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Abstract 

AI and connectionist approaches to learning from ex­
amples differ in knowledge-base representation and in­
ductive mechanisms. To explore these differences we ex­
periment wi th a system from each paradigm: 1D3 and 
back-propagation. We compare the systems on the basis 
of both prediction accuracy and length of training. The 
systems show distinct performance differences across a 
variety of domains. We identify aspects of each system 
that may account for these performance differences. Fi­
nally, we suggest paths for cross-paradigm interaction. 

1 In t roduct ion 

Research in machine learning has grown rapidly in re­
cent years. A primary focus of study has been methods of 
learning from examples: a system accepts object descrip­
tions (e.g., patient case histories) that are pre classified 
(e.g., hypothyroid disease). Based on this training, the 
system forms a knowledge base that can accurately clas­
sify new objects. Historically, the dominant approach 
in AI assumes that the knowledge base is a flat or tree-
structured set of concept, descriptions. Typically, each 
concept is a logical rule that defines class membership. 

In contrast, connectionist methods (Hinton, in press; 
McClelland & Rumelhart, 1988) assume a knowledge 
base of interconnected nodes, each of which computes 
a weighted sum of its inputs. External inputs (i.e., ob­
ject features) are arithmetically combined and propa­
gated through the network. This process terminates with 
the computation of external outputs that represent an 
object's classification. Learning alters weights so that 
classification correctness is improved. 

AI and connectionist approaches typically differ in ob­
ject and knowledge-base representation, as well as the 
inductive mechanisms employed. This paper explores 
some implications of these differences by experiment­
ing wi th a system from each paradigm: ID3 and back-
propagation. Sections 2 and 3 describe ID3 and back-

* T h i s work was suppor ted by a g ran t f rom the Vanderb i l t Un i ­
versity Research Counc i l . 

propagation, respectively. Section 4 compares the sys­
tems in terms of the prediction accuracy attained in 
natural and artificially-constructed domains, and the 
amount of training required to achieve these accuracy 
levels. Section 5 describes processing and representa­
tion differences between ID3 and back-propagation, as 
well as between these systems and others of their respec­
tive paradigms. This discussion qualifies our study as it 
might relate to paradigm-wide comparisons and suggests 
foundations for work on hybrid systems. 

2 ID3 
ID3 (Quinlan, 1986) is a simple and effective AI method 
for learning from examples. The system constructs a 
decision tree from a set of training objects. At each 
node of the tree the training objects are partit ioned by 
their value along a single attr ibute. An information 
theoretic measure is used to select the attr ibute whose 
values improve prediction of class membership above the 
accuracy expected from a random guess. The training 
set is recursively decomposed in this manner until no re­
maining attr ibute improves prediction in a statistically-
significant manner by a user-supplied parameter o f 'con­
fidence' (e.g., 90%). In our experiments we assume nom­
inal attr ibutes: those with a finite set of values (e.g., 
Color £ {red, blue, green}). 

ID3 decision trees are equivalent to tree-structured 
Disjunctive Normal Form (DNF) concepts. Each path 
to a leaf is a conjunction of values, joined at the root by 
disjunction. Quinlan and others have verified that this 
approach attains high levels of accuracy in an absolute 
sense and relative to other systems. These studies re­
port favorable results in several natural domains, under 
idealized and noisy conditions. 

3 Back-propagation 
In a feed-forward connectionist net, input nodes record 
observed features from the environment and pass 'acti­
vat ion' forward through an intermediate layer of 'hidden* 
nodes to an output layer. We assume that each node is 
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linked to every node at the next layer via weighted inter­
connections. The total activation of a node is a weighted 
sum of its inputs. We encode nominal attributes using 
a set of input units, one dedicated to each value. For 
a particular object description, one of these units (e.g., 
'red') wi l l be 1.0 and the rest (e.g., 'blue', 'green') wi l l 
be 0.0, representing feature presence and absence respec­
tively. A set of such input units is allocated for each at­
tr ibute. This representation has been used by Sejnowski 
and Rosenberg (1988) and has advantages for nominal 
attr ibute encodings. Our convention is that each output 
node corresponds to one class; the object is classified by 
the class whose output node has the highest activation. 
Ideally, for any particular object the activation of one 
output node should be 1.0 and the others should be 0.0. 

