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A b s t r a c t 

Fisher (1987a,b) introduced a performance task for con­
ceptual clustering: flexible prediction of arbitrary at­
tr ibute values, not simply the prediction of a single 'class' 
at t r ibute. This paper extends earlier analysis by consid-
ering the effects of noise and other environmental fac­
tors. The degradation in flexible prediction accuracy 
that results from noise is mitigated by 'preferred' pre­
diction points for individual attributes. Methods that 
identify these prediction points are inspired by prun-
ing in learning from examples. We extend these noise-
tolerant techniques to untutored learning. In addition, 
prediction point preferences shed light on relationships 
between conceptual clustering, case-based, and default 
reasoning. 

1 I n t r o d u c t i o n 

Machine concept learning has tradit ionally been con­
cerned wi th learning from examples (e.g., Quinlan, 
1986), which assumes that observations are identified as 
members of a priori known classes (e.g., diseases); the 
learner must characterize the observations of each class. 
In contrast, conceptual clustering methods (Michalski 
& Stepp, 1983; Fisher, 1987b; Cheeseman, Kelly, Self, 
Stutz, Taylor, k Freeman, 1988) discover, as well as 
characterize meaningful classes. 

In principle, learning should improve an organism's 
performance at some task(s). In learning from examples 
a performance task is apparent: improve prediction of 
class membership (e.g., diagnose the illness of a patient). 
On the otherhand, conceptual clustering is not tradi­
tionally associated wi th a performance task (Michalski 
k Stepp, 1983; Cheeseman, Kelly, Self, Stutz, Taylor, k 
Freeman, 1988). Fisher (1987a,b) proposes that a per­
formance task for conceptual clustering is flexible pre­
dict ion: the prediction of mult iple attributes, not sim­
ply a single class 'at t r ibute ' . For example, a learning 
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from examples system may attempt to optimize cor-
rect prediction of a congressperson's polit ical party (i.e., 
class) from information about their congressional voting 
record (i.e., 'attr ibutes' like their vote on farm aid or 
the MX missile). In contrast, flexible prediction is con­
cerned with simultaneously improving prediction along 
all dimensions (e.g., party, farm aid, and MX missile). 
While the performance task of learning from examples 
has implications for expert system construction (Quin­
lan, 1986; Bareiss k Porter, 1987), flexible prediction 
permeates common-sense reasoning. Despite the impor­
tance of flexible prediction, few systems have been con­
cerned with it (Kolodner, 1983; Lebowitz, 1982), much 
less systematically characterized with respect to i t . 

This paper explores the impact of noise on flexible 
prediction accuracy using Fisher's (1987b) COBWEB 
system. Weaknesses in the face of noise motivate two 
extensions to COBWEB that are inspired by research 
on pruning in learning from examples. Our extensions 
are applicable to other untutored learning systems and 
shed light on relationships between conceptual cluster­
ing, case-based, and default reasoning. 

2 C O B W E B and F lex ib le P r e d i c t i o n 

COBWEB incrementally builds classification trees from 
objects that are described by nominal attr ibute - value 
pairs. For example, consider the tree of Figure 1 over 
voting records of U.S. Senators (Fisher, 1988). Stored at 
each node are the value distributions of each attr ibute 
over the objects classified under the node. Consider node 
N l , which classifies many senators voting 'yes' on budget 
cuts [P(Budget-cuts = yes \N]) = 0.88]. More generally, 
probabilities at a node are conditioned on membership 
in the node's parent, so that the probabilities of Nl are 
(tr ivial ly) conditioned on classification at the root, while 
probabilities at N2 assume classification at N l . Each 
node is a. probabilistic concept (Smith k Medin, 1981); 
the classification tree is a probabilistic concept tree. 

