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Abst rac t 
We apply constraint posting to the problem of 
reasoning about function from structure. Con­
straint posting is a technique used by some 
planners to coordinate decisions. At each de­
cision point constraints are posted that later 
decisions must obey. We use constraint post­
ing to help verify that a circuit modelled at 
the analog level will exhibit its intended digital 
behavior. A circuit's analog behavior depends 
not only on the circuit's structure, but also on 
how the circuit is used. We post constraints 
to ensure that a circuit will only be used com­
mensurate with its intended function. This re­
search shows that while there is no "function 
from structure," there is function from struc­
ture and constraint posting. We have imple­
mented these ideas in program that rapidly ver­
ifies large circuits. 

1 In t roduc t ion 
Designers and planners deal with complexity by using 
hierarchical top down abstract planning [Minsky, 1963]. 
At each level of the planning/design hierarchy, a prob­
lem is solved by assuming an appropriate set of abstract 
high level operators and operands. The existence of the 
abstract operators and operands is proposed as subprob-
lems one level down in the planning/design hierarchy, 
which are then solved to yield subplans. This process 
ends when the original problem is solved solely in terms 
of primitive operands and operators. The achilles heel 
of this method is subproblem interaction: although the 
abstract subplans may compose at the abstract level to 
solve the initial problem, the actual primitives used to 
construct the abstract subplans may interfere and cause 
the plan to fail. 

Digital circuit designers use abstract planning to de­
sign large chips. They decompose a system into func­
tional units (datapaths and control units), functional 
units into registers and logic, and registers and logic into 
transistors. The real primitives of design, namely resis­
tors, capacitors, and analog signals, are abstracted away 

*This research was sponsored by Darpa contracts N00014-
86-K-180 and N00014-85-K-0124. The author was a Fannie 
and John Fellow when this research was conducted. 

at nearly every step. Simply put, designers treat inher­
ently non-digital components as digital. Very often a 
circuit is logically correct but rife with electrical prob­
lems. 

We use Constraint posting, a method first employed 
in Molg^n [Stefik, 198l] to avoid subproblem interation, 
to verify that a circuit will exhibit its intended abstract 
(digital) behavior. The key idea is that subplans com­
municate via the physical entities of the plan. In Molgen 
these entities are bacteria, enzymes, vectors, and antibi­
otics. In circuit design the entities are analog signals: 
time varying continuously valued voltages and currents. 
Subplan interference manifests itself as the passing of 
inappropriate physical entities from subplan to subplan. 
This is because the primitive operators and operands 
that constitute a subplan prevent the subplan from work­
ing on all entities that it might be passed. Subproblem 
interference is avoided by having each decision post con­
straints on the inputs to the subplan the decision helps 
create, and then forcing subplans that create the entities 
passed to the subplan to obey the constraints. Example 
constraints include requiring that a given bacteria must 
be immune to a specific antibiotic, or that an analog 
signal not glitch. When the constraints are met each 
subplan (subcircuit) will exhibit its intended abstract 
(digital) behavior when composed with other subplans 
(subcircuits). 

Our major result is that not only can constraint post­
ing be used to verify that electrically modelled circuits 
implement their intended digital behavior, but that, by 
inventing the proper formalisms, all the electrical level 
constraints needed to verify a large class of circuits can 
be automatically generated. This is a very strong re­
sult. Our theories and methods are implemented in a 
program that automatically and rapidly verifies the cor­
rectness of digital synchronous rail-to-rail circuits that 
don't employ unclocked feedback or use bootstrap de­
vices. All [Mead/Conway, 1980] design techniques, and 
their derivatives, yield circuits that can be verified by 
our system. 

Our system derives function from structure. Previ­
ous work on reasoning about digital behavior, and on 
reasoning about the relationship between structure and 
function [Davis, 1982, Barrow, 1985, de Kleer, 1986, 
Nguyen, 1989], was concerned either with proving that 
some digitally modelled device exhibited its intended 
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digi ta l behavior (verif ication), or w i th showing why it 
didn' t exhibit its intended digi tal behavior (diagnosis). 
The problems they faced are mostly combinator ia l . This 
research addresses the issues of reasoning about the be­
havior of devices across mult ip le levels of representa­
t ion: relating different representations, and understand­
ing how behavior at one representational level can be 
said to implement behavior at some higher representa­
t ional level. 

