
Control of Refitting during Plan Reuse'

Subbarao Kambhampati
James A. Hendler

Center for Automation Research, Department of Computer Science
University of Maryland, College Park, MD 20742. email: rao@alv.wnd.edu

Abstract
In plan reuse, refitting is the process of modifying an
existing plan to make it applicable to a new problem
situation. An efficient refitting strategy needs to be
conservative, i.e., it should minimally modify the ex­
isting plan to fit it to the new problem situation. In
this paper we present techniques for conservative
refitting control by utilizing the annotated dependency
structures of an existing plan. The dependency struc­
tures arc used to select the refitting choices that
minimize disturbance to the applicable parts of the ex­
isting plan. This localizes the refitting process and
minimizes the cost of refitting. We describe how
these techniques are incorporated into PRIAR, a frame­
work for flexible plan reuse.

1. Introduction
The value of enabling a planning system to remember the plans
it generates for later use was acknowledged early in planning
research [4]. An important part of reusing an existing plan in a
new situation is modifying its inapplicable parts so as to to make
the overall plan applicable to the new problem situation. This
modification, called refitting, is essential for the flexible reuse of
existing plans. For the efficiency of reuse, it is imperative that
this process be controlled to produce a plan for the new problem
with minimal planning effort and minimal disturbance to the
parts that are already applicable. However, very little work in
plan reuse has concentrated on the issues involved in the control
of refitting.

We have proposed an annotation-based framework for the
flexible reuse of nonlinear hierarchical plans in the presence of a
generative planner, and implemented it in a system called PRIAR
[6,71. A major theme of the PRIAR reuse framework is that the
annotated internal dependency structure of a plan can be utilized
in focusing and controlling various phases of its reuse in a new
problem situation. During reuse, the PRIAR system interprets an
old plan in a new problem situation, localizes and characterizes
the applicability failures of the interpreted plan, suggests
appropriate refit-tasks for those failures, and finally reduces the
refit-tasks with the help of a generative planner. In this paper,

The support of the Defense Advanced Resean h Projects Agency
and the U.S. Army Engineer Topographic Laboratories under contract
DACA76-88-C-0008 is gratefully acknowledged.

we present techniques to control this final refitting step in the
PRIAR reuse framework. These techniques exploit the constraints
imposed by the applicable parts of the old plan to control the
generative planner during refitting. In particular, we introduce
the concept of task kernels and describe how they are used to
control the refitting process by ordering the refitting choices. We
will show that choices based on this ordering reduce the plan­
ning effort by minimizing the disturbance to the applicable parts
of the old plan. This in turn leads to minimization of refitting
cost by localizing the refitting process.

After briefly describing the relevant parts of the PRIAR
plan reuse cycle in section 2, we discuss the issues involved in
refitting in this framework in section 3. In section 4, we discuss
the ordering of choices during refitting. Section 5 gives exam­
ples and section 6 discusses related work. In the final section,
we discuss the merits of this approach and describe some
planned extensions. The techniques described in this paper are
implemented in the PRIAR plan reuse system and are currently
being tested.

The terminology used in this paper is generally consistent
with the previous descriptions of hierarchical planning [3,13]
and plan reuse [1,5]. We distinguish between two types of
schema applicability conditions: preconditions and filter condi­
tions (see [3]). In blocks world, Clear (A) is an example of a
precondition as the planner can achieve it, while Is-Block (A) is
an example of a filter condition since this condition can not be
achieved by a blocks world planner.

If n is a node in the hierarchical task network represent­
ing a plan, we use the notation R(n) for the sub-reduction
rooted at n, A (n) for the annotations on n, and K (n) for the the
task kernel (to be defined later) of n. External preconditions
(or e-preconds) of n are the preconditions of some node in
R (n) that are validated by a node outside of R (n). For exam­
ple, in Figure 1, e-p\ and e-p-$ are among the e-preconds for
n. We define the persistence conditions (p -conds) of a node n
as the conditions that have to be protected over all or part of the
range of R (n), to leave the rest of the plan undisturbed. In Fig­
ure 1, p —c 2 is a p —cond of n. The e —conds of a node are the
effects of any node in R (n) that are used elsewhere in the plan.
In Figure 1, er and eu are the e-conds of n.