Each tree level contains sibling classes that collec-

Fisher 825 



distributions are updated permanently. This process is 
recursively applied to the subtrees rooted at the selected 
child unt i l a leaf is reached. A leaf is a singleton class 
that represents a previously observed object. While ob­
jects are predominantly incorporated wi th respect to ex­
isting classes, operators also exist for new node (class) 
creation, node combination (merging), and node division 
(spl i t t ing). A more complete description of COBWEB 
can be found in Fisher (1987b). 

Object incorporation is easily adapted to allow ob­
ject classification and flexible prediction: category ut i l ­
i ty guides an object along a path of nodes to a 'best1 

matching leaf. If any value(s) are missing from the new 
observation, they may be predicted from the known val­
ues of the leaf. While C O B W E B trees are reminiscent 
of decision trees, probabilistic concepts are polythetic in 
that mult iple attr ibutes guide classification. If an object 
has missing attr ibute values then category ut i l i ty acts as 
a partial-matching function with summation l imited to 
probabilities of known attr ibutes. 

In our experiments a classification tree is constructed 
from a training set of objects. Each object of a dis­
t inct testing set is repeatedly classified with respect to 
the tree; in each repetit ion a different attr ibute is re­
moved from the object description and must be pre­
dicted. Average prediction accuracy is computed over 
the test set for each at t r ibute. In addit ion, prediction 
accuracy is tested for different size training sets. The 
result is a 'learning curve' for each attr ibute. Figure 2 
shows the learning curve for three of the 37 attributes 
in a domain of soybean case histories (Stepp, 1984). As 
the curves i l lustrate, learning difficulty may vary con-
siderably across attr ibutes; some attributes (e.g., con-
dit ion) are quickly and effectively learned (i.e., simply 
guessing the most frequent condition value would yield 
about 35% accuracy), some are invariant to training 
(e.g., occurrence-of-hail), but most are somewhere in be­
tween (e.g., damage-severity). C O B W E B learns to pre­
dict all attr ibutes (wi th variable success) using a single 
probabilistic concept tree. In contrast, ID3 and other 
learning from examples systems would have to be applied 
separately for each at t r ibute. Fisher (1987a) compares 
the performance of one C O B W E B tree wi th mult iple, 
special-purpose ID3 trees. 

This paper investigates the impact of two environmen­
tal factors on flexible prediction. Foremost among these 
is noise: the incorrect reporting of an attr ibute's value. 
Noise alters at tr ibute correlations that all inductive sys­
tems require for effective learning. For example, if we 
randomly replace attr ibute values in the soybean domain 
wi th a probabil i ty of 25% (i.e., artif icially introduce 25% 
noise) then prediction of severity-of-damage degrades to 
roughly 60%. A second influence on prediction accuracy 
is the extent of t raining, which also effects perceived sta­
tistical relationships between attr ibutes. Our investiga­
tion motivates two strategies for noise-tolerant concep-
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tual clustering. 

3 Chi-Square Preferences 

Quinlan (1986) has extensively investigated the detri­
mental impact of noise on prediction in 1D3. Original 
versions of ID3 decomposed the training set to the point 
where all observations classified under a decision tree 
node were members of the same class. However, Quinlan 
(1986) demonstrates that this strategy tends to 'overfit/ 
the data in noisy domains: classification to a leaf may be 
guided by spurious, unjustified rules that do not benefit 
and actually detract from prediction accuracy. Several 
authors (Quinlan, 1986, in press; Breiman, Friedman, 
Olshen, & Stone, 1984) have explored methods for prun­
ing unjustified rules so as to mitigate the effects of noise. 
A well-known technique is chi-square pruning (Quinlan, 
1986). A decision tree node is decomposed only if it wi l l 
lead to class distributions (at the new children) that are 
significantly different than the class distribution at the 
node to be divided. If the distributions do not differ 
significantly then the subtree is pruned; deeper classifi­
cation wil l not benefit prediction. 