Our verifier, called Silica Pithecus, hierarchically veri­
fies circuits. It is given a hierarchically described circuit 
and a hierarchically described digi tal specification ex­
pressed as a scheme program. It is also given t im ing 
informat ion expressed as logical constraints. To a ver­
ify leaf cell it analyses the cell's structure to both post 
constraints and to generate the cell's digi tal behavior. 
It then compares the generated digi tal behavior against 
the specification. To a verify a module composed of ver­
ified leaf cells and other verified modules, it f irst checks 
the constraints of the module's components. It reports 
violated constraints as design errors and propagates con­
straints that cannot yet be checked. Propagated con­
straints are checked when the module is a component in 
a larger circuit. Silica Pithecus then derives the mod­
ule's digi tal behavior by composing the dig i ta l behaviors 
of its components, and compares the derived behavior 
against the specified behavior. 

This paper has 6 more sections. The next section gives 
an example circuit and shows the constraints that are 
posted for i t . The th i rd section gives a formal theory 
for relating structure, constraints, and digi ta l behavior. 
Section 4 shows how constraints are generated by rea­
soning about the structure of a combinat ional device. 
Constraint generation for sequential circuits is discussed 
in Section 5. The sixth section discusses hierarchical ver­
i f ication. The last section summarizes and draws conclu­
sions. 

2 Example Circuit and Posted 
Constraints 

For example, consider an Invert ing Latch (Figure 1). 
This device has two inputs and one b i t of state, stored 
on its S node. The output and next state both depend 
on the state of Latch. If Latch is high, then Ou tpu t is 
not ( In) and S is I n , otherwise Output is not(S) and S 
is unaffected. Note that this is a description of its in­

tended digi tal behavior, and does not refer to signals or 
voltages. 

Dur ing verif ication the fol lowing four constraints are 
posted: 

The first constraint requires that whenever Latch is true, 
signal flow must be from In to S. If signal flow is not 
f rom In to S, say, because In is a precharged bus and 
S has more capacitance than In , then the circuit wi l l 
not have its intended digi tal behavior. The second con­
straint requires that if Latch falls dur ing a computat ion 1 

then it can only do so before In changes state. That is, 
In must either be stable on computations when Latch 
falls, or, if In is unstable when Latch falls, then In must 
change after Latch falls. The th i rd constraint requires 
that once Latch is asserted, it must remain asserted. The 
four th constraint requires that Latch not suffer a thresh­
old drop. Latch is prevented from suffering a threshold 
drop so that S does not suffer two of them. If any of these 
constraints are violated, the circuit wi l l not exhibit its 
intended digi tal behavior. 

3 Relat ing Mu l t ip le Representations of 
Behavior using Constraints 

Circuits have two different levels of behavioral descrip­
t ion: the analog level (also called the signal level), and 
the digi tal level. The digi tal level, which is where the 
designer designs, is an abstraction of the signal level. 
This section gives a formal method for relat ing the two 
behaviors. This relationship yields the basis for auto­
matic constraint posting. The next section shows how 
constraints are posted. 

We first introduce notat ion. Let Design be some struc­
tura l description of a device. Its behavior in some do­
main D is wr i t ten (Design). Design's inputs are 
are wr i t ten where Its out­
puts are the result of applying its behavior to i ts inputs: 

(Design) 
Our two domains are sig and dig. We wi l l often leave the 
domain descriptor off the inputs and outputs and just 
wr i te and When domain descriptors are elided the 
sig domain is assumed. 

The formal relationship between the signal behavior, 
(Design), and the digi tal behavior, (Design), 

depends on an abstraction funct ion ABS that maps sig­
nals into digi tal values. ABS maps signals that don' t 
map into digi ta l values in to the error element For­
mally, ABS : W e call any signal for 
which ABS returns invalid, other signals are valid. 
The fol lowing formula gives the formal relationship be­
tween (Design) and (Design). 

A computation starts when some clock changes state. A 
computation ends when the circuit reaches state. 
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or they are outputs from other designs, which have their 
own constraints ensuring their outputs are valid. Only 
inputs f rom ofT-chip must be assumed to be val id, al l 
other inputs are valid because they are outputs of veri­
f ied subcircuits. 

Val id-output constraints are automatical ly generated. 
Given a representation of ABS (Design) that 
makes error conditions explicit, constraints are gener­
ated which ensure the conditions causing the error con­
dit ions never arise. For example, in the signal domain, 
this how threshold constraints are generated. When an 
input signal suffering a threshold drop causes an invalid 
output signal the signal wi l l be constrained from suf­
fering a threshold drop. The constraint guarantees the 
output wi l l not be inval id (at least from this part icular 
cause). 

Logical constraints are applied to a circuit 's inputs. 
They specialize circuit behavior and must be provided by 
the designer. Logical constraints consist mostly of t iming 
informat ion. For example, that two input signals are 
mutual ly exclusive, or that a given input signal depends 
on some other input signal. Logical constraints must be 
employed when deriving a design's digi tal behavior f rom 
its structure. Otherwise, behaviors which don't arise wi l l 
be predicted. 