Back-propagation (Rumelhart, Hinton, & Wil l iams, 
1986; McClelland & Rumelhart, 1988) adjusts weights 
so as to improve the match between actual and ideal 
output. If there are 4 classes (output units) and an ob­
ject belongs to class 1, then the ideal output is (1 0 0 
0). If the actual output is (0.3 0.2 0.5 0.3) then the 
error for each output unit (0.7 -0.2 -0.5 -0.3) is back-
propagated through the network. Weight adjustment is 
proportional to the size (and sign) of the error, and the 
degree to which the lower-level node contributed to the 
output node's node's activation error. A user-supplied 
parameter of 'learning rate' is used to vary weight ad­
justment. 

Wi th 'sufficient' hidden units, back-propagation can 
converge on perfect classification (assuming no noise), 
but this number wil l vary with domain. When no hidden 
units are present, linearly separable classes are recogniz­
able, which properly include 'X of N' functions: for a 
selected subset of the input features (where the subset is 
of size N), at least X must be present in order to qualify 
for class membership. Logical conjunction and inclu­
sive disjunction are special cases of the X of N function: 
X=N and X = l represent the conjunctive case where all 
features must be present and the disjunctive case where 
only one feature need be present. 

4 Exper imental Comparisons 

This section describes empirical comparisons between 
ID3 and back-propagation. Comparisons of any k ind, 
whether cross-paradigmatic or not, require that we jus­
tify system-dependent parameter settings, choose do­
mains and encodings that are fair to both systems, and 
accept that systems may be designed for disparate ap­
plications. Even if we agree on domains that allow the 
approximation of fair comparison, we must realize that 
systems may be superior along different dimensions (e.g., 
cost versus correctness). This section compares the be­
havior of two systems. Hopefully, we and the reader 
can avoid unfounded generalizations with respect to the 
paradigms more generally. Section 5 analyzes system 

performance in l ight of paradigm-wide assumptions in 
order to qualify our comparative results and to suggest 
paths for cross-paradigm fert i l ization. 

4 .1 E x p e r i m e n t a l Des ign 

ID3 and back-propagation were tested in the natural do­
mains of thyroid disease case histories, soybean disease 
case histories (Stepp, 1984), and congressional voting 
records. In addition to the basic domains, we systemat­
ically introduce noise to each domain. Finally, we test 
each system in a number of artificial domains, including 
exclusive-or which is not linearly separable, but which 
may be described by a simple logical expression. 

For each domain, back-propagation was tested with 
varying numbers of hidden units (0, 10, 20) and learning 
rates (0.05, 0.10, 0.20). Of these, we report results with 
10 hidden units and a learning rate of 0.05, which con­
sistently optimizes or comes close to opt imal asymptotic 
prediction accuracy and learning speed over all domains. 
ID3 was tested wi th varying confidence levels (0%, 90%, 
95%, 99%). In general, 90% confidence does as well as 
others for domains, training schedules, and noise levels 
that we are investigating.1 

Al l features were nominal and were given a binary en­
coding for back-propagation as described in Section 3. 
Class membership was similarly encoded for outputs. In 
all of the natural domains, back-propagation required far 
more object 'presentations' to converge on asymptotic 
accuracy than there were unique objects. Thus, training 
objects were drawn randomly (wi th replacement) from 
a fixed pool of objects. For 1D3 and back-propagation a 
disjoint object subset was reserved to test (but not up­
date) the knowledge base at intermittent points in train­
ing. Back-propagation is incremental; after each testing 
point, learning resumes with the network weights derived 
by previous training. In contrast, 1D3 is nonincremen-
tal ; at each testing point 1D3 is constructed anew wi th 
the training set used previously, plus newly presented 
objects. ID3 may see each object at most once for any 
particular tr ial . 

