
Constraint Posting for Verifying V L S I Circuits

Daniel Weise*
Computer Systems Laboratory

CIS 207
Stanford University

Stanford, California 94305

Abst rac t
We apply constraint posting to the problem of
reasoning about function from structure. Con­
straint posting is a technique used by some
planners to coordinate decisions. At each de­
cision point constraints are posted that later
decisions must obey. We use constraint post­
ing to help verify that a circuit modelled at
the analog level will exhibit its intended digital
behavior. A circuit's analog behavior depends
not only on the circuit's structure, but also on
how the circuit is used. We post constraints
to ensure that a circuit will only be used com­
mensurate with its intended function. This re­
search shows that while there is no "function
from structure," there is function from struc­
ture and constraint posting. We have imple­
mented these ideas in program that rapidly ver­
ifies large circuits.

1 In t roduc t ion
Designers and planners deal with complexity by using
hierarchical top down abstract planning [Minsky, 1963].
At each level of the planning/design hierarchy, a prob­
lem is solved by assuming an appropriate set of abstract
high level operators and operands. The existence of the
abstract operators and operands is proposed as subprob-
lems one level down in the planning/design hierarchy,
which are then solved to yield subplans. This process
ends when the original problem is solved solely in terms
of primitive operands and operators. The achilles heel
of this method is subproblem interaction: although the
abstract subplans may compose at the abstract level to
solve the initial problem, the actual primitives used to
construct the abstract subplans may interfere and cause
the plan to fail.

Digital circuit designers use abstract planning to de­
sign large chips. They decompose a system into func­
tional units (datapaths and control units), functional
units into registers and logic, and registers and logic into
transistors. The real primitives of design, namely resis­
tors, capacitors, and analog signals, are abstracted away

*This research was sponsored by Darpa contracts N00014-
86-K-180 and N00014-85-K-0124. The author was a Fannie
and John Fellow when this research was conducted.

at nearly every step. Simply put, designers treat inher­
ently non-digital components as digital. Very often a
circuit is logically correct but rife with electrical prob­
lems.

We use Constraint posting, a method first employed
in Molg^n [Stefik, 198l] to avoid subproblem interation,
to verify that a circuit will exhibit its intended abstract
(digital) behavior. The key idea is that subplans com­
municate via the physical entities of the plan. In Molgen
these entities are bacteria, enzymes, vectors, and antibi­
otics. In circuit design the entities are analog signals:
time varying continuously valued voltages and currents.
Subplan interference manifests itself as the passing of
inappropriate physical entities from subplan to subplan.
This is because the primitive operators and operands
that constitute a subplan prevent the subplan from work­
ing on all entities that it might be passed. Subproblem
interference is avoided by having each decision post con­
straints on the inputs to the subplan the decision helps
create, and then forcing subplans that create the entities
passed to the subplan to obey the constraints. Example
constraints include requiring that a given bacteria must
be immune to a specific antibiotic, or that an analog
signal not glitch. When the constraints are met each
subplan (subcircuit) will exhibit its intended abstract
(digital) behavior when composed with other subplans
(subcircuits).

Our major result is that not only can constraint post­
ing be used to verify that electrically modelled circuits
implement their intended digital behavior, but that, by
inventing the proper formalisms, all the electrical level
constraints needed to verify a large class of circuits can
be automatically generated. This is a very strong re­
sult. Our theories and methods are implemented in a
program that automatically and rapidly verifies the cor­
rectness of digital synchronous rail-to-rail circuits that
don't employ unclocked feedback or use bootstrap de­
vices. All [Mead/Conway, 1980] design techniques, and
their derivatives, yield circuits that can be verified by
our system.

Our system derives function from structure. Previ­
ous work on reasoning about digital behavior, and on
reasoning about the relationship between structure and
function [Davis, 1982, Barrow, 1985, de Kleer, 1986,
Nguyen, 1989], was concerned either with proving that
some digitally modelled device exhibited its intended

Weise 881

digi ta l behavior (verif ication), or w i th showing why it
didn' t exhibit its intended digi tal behavior (diagnosis).
The problems they faced are mostly combinator ia l . This
research addresses the issues of reasoning about the be­
havior of devices across mult ip le levels of representa­
t ion: relating different representations, and understand­
ing how behavior at one representational level can be
said to implement behavior at some higher representa­
t ional level.