4 Automat ical ly Generating 
Constraints for Combinational 
Circuits 

This section outlines how structure is analysed to yield 
constraints. The powerful idea is that what must be 
derived from a design's structure is not its behavior, but 
the abstraction of that behavior. That is, the impor tant 
i tem is not (Design), but ABS( (Design) 
As a result, the ful l actual behavior of Design need not 
be generated. The focus is generating constraints that 
ensure that whatever the signal behavior is, it wi l l be 
abstractable. 

Constraint post ing occurs in two steps. In the first 
step, a representation of the signal level behavior of the 
circuit is created. The representation need not be com­
pletely detailed. It need only have enough detail so that 
error conditions can be found. The representation de­
pends on the abstraction funct ion, it does not contain 
detail that ABS ignores. 

In the second step the abstraction funct ion is applied 
to the representation to find error conditions which are 
prevented by the posting of constraints. 

As an example, consider a minimal ly sized inverter. 

We wish to find the constraints that ensure this device 

Weise 883 



exhibits the digi ta l behavior not The inverter 
takes one input signal and yields one output signal. 

The abstract ion funct ion we use maps a signal in to 
a digi tal value. If the voltage at the end of the signal 
is less than 1.5 volts, it returns 0. If the voltage at 
the end is more than 3.5 volts it returns 1. Otherwise 
it returns an error indicator. This abstraction funct ion 
is good enough for combinat ional circuits, but fails for 
sequential circuits. Such circuits are discussed in the 
next section. 

The procedure which generates (Design) f rom 
Design knows that ABS only looks at a signal's final 
value. Therefore it doesn't produce informat ion about 
the intermediate voltages of the signal. The procedure 
yields the fol lowing the as representation of signal be­
havior. 

as the signal behavior of the inverter. This is read as 
follows. The Inverter takes a signal in and returns a 
signal, call it out. For any t ime not equal to the 
t ime when the circuit reaches steady state, out returns 
X, meaning an unknown voltage. When time is out 
returns a voltage based upon the circuit model and the 
input voltage. 

Apply ing the abstract ion funct ion to the above repre­
sentation and then simpl i fy ing yields 
ABS(. ( Inverter)) = 

in . 

In is an input and therefore guaranteed to be val id. 
Therefore the predicate of the th i rd clause wi l l never be 
true and the class can be deleted. The second clause 
shows an error condit ion which arises when the final 
value of the input signal is between 3.5 and 5 volts. This 
condition indicates a threshold drop. This error condi­
t ion is prevented by generating the constraint that in 
cannot suffer a threshold drop. 

Deleting these two clauses yields 
ABS( ( Inverter)) = 

plus the constraint that in cannot suffer a threshold 
drop. 

After generating the constraint and gett ing to this 
point , further transformations and rules are used to 
prove that the circuit exhibits the digi tal behavior 

These transformations are outside the 
scope of this paper. 
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5 Generating Constraints for 
Sequential Circuits 

We verify circuits w i th state the same way we verify com­
binational circuits. We apply an appropriate abstraction 
funct ion to the outputs of the circuit and generate con­
straints to eliminate wherever it appears. Signals at 
nodes storing state are also considered to be outputs of 
the circuit : they must also abstract to digi ta l values. 
The abstraction used for combinat ional circuits, which 
looks only at the final values of signals, projects an in­
adequate digital behavior for circuits w i th state. Unlike 
combinational circuits, whose outputs can be predicted 
solely from the final values of their input signals, the out­
puts of circuits wi th state depends on the circuit 's entire 
input waveforms and internal waveforms. We need new 
constraint types to control the types of waveforms pre­
sented to, and generated by, a c i rcui t . 

We want the abstraction funct ion to be able to predict 
a circuit 's outputs and next state solely f rom the circuit 's 
in i t ia l state and the final values of its input signals. This 
requirement abstracts away the detailed behavior of each 
signal. To meet this requirement we prevent charging or 
discharging of capacitors that can not be predicted from 
the circuit 's in i t ia l state and the f inal values of its input 
signals. We say that the charge at a node (capacitor) has 
been corrupted when the capacitor unpredictably charges 
or discharges. A signal at such a node is also called 
corrupted. 