4.2 N a t u r a l D o m a i n s 

The graphs of Figure 1 show the learning curves' of ID3 
and back-propagation in the congressional and thyroid 
domains. In the congressional domain ID3 achieves and 
maintains 94% accuracy after approximately 200 objects, 
while back-propagation asymptotes at 97% accuracy af­
ter 1000 objects. In the thyroid domain, ID3 requires 
135 objects to attain 88% accuracy. Rack-propagation 
reaches and maintains 9 1 % accuracy after 1000 object 
presentations. In the soybean domain ID3 averaged 99% 

1 However, we report exceptions to these findings when they 
significantly improve performance (e.g., 0% versus 90% confidence; 
0 versus 10 hidden units). 
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accuracy over the test set. Back-propagation reached 
perfect accuracy after 500 object presentations. 

In these domains back-propagation reaches slightly 
higher accuracy levels, but not significantly so. More­
over, back-propagation requires many more training pre­
sentations. Another difference relates to the shape of 
the 'learning curves': ID3 quickly achieves high levels 
of accuracy (e.g., after 10 training objects or so) and 
then gradually converges on its asymptotic value. In 
contrast, the slope of back-propagation's curve is more 
gradual and uniform. 

Our training conventions for back-propagation assume 
that an object presentation is the primary unit of cost. In 
contrast to our incremental approach, Shavlik, Mooney, 
and Towell (1989) assume that the training objects are 
repeatedly presented unt i l the network converges to near 
perfect prediction of this set. Only then is the test 
set presented for classification. This batch convention 
assumes that each object (regardless of the number of 
times that it is repeated) is the basic unit of cost. Their 
finding is that approximately the same number of ob­
jects are required to achieve similar accuracy levels. We 
(Fisher, McKusick, Mooney, Shavlik, & Towell, 1989) 
have reconciled these conventions and found them basi­
cally equivalent. In the incremental approach the cost 
per presentation (observation) is inexpensive, but many 

observations are needed. In the batch approach the cost 
per observation is more expensive, but fewer observa­
tions are needed. In either case the empirically-observed 
time unti l convergence for back-propagation is up to sev­
eral orders of magnitude greater than ID3, a property 
that our graphs reflect. 

4.3 Noise 

The effect of noise was also explored. In a manner sug­
gested by Quintan (1986) attr ibute values were randomly 
replaced according to a probabil i ty (e.g., 25%) that re­
flected the noise level. Asymptotic accuracy for the con­
gressional and thyroid domains under conditions of 25% 
noise are graphed in Figure 2. Regardless of noise level 
(i.e., 25% or 50%) or domain, back-propagation always 
attained accuracy levels greater than ID3. However, 
back-propagation again requires significantly more ob­
servations to achieve these results (but this is not re­
vealed by the bar graphs). The learning curves' are 
similar in shape to those of Figure 1: ID3 rapidly peaks 
and levels off, while back-propagation rises more slowly 
and uniformly. 

4.4 A r t i f i c i a l D o m a i n s 

Art i f ic ial domains were constructed so that comparisons 
could be made under controlled circumstances. Our ex­
periments systematically vary the degree that attr ibute 
values are sufficient and necessary for class member­
ship: [4.4.1] individual values are necessary and suf­
ficient; [4.4.2] values are necessary, but not sufficient; 
[4.4.3] values are not individually necessary or sufficient 
(X of N); [4.4.4] the necessity of a value's presence or ab­
sence is conditioned on the presence of other attributes 
(exclusive-or), in which no set of values are necessary or 
sufficient. 
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4.4.1 Suf f ic iency 4.4.3 X o f N 

Each of four (4) artificial domains contained three (3) 
classes of objects. Objects were described over 10 at­
tributes. Each class was describable as a conjunction of 
attr ibute values that were unique to that class. Each 
such value was singly sufficient to distinguish the class. 
Each of the four domains varied in the number of singly-
sufficient values (i.e., domain 1: 10 of 10 attributes were 
individually sufficient; domain 2: 6 of 10 were sufficient; 
domain 3: 4 of 10 were sufficient; domain 4: 1 of 10 were 
sufficient). Values of those attributes that were not suffi­
cient were generated randomly, and thus were irrelevant 
to classification. 

