
Towards a Theory of Conflict Detection and Resolution 
in Nonlinear Plans 

Joachim Hertzberg and Alexander Horz 
Forschungsgruppe Expertensysteme 

Gesellschaft fur Mathematik und Datenverarbeitung (GMD) 
Schlofi Birlirighoveri, Postfach 1240 
D-5205 Sankt Augustin 1, F.R.G. 

Abstract 

This paper deals with a well known problem in 
AI planning: detecting and resolving conflicts 
in nonlinear plans. We sketch a theory of re­
stricted conflict detection and resolution that 
subsumes conflict handling in classical nonlin­
ear planners. By relaxing the restrictions, we 
develop a more general concept of conflicts sug­
gesting practical and theoretical limitations of 
conflict handling in nonlinear plans. 

1 The problem 

Nonlinear planning was invented [Saccrdoti, 1977, 
Tate, 1977] as a lea,st commitment strategy for opera­
tor ordering. A nonlinear plan specifies a strict partial 
ordering on operators that can be interpreted to rep­
resent every linear ordering compatible with it. (Note 
that NOAH [Saccrdoti, 1977], e.g., uses a specialization 
of this interpretation as it does not allow every compati­
ble linear ordering but considers ordering whole branches 
only.) 

While being efficient in that it allows whole areas of 
the space of linear plans to be searched at once, nonlinear 
planning poses a new problem compared to linear plan­
ning: one has to decide whether really every linear order­
ing of operators in a nonlinear plan results in a correct 
operator sequence to be executed. This is the well known 
problem of detecting and if necessary—resolving con­
flicts in nonlinear plans. Of course, conflicts also arise 
in linear plans: a STRIPS [Fikes et. a/., 1971] plan, e.g., 
containing what we call a conflict would simply be incor­
rect or incomplete. But as linear plans are special cases 
of nonlinear ones, conflict handling in linear plans proves 
to be less complex. 

Although every nonlinear planner has to detect and 
resolve conflicts in one way or another, there is no coher­
ent theory of conflict handling. Instead, this is described 
anew for every planner, and it seems that some planner 
implementors have deviated from the path of generality 
without mentioning that they have done so. 

In this paper, we deliver a sketch of a theory of conflict 
detection and resolution in nonlinear plans. The empha­
sis is on the coherence of the theory developed; we do 
not claim all the ideas we present here are new. 

2 The theory (restricted) 

In this section, we introduce relevant concepts and give 
some results on conflict handling for the "ground case", 
where a single node in a plan produces conditions that 
may be destroyed by another single node. We will see 
how to generalize matters in the following section. 

Throughout the paper, plans are partially ordered sets 
of operators with unique least and greatest elements 
called start and finish, respectively. As usual, plans will 
be represented as graphs; hence we will speak of start, 
finish, and operator nodes or simply nodes if the exact 
class of a node is of no importance. As nodes correspond 
to operators, we will speak of preconditions and postcon­
ditions of nodes. The precondition of start is empty; its 
postcondition describes the initial state. The precondi­
tion of finish describes the goal state. We assume that 
conditions are formalized in a first order language A, 
employing the concept of derivability of conditions from 
sets of conditions. (In the following, all conditions are 
tacitly assumed to be in A.) 

As to the "ground case" of conflict management con­
sidered in this section, we make two assumptions: 

1. The STRIPS assumption: domain conditions only 
change if mentioned by the postconditions of a node 
in the plan, and the operator description defines a 
function that unambiguously maps situations onto 
situations. 

2. The locality assumption: every node must specify 
all the domain conditions it may change regardless 
of the domain conditions holding before it. 

There are different ways to actually implement the 
locality assumption. One way—which is inspired by 
[Lifschitz, 1986]—is the following: operator postcondi­
tions are represented by add and delete lists in STRIPS 
[Fikes et. a/., 1971] fashion; they may contain only 
ground atomic formulas (or schemata for such formulas); 
every non atomic formula true at one place in the plan 
must be true in the domain in general and is represented 
outside the plan. 