The benefits of pruning in learning from examples are 
well-documented in noisy domains and motivate an ex­
ploration of the possible benefits to flexible prediction. 
C O B W E B was modified to use a chi-square test of statis­
tical significance for individual attributes. In particular, 
the distr ibution of an attr ibute's values at each node, 
N, are compared to the distr ibution of the node's chil­
dren. If the distributions do not differ significantly by 
a user-specified confidence threshold (e.g., 90%) then N 
is taken as the prediction point for the attr ibute. Note 
that in flexible prediction we cannot simply prune a sub­
tree based on the significance test for any one attr ibute, 
since this may not be an appropriate pruning point for 
other attr ibutes. Rather, a strategy of less finality is to 
identify preference points based on the chi-square test 
that are maintained for each attr ibute. At t r ibute pre­
diction requires that object classification proceed to an 
appropriate preference point, but no deeper. The most 

common attr ibute value at the preference point is the 
predicted value. 

Experiments with the chi-square heuristic were run in 
three natural domains: the soybean disease case histo­
ries, a domain of poisonous and edible mushroom de­
scriptions over 23 attributes, and voting records of 435 
U.S. Representatives defined over 17 votes each. Pre­
diction accuracy over a separate test set was checked at 
regular training intervals, for varying noise levels, and 
for 8 different chi-square confidence thresholds. Thresh­
olds included 0% and 100%. In the of case 0% confi­
dence any distribution difference is significant and using 
this threshold results in classification to a leaf, which 
is identical to previous COBWEB implementations. In 
contrast, 100% confidence can never be achieved and dis­
allows classification beyond the root; the prediction is 
the most common value over the entire training set. 

Figure 3 plots the 'averaged' attr ibute learning curves 
of the mushroom domain wi th no noise, but with dif­
ferent confidence thresholds. Low confidence appears 
to be the best strategy early in training since predic­
tive patterns have been exposed, but have not reached 
statistical significance to the degree required by higher 
confidences. Chi-square preferences at high thresholds 
converge on equivalent accuracy (i.e., no significant dif­
ferences in accuracy levels) later in learning (also see 
Fisher & Schlimmer, 1988). 

The graph of Figure 4 examines the effect of noise. 
This graph shows averaged attr ibute accuracy levels af­
ter significant training at noise levels of 0%, 25%, and 
50%). In general, the optimal threshold tends to increase 
with noise. Over all attributes there is a significant pos­
itive correlation between noise level and optimal confi-
dence threshold (Pearson coefficient = 0.375, sample = 
23 x 3 = 69). As noise increases, the deeper the clas-
sification (i.e., beginning at 0% confidence) the greater 
the overfitt ing. In noisy domains, higher chi-square con­
fidences significantly increase accuracy. 

A general trend in the data is that optimal confidence 
thresholds increase wi th noise and training, asymptot-
ing at very high confidence thresholds (e.g., 99%). Early 
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in training and under noiseless conditions classification 
to a leaf is the opt imal strategy. No chi-square con­
fidence threshold wi l l maximize performance in all (or 
most) learning scenarios. Thus, unless we can make a 
priori assumptions about the amount of noise and avail­
able training data, inconsistent performance wil l be a 
weakness of any constanti-threshold method. Section 4 
introduces a simple, but effective means of preference 
identification that makes no assumptions about noise, 
training, or their interaction. 

4 Pas t -Pe r fo rmance Preferences 

A straight-for ward heuristic is that prediction of a miss­
ing at tr ibute should occur at a node that historically has 
facil itated the greatest number of correct predictions. As 
a new training object is recursively classified, each of 
its attr ibute values is compared against the correspond­
ing attr ibute values of the node; if the object's value 
equals that of the node's most common value, then the 
attr ibute's value would have been correctly predicted at 
the node. For each attr ibute and node, a count is main­
tained of the number of times the attr ibute was cor­
rectly predicted at the node (i.e., correct-at-node counts) 
during training. A count is also kept of the number of 
times that the at t r ibute was correctly predicted at one 
of the node's descendents (i.e., correct-at-descendent). 
This latter count is updated as the recursive classifica­
tion procedure unwinds; the correct prediction at a node 
is remembered and used to update the counts of its an­
cestors. When an object is added as a leaf we assume 
that it correctly predicts its own attr ibute values and 
there are no descendants ( that correctly predict them). 
By convention, correct-at-node counts are initialized to 
1 and correct-at-descendent counts are initialized to 0. 