To prevent the corrupt ion of stored charge the in­
ternal events of a computat ion are ordered by us­
ing two timing constraints: s t a b l e - a f t e r (Si,S2) and 
f a l l s - f i r s t ( S l , S 2 ) . Signal S2 is stable after signal 
SI when S2's voltage does not change after SI is as­
serted. The constraint c o n t r o l ( S l ) is shorthand for 
s t a b l e - a f t e r ( S l , S l ) . Signal SI falls before signal S2 
if Si falls before S2's voltage changes. These are the 
only constraints needed to ensure stored charge is not 
corrupted. 

The signals of nodes which do not store state, do not 
gate transistors, and which are not outputs of circuits 
are not abstracted. Such nodes, called connection nodes, 
serve only as vias for in format ion flow. Because con­
nection nodes are never abstracted, the signals at those 
nodes are irrelevant. Nodes that store state are found 
by a simple static recursive tree walk start ing f rom a 
circuit 's outputs [Weise, 1986]. 

5.1 T h e N e w A b s t r a c t i o n F u n c t i o n 

We introduce new nomenclature and concepts before 
presenting the abstraction funct ion. Signals that come 
f rom off chip {e.g., V d d and G N D ) are driven. Signals 
that come from capacitors are undnven. A node is driven 
at some t ime t if it is connected at t ime through zero 
more conducting transistors to a driven signal, otherwise 
it is 

The final voltage of a signal must be predictable f rom 
the in i t ia l state of the circuit and the f inal values of the 
circuit 's inputs. There are two cases to consider: when a 
signal is dr iven at steady state, and when it is undriven 
at steady state. When it is dr iven at steady state its 



f inal voltage is computed using the methods as for com­
binat ional circuits. When it is undriven at steady state 
we require that at steady state it must be connected to 
any nodes it was connected to dur ing the computat ion. 
When this requirement is met, the charge on the node 
can be computed f rom its in i t ia l charge and the in i t ia l 
charges of nodes it is connected to when the computat ion 
ends. 

We augment signals to include strength. Where signals 
used to map t ime into a voltage, they now map time into 
a voltage and a strength. We define the strength of a 
signal at node N at t ime t as the sum of the capacitances 
of the nodes N is connected to at t ime t. Off-chip inputs 
are considered to have inf inite capacitance. The strength 
of a signal at a node indicates what happens to the node 
over t ime. Strength that increases over t ime indicates 
that the node is sharing charge w i th increasing numbers 
of nodes. Strength that decreases over t ime indicates 
that the node is sharing charge wi th fewer nodes over 
t ime. 

One seemingly obvious rule to ensure that a circuit 's 
final state can be predicted f rom its in i t ia l state and 
the final state of its inputs is to require that a signal's 
strength cannot decrease after increasing. This rule is 
not strict enough. It won' t catch the case where an inf i­
nite strength signal changes its voltage wi thout changing 
its strength. 

A simple change on the above rule does the tr ick. Let 
STB (Signal To Boolean) be the abstraction funct ion 
used previously for combinat ional circuits. The new ab­
straction funct ion is: " I f signal S's strength decreases 
after its voltage changes then else STB(S).2 This new 
abstraction funct ion maps any signal that represents cor­
rupted charge into We now discuss t iming constraints 
for preventing non-d ig i ta l signals. 

5.2 G e n e r a t i n g T i m i n g C o n s t r a i n t s 

The generation of t im ing constraints is a new step that 
does not material ly affect how signal behavior is gener­
ated or represented. A l though Silica Pithecus produces 
t iming constraints directly f rom the signal behavior rep­
resentation, for expository reasons we present the gen­
eration of t im ing constraints in terms of net transition 
graphs, which are a pictor ial representation of signal be­
havior. This section first describes net t ransi t ion graphs, 
then gives the rules for generating t im ing constraints 
f rom net transit ion graphs. 

A net transit ion graph is bui l t for every node that 
might be undriven at steady state. The graph has a 
vertex for every clause of the node's signal behavior rep­
resentation, i.e., for each net the node might be a mem­
ber of dur ing a computat ion. The vertex includes the 
strength of the net and the condit ion when the net oc­
curs. The informat ion in the net t ransi t ion graph that 
isn't in the net behavior is the informat ion in its edges. 
If net Nl can become net N2 when transistor changes 

Figure 3: The net transit ion graph of the Invert ing 
Latch's S node. The S node can be member of two nets, 
one consisting of just the S node, wr i t ten [S], and one 
consisting of the In and S nodes, wr i t ten [S, In] . 

2 The real abstraction function is slightly more compli­
cated than this, as the "drivenness" of a signal is preserved 
by the abstraction function. The real abstraction function 
maps signals into seven values: driven 1, driven floating 1, 
floating driven floating and 

state then there is a directed edge, labeled by the tran­
sit ion, from the vertex for Nl to the vertex for N2. 
An edge, or t ransi t ion, is called downwards when the 
strength of Nl is greater than the strength of N2. Up­
wards and sideways edges are defined similarly. 