We do not, however, want to favor one particular in­
terpretation of the locality assumption and therefore will 
speak just of positive and negative node postconditions 
and of derivability of conditions from the postconditions 
of some node in the plan. 

Hertzberg and Horz 937 



938 Planning, Scheduling, Reasoning About Actions 



and Waldinger's [Waldingcr, 1977] protections, and IN -
T E R P L A N ' s [Tate, 1975] holding periods. In nonlinear 
planners, detect ing conflicts by looking for some variant 
of dependency in one branch and a node destroying it in a 
parallel branch is an obvious idea and has—in one way or 
another -been done, e.g. in N O A H [Sacerdoti, 1977] us­
ing the T O M E , N O N L I N [Tate, 1977] using the COST , 
S1PE [Wi lk ins, 1984], and T W E A K [Chapman, 1987] 
using the necessary t ru th cr i ter ion. A similar concept 
of dependency and confl ict is used in t ime map manage­
ment as in , e.g., [Dean and McDermot t , 1987] 

2.2 R e s o l v i n g c o n f l i c t s 

Detect ing conflicts is one th ing ; resolving them is an­
other. (Eor brevity, we wi l l keep things mostly informal 
here. A more formal t reatment is straightforward and 
can be found in [Hertzberg and Horz, 1988]. In the fol­
lowing, variables D,C, P, N,U refer to those in Defini­
t ion 2.6.) Def ini t ion 2.6 tells us what to do: One can 
resolve a conflict bv 

• constraining variables to prevent the derivation of 
false, or 

• preventing the enclosure of N by D, or 
• arranging another producer of the condit ion endan­

gered. 

Like Chapman [Chapman, 1987], we don' t consider re­
solving conflicts by deleting nodes. 

If the derivat ion of false f rom {C} Post has involved 
subst i tu t ing a variable by some term, then a conflict of 
whichever type can be resolved by constraining the vari­
able not to be unifiable w i th this term. This strategy is 
used in , e.g. [Chapman, 1987]. 

A l l conflicts other than the linear conflicts can also 
be resolved by preventing the enclosure of N by D by 
means of extending the relative ordering of P, N, and U. 
In part icular , we have to assert and 

to resolve a left fork, r ight fork and 

parallel conflict, respectively (assuming N start and 
U finish). 

Mind that a parallel conflict is resolved by mutual ex­
clusion of N and the branch w i th in and including P and 
U. 

Extending the operator ordering in some way has been 
a conflict resolution strategy in v i r tua l ly every nonl in­
ear planner. In part icular, it corresponds to Chapman's 
[Chapman, 1987] concepts of promotion and demotion. 

Every conflict of whichever type can also be solved 
by arranging a C-producer between N and U. This 
means asserting N <' P ' < ' U for an existing or new 
node P' producing C. Natural ly, patching in a new node 
may result in new conflicts, leading—at the extreme— 
to an infinite conflict handl ing regress. This strategy 
corresponds, e.g., to Chapman's [Chapman, 1987] white 
knights. (Note that just ordering existing nodes never 
produces new conflicts involving existing dependencies.) 

Now that we have studied the different types of con­
flicts in more detai l , we can infer the domain dependent 
knowledge the conflict resolution module of a nonlinear 
planner must be fed w i th . Given a plan containing a set 
of conflicts, a planner has to decide 

• which conflict to work on first and 
• whether to solve a conflict by 

- constraining variable substi tut ions ( i f variables are 
involved), or 
- j u s t ordering the nodes involved (except for linear 
conflicts), or 
- arranging a C-producer at the right place 

Knowledge of this k ind must be part of the domain 
representation adapting a general planner to part icu­
lar planning strategies in a part icular domain. Choos­
ing among conflict resolution alternatives is a hopelessly 
heuristic matter. 