1D3 uniformly reached perfect performance by 10 ob­
jects, regardless of the number of individually-sufficient 
values. Back-propagation is more sensitive to the num­
ber of sufficient values. When all attributes distinguish 
membership, convergence to perfect prediction required 
200 objects, but when no hidden units were used only 
10 objects were required. When 4 attributes were suffi-
cient, 300 objects were required for perfect performance 
(100 objects were required wi th no hidden units). When 
only 1 attr ibute was sufficient (and thus necessary too) 
500 observations were required. As the number of suffi­
cient values decreased, back-propagation required more 
observations to reach asymptotic accuracy. 

4.4.2 Necess i ty 

Domains in the second set of experiments added to the 
complexity of the 'sufficiency' domains. Each class was 
stil l describable as a conjunction of attr ibute values, 
but the values were not unique to that class: no value 
was singly sufficient to distinguish class membership.2 

Rather, only the entire conjunctive expression was suffi­
cient (and necessary) to distinguish membership. Once 
again, the size of the conjunctive expression varied from 
1 to 9. 

Neither ID3 or back-propagation averaged perfect per­
formance in all domains for the maximum allotted train­
ing. Back-propagation remained just below perfect pre­
diction (about 98.5%) for conjunctions of size 4 and 6; 
ID3 reached perfect accuracy, but required 150 training 
objects. Back-propagation achieved perfect prediction 
after 500 objects for the conjunction of size 9; 1D3 aver­
aged 95%) asymptotic accuracy. As the size of the con­
junctive target concept grew, it became more difficult 
for ID3 to spot; each attr ibute individually transmitted 
less information. 

2 Except in the case where the conjunction is of size 1; note 
that this extreme is identical to the lone sufficient (and necessary) 
condition of 4.4.1. 

In these experiments there was no conjunctive descrip­
tion for any class. Rather, a class was defined by an X 
of N function. More specifically, each domain contained 
only two classes (C and ¬C) . C is associated with 10 
'preferred' values (one for each at tr ibute); an object was 
a class member iff it contained at least X of the 10 values. 
In contrast to 4.4.2, our 'X of N' experiments disallow 
any single value set to be necessary. The size of X was 
varied between 1 and 9. 

1D3 consistently attained accuracy levels in the vicin­
ity of 85%, to 90% after 200 objects, but about 75%. ac-
curacy was achieved after 10 objects. Back-propagation 
reached average levels of 99%, to 100% wi th in 2000 ob­
servations. 

4.4.4 E x c l u s i v e - O r 

A final set of artificial domains insists that two attributes 
exhibit the exclusive-or relation (one and only one of two 
selected values are present). Exclusive-or, like X of N, 
has no values or value combinations that are necessary 
for membership. However, 'X of N' allows X or more 
selected values to be present, but exclusive-or requires 
exactly X values to be present. As such, exclusive-or is 
not linearly separable. 

The version of 1D3 that we used (Quinlan, 1986) was 
not capable of learning this function, averaging between 
50% and 75%, accuracy depending on our confidence 
threshold. However, Section 5 describes a new 1D3 de-
scendenf (Quinlan, 1988) that can undoubtedly reach 
perfect prediction in this domain. Exclusive or also 
presents problems to back-propagation: it can not be 
learned without hidden units. W i t h 10 hidden units, 
it required approximately 5000 observations to achieve 
100% accuracy (approximately 50%, accuracy after 1000 
observations.) 