2. Overview of PRIAR Reuse Framework
The PRIAR system implements a plan reuse capability for a
domain independent, hierarchical, nonlinear planner [7]. The
planner in the system, based on NONUN [13], has the capability
of reducing a task network into an executable plan, and resolving
interactions between steps. Unlike normal nonlinear planners,

Kambhampati and Hendler 943

however, it keeps the hierarchical task network showing the
development of the plan, and annotates that with a description
of the internal causal and decision dependency structure of the
plan. These annotated plans are then stored in the plan library
for later reuse.

PRIAR keeps two types of annotation structures on the
plans it produces: node annotations and annotation-states. The
annotations on a node n in a hierarchical task network reflect
the dependencies between the sub-reduction R(n) rooted at n
and the rest of the plan. The following information is included
in the annotations on the node n: The required-effects (goals)
of R (n), the filter conditions of the schema instance that reduced
node n, the external preconditions of all the nodes belonging to
R(n\ the effects of all the nodes belonging to R(n) which are
used outside of R (n), and the conditions of the plan that have to
persist over any part of R(n). Information regarding the nodes
that are validated or affected by each of these conditions is also
included in the annotations.

Annotation-states are maintained between successive steps
of the developed plan. The annotation-state following a plan
step consists of the useful outcomes of that plan step, and also
those facts of the previous annotation-state that have to persist
over this plan step for the validation of the rest of the plan. The
Annotation-states are used for locating and characterizing appli­
cability failures, while the node annotations are used to guide
refitting. Most of the information in the PRIAR annotation struc­
tures is available to the planner during the planning, and is
either incrementally annotated or derived from the datastructures
used by the planner (in our case, generalized versions of Table
of Multiple Effects and Goal Structure Table [13]).

Given a new planning problem consisting of an input
situation and a goal specification, the reuse procedure progresses
in the following stages:
1. Retrieval: A plan that solved a problem similar to the new
problem is retrieved from the planner's library. As the focus of
our research is on reuse methodology, at present the system uses
a rather simple retrieval procedure based on partial unification
with the goals of the new problem. We have however developed
a technique that utilizes the annotation structures of a plan to
judge the utility of reusing that plan in a new problem situation
[8].
2. Interpretation: The old plan along with its annotations is
mapped into the new problem situation marking the important
differences between the old and the new situations.
3. Annotation Verification: The annotations of the interpreted
plan are verified and upon finding various forms of verification
failure, various types of refit-tasks are suggested to take care of
the failures. The procedure distinguishes between precondition
validation failure and filter condition validation failure. A refit-
task to reachieve precondition is suggested in the former case,
while a refit-task to replace reduction is suggested in the latter
case. In addition, dephantomize refit-tasks are suggested to take
care of failing phantom1 node validations and achieve extra goal
refit-tasks are suggested to take care of goals of the new prob­
lem that are not present in the interpreted plan. The annotation

1 Phantom goals refer to the goals of a planning problem that are
achieved without step addition [11,13]. Such goals get established either
through helpful interactions from other steps in the plan, or by persistence
from the initial state.

944 Planning, Scheduling, Reasoning About Actions

verification procedure also removes any parts of the plan whose
sole purpose is to supply validations to the reductions that are
being replaced or to goals that are unnecessary in the new prob­
lem situation.
4. Reduction of refit-tasks: The planner is invoked to reduce the
annotation verified task network, which contains the applicable
parts of the interpreted plan and the suggested refit-tasks, to pro­
duce a plan for the new problem.

The annotation verification procedure preserves the appli­
cable portions of the old plan, and leaves the inter-step order of
the old plan undisturbed to the extent possible. Because of this,
many goals need not be reachieved and many interactions do not
have to be re-analyzed during refitting. (For more details on the
basic reuse cycle in PRIAR framework, see [7])

3. Refitting in PRIAR
Although the basic PRIAR reuse framework can suggest appropri­
ate refit-tasks using the dependency information, it can not con­
trol the planner during the reduction of these refit-tasks. As we
discussed in section 1, the ability to localize refitting such that it
will leave the applicable parts of the old plan unaffected, is
essential to a conservative reuse strategy. In this section we
describe a technique to control refitting process by influencing
the selection of the schema instance that is used to reduce a
refit-task.

