Experimental Comparison," Technics 
Report, Department of Computer Science 
University of Wisconsin, Madison, W I , 1989. 

[Tesauro88] G. Tesauro, "Connectionist Learning of Expei 
Backgammon Evaluations," Proceedings of th 
Fifth International Conference on Machin 
Learning, Ann Arbor M I , June 1988, pp. 200 
206. 

[Utgoff88a] P. E. Utgoff, "Perceptron Trees: A Case Study ii 
Hybrid Concept Representations," Proceeding 
of the National Conference on Artificia 
Intelligence, St. Paul, M N , August 1988, pp 
601-606. 

[Utgoff88b] P. E. Utgoff, "1D5: An Incremental ID3, 
Proceedings of the Fifth Internationa 
Conference on Machine Learning, Ann Arbc 
M I , June 1988, pp. 107-120. 

[Weiss89] S. M. Weiss and I. Kapouleas, "An Empirics 
Comparison of Pattern Recognition, Neural Nets 
and Machine Learning Classification Methods, 
Proceedings of the Eleventh International Joir< 
Conference on Artificial Intelligence, Detroii 
M I , August 1989. 

780 Machine Learning 