5 Discussion 
Experiments indicate that back-propagation achieves 
higher asymptotic accuracy levels under noisy conditions 
and selected artificial domains, but requires considerably 
more object presentations. This section identifies several 
principles of each system that may account for perfor­
mance differences. To the extent possible, we tie our 
discussion to distinctions between AI and connectionist 
paradigms more generally. This discussion qualifies our 
results as they might apply to paradigm-wide compar­
isons and encourages the exploration of AI and connec­
tionist hybrid learning systems.3 

3 In particular, we avoid the symbolic/subsymbolic distinction. 
This has proved an unhelpful distinction in that it does not pro-
mote short-term progress. This distinction artificially segregates 
research programs because it is often conveyed as a prescrip­
tive (and unknown) boundary that each paradigm must observe. 
Rather, we believe that useful distinctions are descriptive and pro-
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5.1 R e p r e s e n t a t i o n a n d B ias 

Differences between ID3 and back-propagation may be 
attr ibutable to the size and form of the search space ex­
plored by each system. The primit ive evidence combina­
tion function of back-propagation (i.e., X of N) general­
izes ID3's pr imit ive logical combinators (conjunction and 
inclusive disjunction). Finer granularity enables back 
propagation to converge on logical concepts and others 
with less hardware, but each primit ive must be special­
ized, which requires greater training. The DNF equiva­
lent of X of N (for arbitrary X) is quite complex. The 
course primitives of ID3 also suggests that it takes big­
ger steps in a uniform search space: it approximates the 
final solution more quickly, but it may accept less than 
optimal solutions because it 'oversteps' or 'understeps' 
the opt imum. 

The subsumtion relation between representation lan­
guages suggests that logical descriptions can be har­
nessed as a sort of 'admissible' heuristic that allow rapid 
approximation followed by slower refinement. This ap­
proach is taken by Utgoff's (1988b) perceptron trees, a 
hybrid of decision trees wi th linear threshold units as 
leaves. The decision tree brings about large cuts in the 
search space, wi th final convergence left to the leaves. 
Evaluation of this particular approach must await fur­
ther experimentation, but nonetheless it represents an 
important conceptual advance towards the development 
of hybrid systems. 

5.2 P r o b a b i l i s t i c versus Log i ca l C lass i f i ca t ion 

A recent trend in machine concept learning is towards 
probabilistic representations (Smith fa Medin, 1981). 
Probabilistic concepts typically classify observations by a. 
summation of evidence, just as do connectionist network 
nodes. For example, Fisher's (1987) C O B W E B can be 
viewed as constructing a 'decision' tree of evidence sum­
mation units (nonlinear) with a variable threshold (i.e., 
an object is placed in the node wi th the highest summa­
t ion). Ar i thmetic evidence combination has tradit ion­
ally distinguished AI and connectionist learning meth­
ods, but C O B W E B illustrates that this should not be 
taken as a prescriptive difference. 

5.3 M o n o t h e t i c versus P o l y t h e t i c C lass i f i ca t ion 

A weakness of ID3 is that it is monothetic: learning con­
siders the ut i l i ty of a single attr ibute at a time. The 
predictive merits of at tr ibute value combinations are not 
explicitly consider, presumably to the detriment of pre­
diction accuracy. This seems evident in the comparisons 
of 4.4.2 and 4.4.4. In contrast, back-propagation is poly­
thetic, in that the values of mult iple attributes are simul­
taneously considered (summed). However, the mono­
thetic property of ID3 is not a general assumption of the 

mote interaction. 