In general, the planner reduces refit-tasks just as it
reduces other tasks during from-scratch planning. The default
selection strategy is to fetch schema instances that are indexed
under the goals of the refit-task, discard the instances whose
filter conditions are not satisfied in the new problem situation,
and select one of the remaining schema instances (arbitrarily) to
reduce the refit-task. (This is representative of the normal
schema selection procedure in most hierarchical nonlinear
planners.) In many domains, the number of schema instance
choices remaining at this stage is still quite large. In the case of
the reduction of refit-tasks, this choice can be effectively con­
trolled by exploiting the constraints afforded by the failing vali­
dations (that necessitated the refit-task) and by minimizing the
disturbance to the rest of the applicable plan. To do this, we use
the following choice selection procedure when the planner
reduces a refit-task:

Step 1. Getting Plausible Choices: This step basically duplicates
the default choice selection mechanism of the planner. In PRIAR's
case, this consists of fetching all the schema instances that are
indexed under the ?todo pattern of the refit-task, and filtering out
those instances whose filter conditions do not hold in the new
problem situation. In the case of a replace reduction refit-
task, this fetch can be made efficient by exploiting the fact that
any instance that shares the failing filter conditions of the reduc­
tion being replaced would also be inapplicable.
Step 2. Ordering the choices to minimize interactions: This
step is the heart of the refitting procedure. It uses a technique
called task kernel based ordering to rank the remaining choices
by the amount of disturbance they would cause to the applicable
parts of the plan. Reducing the refit-task by the choice that is
ranked best by this ordering would localize refitting, as it causes
the least amount of disturbance to the rest of the plan. For the
purpose of this ordering, we define a structure called task kernel
for each refit-task. It encapsulates the conditions that should be
preserved by any choice of task reduction for that refit-task, so
as to leave the rest of the plan undisturbed.

Step 3. Selecting and Installing the Best choice: The schema
instance ranked best by the task kernel based ordering is
selected to reduce the refit-task. Next it has to be installed in
the task network properly. This requires a comparison between
the chosen schema instance, S, and the annotations A on the
node being reduced, to take care of the validations that S does
not promise to preserve. It w i l l involve (i) pruning parts of the
task network whose sole purpose is to achieve e—preconds of
A that are not required by S, (ii) adding refit-tasks to take
care of any effects of A (n) that are used elsewhere in the plan,
but are not guaranteed by S, and (iii) adding refit-tasks to take
care of the p —conds of A that do not persist over S.

Once a schema instance is selected by the above pro­
cedure and installed properly, the control is passed back to the
planner. The planner then reduces the refit task at by the
chosen schema instance in the normal way, detecting and resolv­
ing any interactions caused in the process. In the rest of the
paper, we concentrate on step 2 of this refitting procedure.

4. Refitting with Task Kernels

4.1. Representation of Task Kernels
The task kernel is calculated for every refit-task node of an
annotation-verified plan, prior to refitting. It estimates the poten­
tial interactions that a reduction choice at this node wi l l have
with the rest of the annotation-verified plan. It contains three
different types of conditions— the effects of this node that are
used elsewhere in the plan (called e—conds of the task kernel),
the conditions that have to persist over this node (p-conds), and
the external preconditions that are required by this node
(e-preconds). Depending upon its type, a refit-task may not
have all three types of task kernel conditions. (In fact, only
replace reduction refit-tasks have all three.) The task kernel
K of a node is computed as follows:

(1) The e—conds of K(n) consist of (i) effects that arc
inherited by n (these would be the required effects of
the reduction of), and (ii) any other effects of that
are used elsewhere in the plan. Thus, for example, in
the hierarchical task network of Figure 1, the e —conds of
the task kernel of node wi l l be and

(2) The p-conds of K consist of (i) p -conds that are
inherited by from upper levels (these persist over some
sub-reduction of which is a part) and {ii) p —conds that
have to persist over at this level. Thus, in Figure 1,
the p -conds of the task kernel of node w i l l consist of
p - C 1 (which is inherited), and p—c2 (which is at the
level of).