3 Generalizing the Theory 
This completes the formal reconstruction of the issues 
that have been discussed in the l i terature, at least im­
pl ic i t ly ( though mostly under a restricted view). In gen­
eral, however, matters are even more complex, as condi­
tions are not the result of jus t one operator but may be 
derived f rom the postconditions of sets of operators. 

Consider an extended blocks world [Chapman, 1987] 
wi th different sized blocks, where two small blocks may 
be put on a single large target block. Imagine a plan 
wi th three unordered nodes, each of them representing 
stacking a different small block on one and the same tar­
get block. There is a conflict in this plan, of course, 
because each pair of two stacking nodes destroys a nec­
essary precondition of the th i rd node -there wi l l be no 
more space on the target block. 

The locality assumption does not hold in this exam­
ple: the actual postconditions of operators depend on 
the situations in which they are applied. This is the 
known problem of "synergy" [Chapman, 1987] effects. 

Planning wi thout STRIPS assumption also enforces 
consideration of node sets in conflict detection. Imagine 
a scenario of electrical appliance repairs: first of al l , you 
have to interrupt power supply. So, there may be an 

Hertzberg and Horz 939 



abstract operator negating the condit ion that power is 
suppl ied, bu t g iv ing no addit ional details about possible 
effects on the connections in the chain of power cable 
and different extension leads f rom the appliance to the 
wal l socket. ( A n abstract operator is an operator that is 
yet to be expanded to a subplan.) 

The STRIPS assumption does not hold: the operator 
descript ion does not define a function that unambigu­
ously maps a given state of appl icat ion onto a result ing 
state. 

Obviously, detect ing conflicts hinges on the abi l i ty to 
realize what condit ions are true at which points in a 
p lan; this is impossible in plans w i th abstract opera­
tors [Wi lk ins, 1986]. So, there may be undetectable con­
flicts. One should, however, be able to detect those kinds 
of conflicts where sets of nodes produce condit ions the 
combination of which is inconsistent w i th the intended 
effect of the abstract operator, as, e.g., a set of nodes 
all together asserting a perfect cable chain f rom the wall 
socket to the electrical appliance in the scenario given 
above. 

Consequently, when planning both w i thou t the local­
i ty assumption or w i thou t the STRIPS assumption, a 
general producer of a condi t ion is a set of nodes, and a 
general dependency leads f rom a set of nodes to a node. 
In a general conflict, such a general dependency generally 
encloses a general producer of the negation of a condit ion 
necessary for der iv ing the dependency condi t ion. 

3.1 G e n e r a l C o n f l i c t s 

Following are the generalized definit ions for producers, 
dependencies, enclosures, and conflicts. The generaliza­
tions are s t ra ight forward: instead of a single node pro­
ducing a condi t ion, we have to consider sets of nodes. 

940 Planning, Scheduling, Reasoning About Actions 



[Wilkins, 1986] has reported for these. Theoretically, 
there is a loophole for managing conflicts in plans involv­
ing abstract operators anyway: consider every expansion 
into elementary operators. But this introduces just the 
sort of complexity one wanted to avoid by using abstract 
operators. 

When giving up the original STRIPS assumption, we 
cannot detect everything one might intuitively call a con­
flict in some plan. This is, however, a general l imitation 
of conflict detection: you cannot expect to know the ex­
act effects and side effects of an operator of which you 
do not know what it actually does! 

3.2 Hand l i ng Genera l Conf l ic ts 
As to the practical effects of the generalized conflict def­
inition, detecting conflicts works as before, but using 
definition 3.4 now; conflict resolution is analogous to the 
simple case, where combination types of general conflicts 
are resolved like combinations of elementary types. So, 
conflict handling remains the same, it is just more com­
plex. 

But how much more complex is it? 
When, in the simple case of conflict, one has to check 

all single nodes enclosed by some dependency for possi­
bly destroying and not restoring its single condition, then 
one now has to check every subset of the set of nodes or­
dered not after the user with at least one node enclosed 
by at least one branch of a general dependency, ('becking 
now means checking the postconditions of all the nodes 
to be consistent with every supporting conditions set. In 
short: we cannot any more restrict conflict detection to 
the area enclosed by the dependency involved, but have 
to consider the whole part of the plan not definitely after 
the user. 

