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Abstract 
In plan reuse, refitting is the process of modifying an 
existing plan to make it applicable to a new problem 
situation. An efficient refitting strategy needs to be 
conservative, i.e., it should minimally modify the ex­
isting plan to fit it to the new problem situation. In 
this paper we present techniques for conservative 
refitting control by utilizing the annotated dependency 
structures of an existing plan. The dependency struc­
tures arc used to select the refitting choices that 
minimize disturbance to the applicable parts of the ex­
isting plan. This localizes the refitting process and 
minimizes the cost of refitting. We describe how 
these techniques are incorporated into PRIAR, a frame­
work for flexible plan reuse. 

1. Introduction 
The value of enabling a planning system to remember the plans 
it generates for later use was acknowledged early in planning 
research [4]. An important part of reusing an existing plan in a 
new situation is modifying its inapplicable parts so as to to make 
the overall plan applicable to the new problem situation. This 
modification, called refitting, is essential for the flexible reuse of 
existing plans. For the efficiency of reuse, it is imperative that 
this process be controlled to produce a plan for the new problem 
with minimal planning effort and minimal disturbance to the 
parts that are already applicable. However, very little work in 
plan reuse has concentrated on the issues involved in the control 
of refitting. 

We have proposed an annotation-based framework for the 
flexible reuse of nonlinear hierarchical plans in the presence of a 
generative planner, and implemented it in a system called PRIAR 
[6,71. A major theme of the PRIAR reuse framework is that the 
annotated internal dependency structure of a plan can be utilized 
in focusing and controlling various phases of its reuse in a new 
problem situation. During reuse, the PRIAR system interprets an 
old plan in a new problem situation, localizes and characterizes 
the applicability failures of the interpreted plan, suggests 
appropriate refit-tasks for those failures, and finally reduces the 
refit-tasks with the help of a generative planner. In this paper, 
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we present techniques to control this final refitting step in the 
PRIAR reuse framework. These techniques exploit the constraints 
imposed by the applicable parts of the old plan to control the 
generative planner during refitting. In particular, we introduce 
the concept of task kernels and describe how they are used to 
control the refitting process by ordering the refitting choices. We 
will show that choices based on this ordering reduce the plan­
ning effort by minimizing the disturbance to the applicable parts 
of the old plan. This in turn leads to minimization of refitting 
cost by localizing the refitting process. 

After briefly describing the relevant parts of the PRIAR 
plan reuse cycle in section 2, we discuss the issues involved in 
refitting in this framework in section 3. In section 4, we discuss 
the ordering of choices during refitting. Section 5 gives exam­
ples and section 6 discusses related work. In the final section, 
we discuss the merits of this approach and describe some 
planned extensions. The techniques described in this paper are 
implemented in the PRIAR plan reuse system and are currently 
being tested. 

The terminology used in this paper is generally consistent 
with the previous descriptions of hierarchical planning [3,13] 
and plan reuse [1,5]. We distinguish between two types of 
schema applicability conditions: preconditions and filter condi­
tions (see [3]). In blocks world, Clear (A) is an example of a 
precondition as the planner can achieve it, while Is-Block (A) is 
an example of a filter condition since this condition can not be 
achieved by a blocks world planner. 

If n is a node in the hierarchical task network represent­
ing a plan, we use the notation R(n) for the sub-reduction 
rooted at n, A (n) for the annotations on n, and K (n) for the the 
task kernel (to be defined later) of n. External preconditions 
(or e-preconds) of n are the preconditions of some node in 
R (n ) that are validated by a node outside of R (n). For exam­
ple, in Figure 1, e-p\ and e-p-$ are among the e-preconds for 
n. We define the persistence conditions (p -conds) of a node n 
as the conditions that have to be protected over all or part of the 
range of R (n), to leave the rest of the plan undisturbed. In Fig­
ure 1, p —c 2 is a p —cond of n. The e —conds of a node are the 
effects of any node in R (n) that are used elsewhere in the plan. 
In Figure 1, er and eu are the e-conds of n. 