(3) The e-preconds of K consist of the external (unsu­
pervised) preconditions of the schema instance that
reduced Thus, in Figure 1, e—preconds of the task
kernel of node wi l l be e-pi and e~p2.

Suppose that the sub-reduction R of node in Figure 1 has
to be replaced (i.e., there is a replace reduction refit-task at).
Then the task kernel for this refit-task, K would be:

Notice that by this definition, the task kernel of a node n
is a subset of the annotations A on that node. The reason ker­
nel contents are not the same as the contents of the node anno­
tations is the fol lowing. Since the purpose of the task kernel is
to control the choices for the reduction of a refit-task, the task
kernel conditions should be at the same level of detail as the
conditions in the schema instances that comprise the reduction
choices. Thus, e-preconds, e-conds and p-conds of A which
come from parts of the task network that are below the level of

are not made part of K For example, in Figure 1, the
task kernel of node n w i l l not include the e—cond and the
e-precond e-p3. It is not possible to tell if a given choice of
schema instance to reduce the refit-task at wi l l need, achieve
or preserve such conditions, before it is completely reduced to
the primitive level.

4.2. Ordering refitting choices using Task
Kernels
The essential idea of using task kernels to order refitting choices
is to choose the schema instance that preserves as many of the
task kernel conditions as possible. This strategy has the follow­
ing desirable effects:

Kambhampati and Hendler 945

(1) By preserving the e-conds of the task kernel, we avoid
the need to add additional steps to reachieve the useful effects
of this node.
(2) By preserving the p -conds of the task kernel, we minim­
ize the interactions that refitting at this node will have with
the rest of the plan, thus preserving as much of the old appli­
cable plan as possible and reducing the cost of refitting.
(3) By preserving the e-preconds of the task kernel, we util­
ize the already existing sub-reductions that give rise to those
preconditions and thereby reduce the cost of reduction of the
current node (by avoiding the need to reachieve a new set of
external preconditions).

We use the following procedure for ordering the schema instance
choices to reduce a refit-task.
Step 1. Order the refitting choices (schema instances) according
to the number of task kernel e-conds they preserve. For each
e-cond ec of the task kernel, if a schema instance S has an
effect e that unifies with ec, we consider that 5 preserves ec.
Step 2. Pick the set of schema instances that are ranked best by
step 1. Order them according to the number of task kernel
p—conds they preserve. A task kernel p—cond p—c is con­
sidered preserved by a schema instance S, if the effects of S do
not negate p —c.
Step 3. Pick the set of schema instances that are ranked best by
step 2. Order them according to the number of task kernel
e-preconds they preserve. An e—precond e-p is considered
preserved by a schema instance S, if S has an external precondi­
tion that unifies with e —p
The best ranked schema instances at the end of this three-layered
process are returned as the schemas that are preferred by the task
kernel based ordering. One of them will then be selected by the
planner to reduce the refit-task.

Notice that this three-layered procedure effectively
imposes levels of importance on the three types of task kernel
conditions, preferring the preservation of e -conds, p —conds and
e-preconds in that order. These implicit levels of importance
reflect the effect of violation of those conditions upon the overall
refitting cost. We can also differentiate among the conditions of
the same type, based on the relative effect the violation of those
conditions will have on the cost of refitting. We suggest some
methods for doing this in section 7.