For example, consider the net transit ion graph of the 
Invert ing Latch's S node (Figure 3). This has two nodes, 
one for the n e t w h i c h occurs when Latch is f a l s e , 
and one for net , which occurs when Latch is t r u e . 
There are two edges, an upwards one for Latch going 
from f a l s e to t r u e , and a downwards one for it going 
from t r u e to f a l s e . 

Silica Pithecus generates t iming constraints direct ly 
from a node's net transit ion graph. The three rules listed 
below are applied at each vertex. These rules ensure 
strength doesn't decrease after voltage changes. The 
first two rules are enforced by s t a b l e - a f t e r constraints. 
The th i rd rule is enforced by f a l l s - f i r s t constraints. 

1. A downward transi t ion cannot follow an upward 
transi t ion. 

2. A downward transi t ion cannot follow a sidewards 
transit ion between vertices of inf ini te strength. 

3. A downward transi t ion f rom net N cannot occur af­
ter an i npu t /ou tpu t node in net N changes. 

For example, consider again the net t ransi t ion graph of 
the Invert ing Latch's S node (Figure 3). No rules trigger 
for the lower vertex, but two rules, 1 and 3, trigger for 
the upper vertex. These two rules create the fol lowing 
constraints. 

6 H ie ra rch ica l Ve r i f i ca t i on 

Hierarchical verif ication first processes the constraints 
of each subcircuit. If no constraint is violated, then the 
digital behavior of the whole is derived from the digi tal 
behaviors of the subcircuits. 

Our constraint processing is simil iar in Spirit to Mo l -
gen's, but there are two major differences. First, because 
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we are performing analysis and not synthesis, the satis­
faction of a constraint does not cause new processing 
to take place. Second, because our constraints have very 
specifie meanings, our constraint processing is principled 
rather than ad hoc, as it is in Molgen. 

There are three possible outcomes from processing 
constraints: a constraint can be accepted, rejected, or 
propagated. A constraint is accepted when it is shown to 
hold. A constraint is rejected when is is proven not to 
hold. Rejected constraints represent design errors and 
are reported to the designer. When there is not enough 
informat ion to show that a constraint either holds or 
doesn't hold, the constraint is propagated up the struc­
tura l hierarchy to be reprocessed when the circuit itself 
is used as a subcircuit . As in Molgen, constraints can 
change form when they are propagated. For example, 
when a component of circuit C requires that X falls be­
fore Y, this may only be met if Q falls before X in circuit 
C. This new condit ion is the constraint thet is propa­
gated. 

There are dedicated handlers for each type of con­
straint. The informat ion needed to process a constraint 
is constraint dependent. Logical constraints are handled 
by a simple tautology checker. Threshold constraints are 
handled by a marking scheme. T im ing constraints are 
handled by proving mutua l exclusion among signals. A l l 
the constraint handlers are conservative. When they are 
unable to prove a constraint holds, they report it doesn't 
hold. 

As a concrete example of hierarchical verif ication, con­
sider a Shift Cell bui l t out of two juxtaposed Invert ing 
Latches. 

The Shift-Cell takes two inputs and its behavior is 
equivalent to two invert ing latches, one feeding the other. 
There is one logical constraint for the shift cell which 
declares that Ll and L2 are mutual ly exclusive. 

When given the above in format ion, Silica Pithecus de­
clares the Shift Cell to be correct and propagates the 
fol lowing six constraints: 

These constraints result f rom propagating the six un­
resolved constraints f rom the two Invert ing Latches to 
the Shift Cell . In to ta l , eight constraints were generated 
for the Shift Cell, but only two were satisfied: 

7 Conclusions 
We have successfully applied constraint posting to the 
problem of VLSI circuit verif ication. Silica Pithecus is 
implemented on Symbolics 3600's. It verifies complex 
circuits containing about 1000 transistor in one minute. 
Less complex circuits wi th equivalent numbers of t ran­
sistors are verified much more rapidly. Not all the con­
straint checkers are ful ly implemented, so these t imings 
are slightly better than they should be were all checkers 
implemented. 

Our methods relied on a formal method for relat ing 
a circuits signal and digi tal behaviors. This method al­
lowed us to automatical ly post constraints for a large 
class of circuits. 

These ideas can also be used in a circuit synthesizer. 
I envision a circuit synthesizer which operates along the 
same lines as Molgen. It makes decisions and posts con­
straints to constrain other decisions. 

The automatic generation of constraints can be used 
in any domain where the relationship between behavioral 
representations can be formalized. 
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