Our verifier, called Silica Pithecus, hierarchically veri­
fies circuits. It is given a hierarchically described circuit
and a hierarchically described digi tal specification ex­
pressed as a scheme program. It is also given t im ing
informat ion expressed as logical constraints. To a ver­
ify leaf cell it analyses the cell's structure to both post
constraints and to generate the cell's digi tal behavior.
It then compares the generated digi tal behavior against
the specification. To a verify a module composed of ver­
ified leaf cells and other verified modules, it f irst checks
the constraints of the module's components. It reports
violated constraints as design errors and propagates con­
straints that cannot yet be checked. Propagated con­
straints are checked when the module is a component in
a larger circuit. Silica Pithecus then derives the mod­
ule's digi tal behavior by composing the dig i ta l behaviors
of its components, and compares the derived behavior
against the specified behavior.

This paper has 6 more sections. The next section gives
an example circuit and shows the constraints that are
posted for i t . The th i rd section gives a formal theory
for relating structure, constraints, and digi ta l behavior.
Section 4 shows how constraints are generated by rea­
soning about the structure of a combinat ional device.
Constraint generation for sequential circuits is discussed
in Section 5. The sixth section discusses hierarchical ver­
i f ication. The last section summarizes and draws conclu­
sions.

2 Example Circuit and Posted
Constraints

For example, consider an Invert ing Latch (Figure 1).
This device has two inputs and one b i t of state, stored
on its S node. The output and next state both depend
on the state of Latch. If Latch is high, then Ou tpu t is
not (In) and S is I n , otherwise Output is not(S) and S
is unaffected. Note that this is a description of its in­

tended digi tal behavior, and does not refer to signals or
voltages.

Dur ing verif ication the fol lowing four constraints are
posted:

The first constraint requires that whenever Latch is true,
signal flow must be from In to S. If signal flow is not
f rom In to S, say, because In is a precharged bus and
S has more capacitance than In , then the circuit wi l l
not have its intended digi tal behavior. The second con­
straint requires that if Latch falls dur ing a computat ion 1

then it can only do so before In changes state. That is,
In must either be stable on computations when Latch
falls, or, if In is unstable when Latch falls, then In must
change after Latch falls. The th i rd constraint requires
that once Latch is asserted, it must remain asserted. The
four th constraint requires that Latch not suffer a thresh­
old drop. Latch is prevented from suffering a threshold
drop so that S does not suffer two of them. If any of these
constraints are violated, the circuit wi l l not exhibit its
intended digi tal behavior.

3 Relat ing Mu l t ip le Representations of
Behavior using Constraints

Circuits have two different levels of behavioral descrip­
t ion: the analog level (also called the signal level), and
the digi tal level. The digi tal level, which is where the
designer designs, is an abstraction of the signal level.
This section gives a formal method for relat ing the two
behaviors. This relationship yields the basis for auto­
matic constraint posting. The next section shows how
constraints are posted.

We first introduce notat ion. Let Design be some struc­
tura l description of a device. Its behavior in some do­
main D is wr i t ten (Design). Design's inputs are
are wr i t ten where Its out­
puts are the result of applying its behavior to i ts inputs:

(Design)
Our two domains are sig and dig. We wi l l often leave the
domain descriptor off the inputs and outputs and just
wr i te and When domain descriptors are elided the
sig domain is assumed.

The formal relationship between the signal behavior,
(Design), and the digi tal behavior, (Design),

depends on an abstraction funct ion ABS that maps sig­
nals into digi tal values. ABS maps signals that don' t
map into digi ta l values in to the error element For­
mally, ABS : W e call any signal for
which ABS returns invalid, other signals are valid.
The fol lowing formula gives the formal relationship be­
tween (Design) and (Design).