To predict the value of a missing at t r ibute, classifica­
tion proceeds unt i l a node is reached that has historically 
outperformed its descendents in terms of predicting the 
missing at t r ibute. At this point, the most common at­
t r ibute value is forwarded as the correct answer. This 
method is similar in intent to Breiman. Friedman, Ol-

shen, & Stone's (1984) cost-complexity pruning strategy 
and Quinlan's (in press) reduced error pruning. In these 
latter methods, a decision tree is ful ly constructed with a 
training set. The tree is then used to classify a separate 
test set. As each test i tem is classified a determination 
is made as to whether it would be correctly classified at 
each node (by the most common class at the node) on 
the path to a leaf. The tree is pruned at those nodes 
that maximized prediction over the test set. A separate 
test set is required because the original decision tree was 
engineered to fit the training set; cross-validation is nec­
essary. In contrast, past performance is applicable to 
flexible prediction. A separate test set is not required, 
because the tradeoffs required to simultaneously improve 
prediction along many attr ibutes introduces tradeoffs 
similar to those of training/cross-validation in ID3. 

Experiments identical to those wi th chi-square were 
run. Figures 5 and 6 indicate that past-performance 
preferences roughly match the optimal chi-square thresh­
olds averaged over various training and noise lev­
els. Important ly, the opt imal chi-square threshold dif­
fers between training and noise levels. Over each 
training/noise-level combination in the three (mush­
room, soybean, congressional) domains (i.e., a total of 51 
situations), past performance's mean accuracy is greater 
in significantly ( x 2 , a = 0.005) more situations than 
any single chi-square confidence level (i.e., ranging from 
41/51 when compared to confidence level 0.00 to 49/51 
for confidence level 0.50). These averaged results hide 
fluctuations among attr ibutes, but conveniently and ac­
curately reflect past performance's advantage. 

The simplicity and effectiveness of past-performance 
preferences underscores an important principle: overt 
performance is the best (and simplest) 'model ' of the 
complex interactions between noise levels, training, and 
other factors. Past performance makes no a priori 
assumptions about individual at tr ibute characteristics, 
noise levels, or extent of training. Rather, attr ibute pref­
erences are determined by the accumulated correct pre­
diction counts for each node and its descendents. 
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5 Related and Future Research 
Our studies of flexible prediction suggest further research 
in conceptual clustering and related areas. 

5.1 D e f a u l t Reason ing 

Default values are often used to support uncertain rea­
soning, but Brachman (1985) points out that the auto­
mated reasoning literature makes no mention of prescrip­
tive means for assigning default values. Not coinciden-
tally, there has been l i t t le ( i f any) work on default value 
maintenance during learning. Our research provides a 
partial prescription for default identification. 

Kolodner's (1983) CYRUS system offers a probabilis­
tic interpretation of default values: normative values 
are true of a user-specified percentage (e.g., 67%) of 
class members. Normative (default) values at a top-
level node (e.g., 'conservative' congressmen vote 'yes' on 
budget cuts) can be shown otherwise by classification 
to deeper levels (e.g., 'southern democrats' vote 'no' on 
budget cuts). Unfortunately, normative values require a 
user-supplied parameter and only delimit when a value 
is likely to be true; they fail to capture the more sub­
tle notion of when it is best to predict that a value is 
true. Past-performance and chi-square preferences ad­
dress both issues by demarcating locations where the 
most common value should be predicted. Nonetheless, 
important issues remain unaddressed. 