Although there may be strategies for reducing the 
complexity of the consistency checking (the work nec­
essary for the different proofs is highly overlapping, sug­
gesting the use of some context management mechanism 
like an ATMS) it seems obvious that handling general 
conflicts thoroughly is practically infeasible. So, we have 
identified another decision point where domain depen­
dent knowledge must come in when giving up the locality 
assumption or the STRIPS assumption: 

• given a plan, decide which dependencies to examine 
for being in general conflict; given a general depen­
dency to examine, decide which nodes in the rest of 
the plan to check for being in general conflict with 
it. 

4 Conclusion 
We have sketched a theory of conflict handling in non­
linear plans. Starting from the concepts described in 
the literature for the simple case of single producers and 
single destroyers under the STRIPS and locality assump­
tions, we have sketched the problems arising when con­
sidering conflict handling for the general case, and we 
have sketched some solution ideas. But there is a gen­
eral caveat: woe to the reckless conflict handler who is 
not equipped whith the appropriate domain knowledge! 

Hertzberg and Horz 941 



Acknowledgements 
Thanks to Torn Gordon and Uli Junker for comments on 
earlier versions of this paper. 

References 
[Chapman, 1987] Chapman, D.: Planning for Conjunc­

tive Goals. Art. Int., 32 (1987), pp. 333-377 
[Dean and McDermott, 1987] Dean, T.L./ McDermott, 

D.V.: Temporal Data Base Management. Art. Int., 
32 (1987), pp. 1-55 

[Fikes et ai, 1972] Fikes, R.E./ Hart, P./ Nilsson, N.J.: 
Learning and Executing Generalized Robot Plans. 
Art. Int., 3 (1972), pp. 251-288 

[Fikes et a/., 1971] Fikes, R.E./Nilsson, N.J.: STRIPS: 
A New Approach to the Application of Theorem 
Proving to Problem Solving. Art. Int., 2 (1971), pp. 
189-208 

[Hertzberg and Horz, 1988] Hertzberg, J . / Horz, A.: 
Erkennung und Auflosung von Konflikten in nicht-
linearen Planen. In: Forschungsgruppe Experten-
systeme (ed.): Aus der Arbeit dcr Forschungs­
gruppe Expertensysteme. Arbeitspapiere der GMD 
No. 337 (1988) 

[Lifschitz, 1986] Lifschitz, V.: On the Semantics of 
STRIPS. In: Georgeff, M P . / Lansky, A L. (eds): 
Proc. of the 1986 Workshop "Reasoning about Ac­
tions and Plans". Los Altos: Morgan Kaufmann, 
1986 

[Sacerdoti, 1977] Sacerdoti, E. D.: A Structure for Plans 
and Behavior. New York: Elsevier North Holland, 
1977 

[Tate, 1975] Tate, A.: Interacting Goals and their Use. 
Proc. IJCAI-I975, pp. 215-218 

[Tate, 1977] Tate, A.: Generating Project Networks. 
Proc. IJCAI-1977, pp. 888-893 (1977) 

[Sussman, 1975] Sussman, G.J.: A Computer Model of 
Skill Acquisition. New York: Elsevier North Hol­
land, 1975 

[Waldinger, 1977] Waldinger, R.: Achieving Several 
Goals Simultaneously. Mach. Int., 8 (1977), pp. 94 
136 

[Wilkins, 1984] Wilkins, D.E.: Domain-independent 
Planning: Representation and Plan Generation. 
Art. Int., 22 (1984), 269-301 

[Wilkins, 1986] Wilkins, D.E.: Hierarchical Planning: 
Definition and Implementation. Proc. FJCAI-86, 
466-478 (1986) 

942 Planning, Scheduling, Reasoning About Actions 