A computation starts when some clock changes state. A
computation ends when the circuit reaches state.

882 Planning, Scheduling, Reasoning About Actions

or they are outputs from other designs, which have their
own constraints ensuring their outputs are valid. Only
inputs f rom ofT-chip must be assumed to be val id, al l
other inputs are valid because they are outputs of veri­
f ied subcircuits.

Val id-output constraints are automatical ly generated.
Given a representation of ABS (Design) that
makes error conditions explicit, constraints are gener­
ated which ensure the conditions causing the error con­
dit ions never arise. For example, in the signal domain,
this how threshold constraints are generated. When an
input signal suffering a threshold drop causes an invalid
output signal the signal wi l l be constrained from suf­
fering a threshold drop. The constraint guarantees the
output wi l l not be inval id (at least from this part icular
cause).

Logical constraints are applied to a circuit 's inputs.
They specialize circuit behavior and must be provided by
the designer. Logical constraints consist mostly of t iming
informat ion. For example, that two input signals are
mutual ly exclusive, or that a given input signal depends
on some other input signal. Logical constraints must be
employed when deriving a design's digi tal behavior f rom
its structure. Otherwise, behaviors which don't arise wi l l
be predicted.

4 Automat ical ly Generating
Constraints for Combinational
Circuits

This section outlines how structure is analysed to yield
constraints. The powerful idea is that what must be
derived from a design's structure is not its behavior, but
the abstraction of that behavior. That is, the impor tant
i tem is not (Design), but ABS((Design)
As a result, the ful l actual behavior of Design need not
be generated. The focus is generating constraints that
ensure that whatever the signal behavior is, it wi l l be
abstractable.

Constraint post ing occurs in two steps. In the first
step, a representation of the signal level behavior of the
circuit is created. The representation need not be com­
pletely detailed. It need only have enough detail so that
error conditions can be found. The representation de­
pends on the abstraction funct ion, it does not contain
detail that ABS ignores.

In the second step the abstraction funct ion is applied
to the representation to find error conditions which are
prevented by the posting of constraints.

As an example, consider a minimal ly sized inverter.

We wish to find the constraints that ensure this device

Weise 883

exhibits the digi ta l behavior not The inverter
takes one input signal and yields one output signal.

The abstract ion funct ion we use maps a signal in to
a digi tal value. If the voltage at the end of the signal
is less than 1.5 volts, it returns 0. If the voltage at
the end is more than 3.5 volts it returns 1. Otherwise
it returns an error indicator. This abstraction funct ion
is good enough for combinat ional circuits, but fails for
sequential circuits. Such circuits are discussed in the
next section.

The procedure which generates (Design) f rom
Design knows that ABS only looks at a signal's final
value. Therefore it doesn't produce informat ion about
the intermediate voltages of the signal. The procedure
yields the fol lowing the as representation of signal be­
havior.

as the signal behavior of the inverter. This is read as
follows. The Inverter takes a signal in and returns a
signal, call it out. For any t ime not equal to the
t ime when the circuit reaches steady state, out returns
X, meaning an unknown voltage. When time is out
returns a voltage based upon the circuit model and the
input voltage.

Apply ing the abstract ion funct ion to the above repre­
sentation and then simpl i fy ing yields
ABS(. (Inverter)) =

in .

In is an input and therefore guaranteed to be val id.
Therefore the predicate of the th i rd clause wi l l never be
true and the class can be deleted. The second clause
shows an error condit ion which arises when the final
value of the input signal is between 3.5 and 5 volts. This
condition indicates a threshold drop. This error condi­
t ion is prevented by generating the constraint that in
cannot suffer a threshold drop.

Deleting these two clauses yields
ABS((Inverter)) =

plus the constraint that in cannot suffer a threshold
drop.

After generating the constraint and gett ing to this
point , further transformations and rules are used to
prove that the circuit exhibits the digi tal behavior

These transformations are outside the
scope of this paper.