At t r ibute preferences are absolute - based on the pre­
sumption that a certain amount (most) of 'evidence' is 
known. An important goal of future research is a pro­
cess of default selection that is sensitive to the amount 
of available evidence (i.e., observed features). One idea 
is to cease classification when the difference in category 
ut i l i ty scores between the best node and alternatives be­
comes sufficiently small: evidence is not sufficient to dis­
tinguish classification paths. This value would be the 
default value unless (and unt i l ) further evidence could 
be obtained. This classification procedure is more in line 
with tradi t ional efforts in automated and default reason-

ing. Future work wil l seek to flesh out the relationship 
between incremental concept formation and prescriptive 
mechanisms for default identification and exploitation. 

5.2 Case-Based Reason ing 

Case-based reasoning has emerged as a subfield of au­
tomated reasoning and learning. The subfield is distin­
guished by its reliance on cases or object-level descrip­
tions as a source of problem-solving information. The 
emergence of this subfield has the unfortunate effect of 
segregating research efforts that share fundamental spec­
ification and design principles, but differ (perhaps) only 
in implementation. Init ial versions of C O B W E B gener­
ated predictions from best matching leaves (previously 
observed objects). Thus, COBWEB is an efficient im-
plementation of case-based reasoning, since generalized 
concepts help identify appropriate cases in logarithmic 
time versus linear time in the number of cases. 

In addition to efficiency concerns, this paper illustrates 
the ut i l i ty of case-based and abstraction-based inferenc-
ing. Reasoning at the case-level is most productive when 
few training observations are available and noise is not 
present (Ashley & Rissland, 1988), but this strategy 
overfits the data as training and noise increase. Past 
performance has the emergent effect of using cases very 
early in training - a case (observation) is init ial ly added 
to a concept tree and is viewed as correctly predicting 
each of its attr ibute values. When very few observations 
have been seen these individual 'successes' wi l l tend to 
out way the formative classes above. Gradually, solidify­
ing attr ibute correlations at higher-level nodes become 
more reliable classifiers. Past performance's emergent 
strategy can be viewed as a probabilistic and conserva­
tive specific to general search for the optimal prediction 
level of each attr ibute. 

An alternative to abstract ion-based reasoning is to 
retain carefully-selected cases only. Presumably, selec­
tive retention overcomes both problems of efficiency and 
accuracy that might otherwise hamper a nonselective 
case-based reasoner. Selective retention is employed by 
Bareiss k Porter (1987) and Aha k Kibler (1988) in their 
respective case-based learning from examples systems. 
Nonetheless, appropriate retention is difficult without 
the global guidance that abstracted knowledge can pro­
vide: Aha k Kibler report difficulties in dealing with 
irrelevant attributes and Bareiss k Porter use implicit 
sources of abstracted knowledge. Finally, while strict 
adherence to a case-based strategy is feasible in a learn­
ing from examples context, it is difficult to imagine an 
efficient implementation for flexible prediction, in which 
many prediction dimensions must be simultaneously co­
ordinated. 
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6 Concluding Remarks 

Experiments wi th C O B W E B uncovered data overfitt ing 
that was mit igated by adapting pruning techniques for 
flexible prediction. However, the use of a constant-
threshold method like chi-square often leads to non-
optimal performance; we cannot predict a 'priori the 
amount of noise, training, or their interaction. 

Limitat ions of chi-square preferences appear to be re­
duced by past performance: classification ceases at a 
point that has historically outperformed its descendents. 
Thus, we do not model (or impose a model on) noise, 
training, and other statistical interdependences beyond 
that which C O B W E B is constructing through clustering. 
Rather, whatever these interdependencies, their effect is 
evident through prediction performance; nothing beyond 
past performance is used to guide classification. This 
principle is also impl ici t in COBWEB's use of category 
ut i l i ty, a measure of the expectation of correct predic­
tion afforded by classes. Class quality is tied directly to 
the task that wi l l benefit from clustering. The explicit 
consideration of a performance task that improves wi th 
learning distinguishes C O B W E B from almost all other 
clustering work and frees the system from user-supplied 
parameters or distr ibutional assumptions of any kind. 
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