Let us consider again the replace-reduction refit-task at
node n in Figure 1. We discussed the task kernel of this refit-
task in section 4.1. Suppose there are four schema instances
capable of reducing this refit-task, specified as follows:

Si: ?todo: e, prec: e-p6,e-p5
eff: e , ^ , - .p -c 2

S2: ?todo: e, prec: e-p!,e-p6,e-p7

eff: e r , - ip -c 2 - 'P -C7
S3: ?todo: e, prec: e-p l .e-p 7

eff: er,eu,-ip-c2.-'P-C7
S4: ?todo: er prec: e - p 6 , e - 5

eff: ey.e^,-ip-c2,-ip-ci
The ordering with respect to the task kernel e-conds would
prefer the schema instances SiS3 and S4, since S2 does not
preserve eu. Next, from these three, the ordering with respect
to the task kernel p-conds would prefer Sx and S3 since they
preserve one p-cond (p-c1) while S4 preserves none. Finally,
from these two choices, the ordering with respect to the task ker­
nel e-preconds picks S3 since it can utilize one previously
achieved precondition (e-pb. Thus, S3 would be suggested as

946 Planning, Scheduling, Reasoning About Actions

the best refitting choice.

5. Example
Consider the example of reusing the plan for the three block
stacking problem (3bs) shown in Figure 2(a), to make a plan for
the four block stacking problem (4bs) shown in Figure 2(b).
PRIAR interprets the 3bs into 4bs using the object mapping
[A →LB,→K,C→J]. Figure 2(c) shows the task network after
the annotation verification. The annotation verification procedure
reveals two validation failures in the interpreted plan. The valida­
tion to the phantom node A [Clear (L)] is failing, and On (J J) is
an extra goal. PRIAR then places a refit-task A [Clear (L)] at the
site of the failing validation for re achieving the phantom goal
condition (node n 11 in Figure 2(c)), and a refit-task A [On (JJ)]
parallel to the interpreted plan to take care of the extra goal
(node n 10 in Figure 2(c)). (For details of this process, see [7].)

Consider the refit-task A [Clear (L)] at node n 11 in figure
2(c). From the methods described in the previous section, we
can calculate n i l ' s task kernel as:

AT (n i l) = [e-cond: Clear (L)
p--ond: Clear(J\Clear(K\On(JJ)]

Since this refit-task does not replace any parts of the pre­
vious plan, its task kernel will not have any e-preconds. On (J J)
occurs in the task kernel because A [On (J,J)] is not yet ordered
with respect to the plan and thus it is preferred that R (n 11)
preserve On (J,J).

The default selection strategy finds that this refit-task can
be reduced by the following three schema instances:

A : MakeClear-Table(LJ)
eff: Clear (L),On (J.Table)

B : MakeClear -Block (L,J\K)
eff: Clear (L),On (J,K -Clear (K)

C: MakeClear-Block (LJJ)
eff: Clear (L),On (JJ),-,Clear (I)

Where, the schema MakeClear-Block(?X,?Y,?Z) clears ?X by
putting ?Y (which is on top of ?X) on top of ?Z, and the
schema MakeClear -Table (?X,?Y) clears ?X by putting ?Y on
the Table (which is always clear).

When the above schema instances are ordered using
K(n\\\ we find that the task kernel e-cond Clear(L) is
preserved by all the three choices. So, they all survive to the
next layer ordering with respect to the task kernel p -conds. At
this stage, however, the p-cond Clear(K) is violated by choice
B and the p-cond On (J,J) is violated by choices A and B. So
the task kernel based ordering prefers choice C,
Make-Clear {L,J,J). This will be sent to the planner as the
schema instance with which node n ll should be reduced.
Notice that this choice would in fact minimize the refitting cost.
It also has the serendipitous side effect of achieving the extra
goal, On (J,l).

In this example, while the choice between B and C could
have been made through a delayed binding of objects (e.g., the
merge objects critic in NOAH [11]), such a strategy will not be
able to deal with A, which is an instance of a different schema.
Thus, controlling the choice among alternative schema instances
involves more than delayed binding of objects. In particular,
there may be different schemas that can reduce the same refitting
task, with significant differences among their effects and precon­
ditions. Choices made with the help of task kernel based order­
ing will be able to effectively control refitting in such cases also.