884 Planning, Scheduling, Reasoning About Actions

5 Generating Constraints for
Sequential Circuits

We verify circuits w i th state the same way we verify com­
binational circuits. We apply an appropriate abstraction
funct ion to the outputs of the circuit and generate con­
straints to eliminate wherever it appears. Signals at
nodes storing state are also considered to be outputs of
the circuit : they must also abstract to digi ta l values.
The abstraction used for combinat ional circuits, which
looks only at the final values of signals, projects an in­
adequate digital behavior for circuits w i th state. Unlike
combinational circuits, whose outputs can be predicted
solely from the final values of their input signals, the out­
puts of circuits wi th state depends on the circuit 's entire
input waveforms and internal waveforms. We need new
constraint types to control the types of waveforms pre­
sented to, and generated by, a c i rcui t .

We want the abstraction funct ion to be able to predict
a circuit 's outputs and next state solely f rom the circuit 's
in i t ia l state and the final values of its input signals. This
requirement abstracts away the detailed behavior of each
signal. To meet this requirement we prevent charging or
discharging of capacitors that can not be predicted from
the circuit 's in i t ia l state and the f inal values of its input
signals. We say that the charge at a node (capacitor) has
been corrupted when the capacitor unpredictably charges
or discharges. A signal at such a node is also called
corrupted.

To prevent the corrupt ion of stored charge the in­
ternal events of a computat ion are ordered by us­
ing two timing constraints: s t a b l e - a f t e r (Si,S2) and
f a l l s - f i r s t (S l , S 2) . Signal S2 is stable after signal
SI when S2's voltage does not change after SI is as­
serted. The constraint c o n t r o l (S l) is shorthand for
s t a b l e - a f t e r (S l , S l) . Signal SI falls before signal S2
if Si falls before S2's voltage changes. These are the
only constraints needed to ensure stored charge is not
corrupted.

The signals of nodes which do not store state, do not
gate transistors, and which are not outputs of circuits
are not abstracted. Such nodes, called connection nodes,
serve only as vias for in format ion flow. Because con­
nection nodes are never abstracted, the signals at those
nodes are irrelevant. Nodes that store state are found
by a simple static recursive tree walk start ing f rom a
circuit 's outputs [Weise, 1986].

5.1 T h e N e w A b s t r a c t i o n F u n c t i o n

We introduce new nomenclature and concepts before
presenting the abstraction funct ion. Signals that come
f rom off chip {e.g., V d d and G N D) are driven. Signals
that come from capacitors are undnven. A node is driven
at some t ime t if it is connected at t ime through zero
more conducting transistors to a driven signal, otherwise
it is

The final voltage of a signal must be predictable f rom
the in i t ia l state of the circuit and the f inal values of the
circuit 's inputs. There are two cases to consider: when a
signal is dr iven at steady state, and when it is undriven
at steady state. When it is dr iven at steady state its

f inal voltage is computed using the methods as for com­
binat ional circuits. When it is undriven at steady state
we require that at steady state it must be connected to
any nodes it was connected to dur ing the computat ion.
When this requirement is met, the charge on the node
can be computed f rom its in i t ia l charge and the in i t ia l
charges of nodes it is connected to when the computat ion
ends.

We augment signals to include strength. Where signals
used to map t ime into a voltage, they now map time into
a voltage and a strength. We define the strength of a
signal at node N at t ime t as the sum of the capacitances
of the nodes N is connected to at t ime t. Off-chip inputs
are considered to have inf inite capacitance. The strength
of a signal at a node indicates what happens to the node
over t ime. Strength that increases over t ime indicates
that the node is sharing charge w i th increasing numbers
of nodes. Strength that decreases over t ime indicates
that the node is sharing charge wi th fewer nodes over
t ime.

One seemingly obvious rule to ensure that a circuit 's
final state can be predicted f rom its in i t ia l state and
the final state of its inputs is to require that a signal's
strength cannot decrease after increasing. This rule is
not strict enough. It won' t catch the case where an inf i­
nite strength signal changes its voltage wi thout changing
its strength.