f ield. Tradit ionally, AI concept learning methods have 
been search intensive precisely because they simultane­
ously consider the ut i l i ty of many attr ibutes. Recently, 
Quinlan (1988) has introduced a polythetic extension 
to ID3 that builds a monothetic decision tree (without 
using confidence measures to terminate decomposition), 
and then converts it to a set of production rules. Each 
rule is a polythetic concept that is 'massaged' in order to 
improve its accuracy. That this extension was prompted 
by Quinlan's comparison of ID3 and a genetic classifier 
(which shares certain characteristics w i th connection­
ist nets), adds impetus to continued comparisons with 
this extension. Quinlan's comparisons only occurred in 
an artificial domain similar to our exclusive-or function. 
Our methodology promises to characterize the ID3 ex­
tension across a wide range of domains. A determination 
of whether logic-based, but polythetic learning systems 
can overcome problems of granularity discussed in 5.1 
must await experimentation. However, polythetic classi­
fication in AI learning systems need not preclude prob­
abilistic representations as noted in 5.2. 

5.4 I n c r e m e n t a l versus N o n i n c r e m e n t a l Process­

i n g 

ID3 assumes that all observations are simultaneously 
available for processing, while back propagation pro-
cesses observations as they become available. This dis­
t inction is somewhat true of the two paradigms more 
generally. However, ID3 has recently spawned two in­
cremental variants, 1D4 (Schlirnmer & Fisher, 1986) and 
IDS (UtgofT, 1988a). Incremental learning more gener­
ally is becoming popular in AJ learning research. The 
common thread in these systems (including connection­
ist methods and COBWEB) is the use of 'probabilistic' 
representations. Finer granularity allows more conserva­
tive steps through a search space. This conservatism is 
necessary; early in training, many observations are in­
consistent wi th the evolving concept description. No ob­
servation should irrevocably impact the incomplete con 
cept description. 

5.5 C o n s t r u c t i v e versus C o n v e r g e n t Search 

Perhaps the most overt distinction between AI and con­
nectionist systems is the manner in which they explore 
their respective search spaces. AI systems typically re-
construct the space upon demand, which is only defined 
implici t ly by operators and an ini t ia l state to begin wi th . 
In contrast, most connectionist systems preenumerate a 
subset of the space, which is implici t in the number and 
interconnections between nodes. Problems arise if too 
much (e.g., slow convergence) or too l i tt le (e.g., the con­
cept cannot be learned) of the space is preenurnerated. 
Important steps in reconciling these strategies have been 
explored by Schlirnmer fa Granger (1986) and Hampson 
fa Volper (1987). Schlirnmer fa Granger's STAGGER 
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system adapts connectionist evidence combination pro­
cedures to the 'constructive' (upon demand) approach: 
the emphasis is on technology transfer to Al systems. 
In contrast, Hampson k Volper stress transfer to con­
nectionist research: specialized disjunctive nodes can be 
enumerated and integrated on demand, thus facil itating 
rapid convergence. Picking up on the discussion of 5.1, 
Al systems appear well suited to enumerating an appro-
priate subspace that may then be refined. 

6 Concluding Remarks 

Empirical comparisons have uncovered advantages and 
disadvantages of two specific learning systems. That 
these systems are from different paradigms is impetus 
for interaction. Research of this ilk is being pursued by 
several researchers, some of whom we have discussed. In 
addit ion, future comparisons must increase the scope of 
our study to other learning systems and learning strate­
gies. Currently, we (Fisher, McKusick, Mooney, Shav­
lik, k Towell, 1989) are exploring an alternative training 
strategy for back-propagation that combines the incre­
mental and batch approaches: small batches of training 
objects are incrementally presented and are processed 
until convergence (on the subbatch). Our ini t ial results 
suggest that using very small batch sizes (1 to 4) sig­
nificantly reduces the total number of presentations re­
quired unti l asymptotic accuracy is achieved. We are 
pursuing these experiments and hope to flesh out an ex­
planation of the phenomena in terms Al concepts; most 
notably, can we view this process as simulating case-
based reasoning and/or a specific to general search for 
the best classifier? Either interpretation is a departure 
from the usual training strategy of moving from general 
(indiscriminate) towards greater specialization. Hope-
fully, these explorations wil l improve back-propagation 
training time without detrimentally impacting accuracy. 
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