As another example, consider the fol lowing plan to attend
a birthday party at San Fransisco:

Suppose this plan has to be reused in a new situation where the
airport does not have a gift shop, i.e., —chouse (Gift shop .Airport).
This breaks the filler condition for the sub-plan
GOTO(Giftshop .A i rpor t) , necessitating a replace reduction
refit-task at this place. The task kernel of this refit-task wi l l be:

Thus, the task kernel based ordering prefers choices that do not
take the agent away from the airport, do not involve spending
too much money (because money w i l l be needed at
BUY-FROM-SHOP (? Gift)), and do not cause the agent to lose pos­
session of the ticket. Consider two alternatives for refitting this
plan:

The task kernel based ordering prefers choice A to choice B.
This is because A preserves the p-cond at (Airport) and also
utilizes the old e-precond at (Airport), while B does not.
Notice that to localize the refitting and reduce refitting cost, this
is the best choice. However, this may not necessarily be the
choice that leads to a plan with minimal execution cost.

6. Related Work
Interal dependency structures of plans have been used previ­
ously in replanning and plan revision to locate failures and to
undo the wrong decisions (e.g., [15]). The novelty of oui
approach is that we use the dependency structures also to con­
trol the refitting of the plan. Minimization of disturbance to the
overall plan has been used as a basis for modification and repair
of plans in other systems. Hammond's case-based planner, CHEF
[5], uses the explanation of an execution time failure to suggest
various minimally interactive ways of repairing that failure, and
then uses domain dependent heuristics to select among the repair
strategies. The debugger in Simmons' GTD system [12] selects
among possible repairs by doing a causal simulation of the plan
with the suggested repairs, followed by an assessment of the glo­
bal effect of the suggested repair on the final outcome of the
plan. Aiterman's PLEX system [1] depends on the helpful cues
from the new problem situation to trigger the retrieval of
appropriate refitting choices. In comparison to these systems,
PR1AR utilizes the already existing dependency structures of a
plan to anticipate the interactions that would be caused by
potential refits, and chooses the ones which cause least amount
of disturbance to the rest of the plan. Domain dependent solu­
tions to plan refitting are embodied in PRIDE [9] and CAS [14]
which store specific hand-coded strategies for repairing indivi­
dual failing preconditions, and use them to guide refitting. We
realize that information such as these domain dependent repair
rules, and justifications for planning decisions [2], may be able
to exert a stronger control over refitting. The goal of our work,
however, has been to demonstrate that even in the absence of

Kambhampati and Hendler 947

such domain specific information, refitting can be effectively
guided by the dependency structures of the plan.

7. Discussion
The utility of the refitting control strategy presented in this
paper ultimately depends on the trade-off between the effort
invested in ordering the refitting choices with the use of task ker­
nels, and the effort that would be required to do the refitting
without such an ordering. Since poor refitting choices cause
interactions and give rise to increased planning cost (by increas­
ing the plan length and possibly causing costly backtracking), we
believe that this trade-off falls in favor of the control strategy.
The strategy is especially useful in cases where the number of
refit-tasks is small compared to the length of the plan. In such
cases, choices based on the task kernel based ordering lead to
substantial savings in the refitting cost by keeping the refitting
localized. Conservatism is thus an emergent property of this
refitting control strategy.

There are two types of costs associated with planning—
the cost of planning, and the cost of execution of the produced
plan. By localizing changes to the plan being reused, the
refitting control strategy reduces the cost of planning for the new
problem. It does not however guarantee the optimality of the cost
of execution of the plan. This may not be a serious limitation
since many domains where reuse has utility are also domains
where it is more important to arrive at a plausible plan quickly
than to guarantee the optimality of the produced plan.

As the refitting control strategy relies on the dependency
structures that are provided by the planner, an important issue to
be addressed is the effect of incorrect and incomplete domain
models on refitting. When the planner's domain models are not
correct and complete, it is possible that both the plans that are
generated from scratch and the plans that are produced by PR1AR
through reuse may fail during execution, thereby necessitating
plan repair and debugging (e.g., CHEF [5], GTD [12]). One of the
goals of PRIAR's refitting strategy is to ensure that the plans it
produces are at the same level of correctness as the the ones that
are produced by the planner from scratch (the difference would
be in the efficiency of producing the plan). If a refitted plan
fails, it would be because of the inadequacy of the planner's
domain models rather than due to incorrectness of modification.
This is important since debugging is a costly operation. PRlAR's
philosophy is that robust refitting of plans is not possible in the
absence of internal dependency structures of the plan, and that
dependency structures of the plan, even if they are incomplete,
can help in locating applicability failures and localizing the
modification.