A simple change on the above rule does the tr ick. Let
STB (Signal To Boolean) be the abstraction funct ion
used previously for combinat ional circuits. The new ab­
straction funct ion is: " I f signal S's strength decreases
after its voltage changes then else STB(S).2 This new
abstraction funct ion maps any signal that represents cor­
rupted charge into We now discuss t iming constraints
for preventing non-d ig i ta l signals.

5.2 G e n e r a t i n g T i m i n g C o n s t r a i n t s

The generation of t im ing constraints is a new step that
does not material ly affect how signal behavior is gener­
ated or represented. A l though Silica Pithecus produces
t iming constraints directly f rom the signal behavior rep­
resentation, for expository reasons we present the gen­
eration of t im ing constraints in terms of net transition
graphs, which are a pictor ial representation of signal be­
havior. This section first describes net t ransi t ion graphs,
then gives the rules for generating t im ing constraints
f rom net transit ion graphs.

A net transit ion graph is bui l t for every node that
might be undriven at steady state. The graph has a
vertex for every clause of the node's signal behavior rep­
resentation, i.e., for each net the node might be a mem­
ber of dur ing a computat ion. The vertex includes the
strength of the net and the condit ion when the net oc­
curs. The informat ion in the net t ransi t ion graph that
isn't in the net behavior is the informat ion in its edges.
If net Nl can become net N2 when transistor changes

Figure 3: The net transit ion graph of the Invert ing
Latch's S node. The S node can be member of two nets,
one consisting of just the S node, wr i t ten [S], and one
consisting of the In and S nodes, wr i t ten [S, In] .

2 The real abstraction function is slightly more compli­
cated than this, as the "drivenness" of a signal is preserved
by the abstraction function. The real abstraction function
maps signals into seven values: driven 1, driven floating 1,
floating driven floating and

state then there is a directed edge, labeled by the tran­
sit ion, from the vertex for Nl to the vertex for N2.
An edge, or t ransi t ion, is called downwards when the
strength of Nl is greater than the strength of N2. Up­
wards and sideways edges are defined similarly.

For example, consider the net transit ion graph of the
Invert ing Latch's S node (Figure 3). This has two nodes,
one for the n e t w h i c h occurs when Latch is f a l s e ,
and one for net , which occurs when Latch is t r u e .
There are two edges, an upwards one for Latch going
from f a l s e to t r u e , and a downwards one for it going
from t r u e to f a l s e .

Silica Pithecus generates t iming constraints direct ly
from a node's net transit ion graph. The three rules listed
below are applied at each vertex. These rules ensure
strength doesn't decrease after voltage changes. The
first two rules are enforced by s t a b l e - a f t e r constraints.
The th i rd rule is enforced by f a l l s - f i r s t constraints.

1. A downward transi t ion cannot follow an upward
transi t ion.

2. A downward transi t ion cannot follow a sidewards
transit ion between vertices of inf ini te strength.

3. A downward transi t ion f rom net N cannot occur af­
ter an i npu t /ou tpu t node in net N changes.

For example, consider again the net t ransi t ion graph of
the Invert ing Latch's S node (Figure 3). No rules trigger
for the lower vertex, but two rules, 1 and 3, trigger for
the upper vertex. These two rules create the fol lowing
constraints.

6 H ie ra rch ica l Ve r i f i ca t i on

Hierarchical verif ication first processes the constraints
of each subcircuit. If no constraint is violated, then the
digital behavior of the whole is derived from the digi tal
behaviors of the subcircuits.

Our constraint processing is simil iar in Spirit to Mo l -
gen's, but there are two major differences. First, because

Weise 885

we are performing analysis and not synthesis, the satis­
faction of a constraint does not cause new processing
to take place. Second, because our constraints have very
specifie meanings, our constraint processing is principled
rather than ad hoc, as it is in Molgen.

There are three possible outcomes from processing
constraints: a constraint can be accepted, rejected, or
propagated. A constraint is accepted when it is shown to
hold. A constraint is rejected when is is proven not to
hold. Rejected constraints represent design errors and
are reported to the designer. When there is not enough
informat ion to show that a constraint either holds or
doesn't hold, the constraint is propagated up the struc­
tura l hierarchy to be reprocessed when the circuit itself
is used as a subcircuit . As in Molgen, constraints can
change form when they are propagated. For example,
when a component of circuit C requires that X falls be­
fore Y, this may only be met if Q falls before X in circuit
C. This new condit ion is the constraint thet is propa­
gated.

There are dedicated handlers for each type of con­
straint. The informat ion needed to process a constraint
is constraint dependent. Logical constraints are handled
by a simple tautology checker. Threshold constraints are
handled by a marking scheme. T im ing constraints are
handled by proving mutua l exclusion among signals. A l l
the constraint handlers are conservative. When they are
unable to prove a constraint holds, they report it doesn't
hold.

As a concrete example of hierarchical verif ication, con­
sider a Shift Cell bui l t out of two juxtaposed Invert ing
Latches.

The Shift-Cell takes two inputs and its behavior is
equivalent to two invert ing latches, one feeding the other.
There is one logical constraint for the shift cell which
declares that Ll and L2 are mutual ly exclusive.

When given the above in format ion, Silica Pithecus de­
clares the Shift Cell to be correct and propagates the
fol lowing six constraints:

These constraints result f rom propagating the six un­
resolved constraints f rom the two Invert ing Latches to
the Shift Cell . In to ta l , eight constraints were generated
for the Shift Cell, but only two were satisfied:

7 Conclusions
We have successfully applied constraint posting to the
problem of VLSI circuit verif ication. Silica Pithecus is
implemented on Symbolics 3600's. It verifies complex
circuits containing about 1000 transistor in one minute.
Less complex circuits wi th equivalent numbers of t ran­
sistors are verified much more rapidly. Not all the con­
straint checkers are ful ly implemented, so these t imings
are slightly better than they should be were all checkers
implemented.

Our methods relied on a formal method for relat ing
a circuits signal and digi tal behaviors. This method al­
lowed us to automatical ly post constraints for a large
class of circuits.

These ideas can also be used in a circuit synthesizer.
I envision a circuit synthesizer which operates along the
same lines as Molgen. It makes decisions and posts con­
straints to constrain other decisions.

The automatic generation of constraints can be used
in any domain where the relationship between behavioral
representations can be formalized.

References
[Barrow, 1985] Harry Barrow. Proving the correctness

of hardware designs. VLSI Design, July 1984.

Davis, 1982] Randall D avis. Diagnosis based on de­
scription of structure and funct ion. Proceedings jo the
National Conference on Artificial Intelligence, pages
137-142, Pi t tsburgh, PA, August 1982.

[de Kleer, 1986] J ohann de Kleer and Br ian Wi l l iams.
Reasoning about mul t ip le faults. Proceedings of the
National Conference on Artificial Intelligence, Pi t ts­
burgh, PA, August 1986.

[Mead/Con way, 1980] Carver Mead and Lynn Conway.
Introduction to VLSI Systems, Addison Wesley, 1980.

[Minsky, 1963] Marv in Minsky. Steps towards art i f ic ial
intelligence. Computers and Thought, Geigenbaum
and Feldman, editors, McGraw-H i l l , New York, 1963.

[Nguyen, 1989] T i n Nguyen and Daniel Weise. Diagnos­
ing Mul t ip le Faults in Digi ta l Systems. Fifth Annual
IEEE Conference on AI Applications, M iam i Beach,
Flor ida, March 1989.

[Stefik, 1981] Mark Stefik. PI anning w i th constraints.
Artificial Intelligence, 16(2): 111-340, 1981.

[Weise, 1986] Daniel Weise Formal Mul t i level Hierarchi­
cal Verif ication of Synchronous MOS V L S I Circuits.
Technical Report A I - T R 978, Ar t i f ic ia l Intelligence
Laboratory, M I T , 1986.

886 Planning. Scheduling. Reasoning About Actions