The task kernel based ordering presented in section 4 can
be refined further by gauging the importance of the conditions
in each layer of the kernel more precisely. For example, the
hierarchical level of a validation could be used to measure the
importance of that validation. In this sense, in the task kernel of
node n in Figure 1, the p-cond p - c 1 which is inherited from
an upper level, should be considered more important than p -c 2,
since it may take more effort to refit the plan if p-cx is violated
than if p-c 2 is violated. Another way of measuring the impor­
tance of a validation is to measure the number of nodes in the
reduction which give rise to or use that validation. Thus in Fig­
ure 1, the external precondition e-px is given by the node nb,
and so a measure of its importance is the number of nodes in
R (nb). We are currently exploring such alternative ordering stra­
tegies to make the kernel-based ordering reflect the estimated
cost of refitting more faithfully.

Finally, although we presented the task kernel based ord­
ering in the context of plan reuse, we believe that it can also be
profitably used in guiding replarming (repairing a plan in
response to an execution failure due to an unexpected event).
Another area where we expect potential utility for this type of
control strategy is design reuse [10]. Notice that all these prob­
lems share the requirement of minimal modification to an exist­
ing structure to make it satisfy the constraints of a new problem.

Acknowledgements
We would like to thank Lindley Darden, Jack Mostow and one
of the IJCAI referees for providing helpful comments on an earlier
draft of this paper. Thanks are also due to Chaitali Chakrabarti
for her help in preparing this document.

References
l

8.

9.

10

11.

12.

13.

14.

15.

R. Alterman, "An Adaptive Planner'*, Proceedings of 5th
AAAI, 1986, 65-69.

J. Carbonell and M. Vclose, "Integrating Derivational
Analogy into a General Problem Solving Architecture",
Proceedings of Case-Based Reasoning Workshop, 1988.
E. Charaniak and D. McDermott, "Chapter 9: Managing
Plans of Actions", in Introduction to Artificial Intelligence,
Addison-Wesley Publishing Company, 1984, 485-554.
R. Fikes and N. Nilsson, "STRIPS: a New Approach to
the Application of Theorem Proving to Problem Solving",
Artificial Intelligence 2 (1971), 189-208.
K. J. Hammond, "CHEF: A Model of Case-Based
Planning'*, Proceedings of 5th AAAI, 1986, 267-271.
S. Kambhampati and J. A. Hendler, "Adaptation of Plans
via Annotation and Verification", 1st Intl. Conf on
Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, 1988, 164-170.

S. Kambhampati and J. A. Hendler, "Flexible Reuse of
Plans via Annotation and Verification", Proceedings of 5th
IEEE Conf. on Applications of Artificial Intelligence, 1989,
37-44.

S. Kambhampati, An Annotation-Based Framework for
Flexible Plan Reuse, (Ph.D. Thesis in preparation).

S. Mittal and A. Araya, "A Knowledge-Based Framework
for Design*', Proceedings of 5th AAAI, 1986, 856-865.
J. Mostow, "Design by Derivational Analogy: Issues in
the Automated Replay of Design Plans", Rutgers
University ML-Tech. Rep.-22, March 1987. (To appear in
Artificial Intelligence Journal).

E. D. Sacerdoti, A Structure for Plans and Behavior,
Elsevier North-Holland, New York, 1977.

R. Simmons, "A Theory of Debugging Plans and
Interpretations", Proceedings of 7th AAAl, 1988, 94-99.
A. Tate, "Generating Project Networks", Proceedings of
5th IJCAI, 1977, 888-893.
R. M. Turner, "Issues in the Design of Advisory Systems:
The Consumer-Advisor System", GIT-ICS-87/19, School
of Information and Computer Science, Georgia Institute of
Technology, April 1987.

D. E. Wilkins, "Recovering from execution errors in
SIPE", Computational Intelligence 1 (1985), 33.

948 Planning, Scheduling, Reasoning About Actions