2. Overview of PRIAR Reuse Framework 
The PRIAR system implements a plan reuse capability for a 
domain independent, hierarchical, nonlinear planner [7]. The 
planner in the system, based on NONUN [13], has the capability 
of reducing a task network into an executable plan, and resolving 
interactions between steps. Unlike normal nonlinear planners, 
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however, it keeps the hierarchical task network showing the 
development of the plan, and annotates that with a description 
of the internal causal and decision dependency structure of the 
plan. These annotated plans are then stored in the plan library 
for later reuse. 

PRIAR keeps two types of annotation structures on the 
plans it produces: node annotations and annotation-states. The 
annotations on a node n in a hierarchical task network reflect 
the dependencies between the sub-reduction R(n) rooted at n 
and the rest of the plan. The following information is included 
in the annotations on the node n: The required-effects (goals) 
of R (n), the filter conditions of the schema instance that reduced 
node n, the external preconditions of all the nodes belonging to 
R(n\ the effects of all the nodes belonging to R(n) which are 
used outside of R (n), and the conditions of the plan that have to 
persist over any part of R(n). Information regarding the nodes 
that are validated or affected by each of these conditions is also 
included in the annotations. 

Annotation-states are maintained between successive steps 
of the developed plan. The annotation-state following a plan 
step consists of the useful outcomes of that plan step, and also 
those facts of the previous annotation-state that have to persist 
over this plan step for the validation of the rest of the plan. The 
Annotation-states are used for locating and characterizing appli­
cability failures, while the node annotations are used to guide 
refitting. Most of the information in the PRIAR annotation struc­
tures is available to the planner during the planning, and is 
either incrementally annotated or derived from the datastructures 
used by the planner (in our case, generalized versions of Table 
of Multiple Effects and Goal Structure Table [13]). 

Given a new planning problem consisting of an input 
situation and a goal specification, the reuse procedure progresses 
in the following stages: 
1. Retrieval: A plan that solved a problem similar to the new 
problem is retrieved from the planner's library. As the focus of 
our research is on reuse methodology, at present the system uses 
a rather simple retrieval procedure based on partial unification 
with the goals of the new problem. We have however developed 
a technique that utilizes the annotation structures of a plan to 
judge the utility of reusing that plan in a new problem situation 
[8]. 
2. Interpretation: The old plan along with its annotations is 
mapped into the new problem situation marking the important 
differences between the old and the new situations. 
3. Annotation Verification: The annotations of the interpreted 
plan are verified and upon finding various forms of verification 
failure, various types of refit-tasks are suggested to take care of 
the failures. The procedure distinguishes between precondition 
validation failure and filter condition validation failure. A refit-
task to reachieve precondition is suggested in the former case, 
while a refit-task to replace reduction is suggested in the latter 
case. In addition, dephantomize refit-tasks are suggested to take 
care of failing phantom1 node validations and achieve extra goal 
refit-tasks are suggested to take care of goals of the new prob­
lem that are not present in the interpreted plan. The annotation 

1 Phantom goals refer to the goals of a planning problem that are 
achieved without step addition [11,13]. Such goals get established either 
through helpful interactions from other steps in the plan, or by persistence 
from the initial state. 
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verification procedure also removes any parts of the plan whose 
sole purpose is to supply validations to the reductions that are 
being replaced or to goals that are unnecessary in the new prob­
lem situation. 
4. Reduction of refit-tasks: The planner is invoked to reduce the 
annotation verified task network, which contains the applicable 
parts of the interpreted plan and the suggested refit-tasks, to pro­
duce a plan for the new problem. 

The annotation verification procedure preserves the appli­
cable portions of the old plan, and leaves the inter-step order of 
the old plan undisturbed to the extent possible. Because of this, 
many goals need not be reachieved and many interactions do not 
have to be re-analyzed during refitting. (For more details on the 
basic reuse cycle in PRIAR framework, see [7]) 

3. Refitting in PRIAR 
Although the basic PRIAR reuse framework can suggest appropri­
ate refit-tasks using the dependency information, it can not con­
trol the planner during the reduction of these refit-tasks. As we 
discussed in section 1, the ability to localize refitting such that it 
will leave the applicable parts of the old plan unaffected, is 
essential to a conservative reuse strategy. In this section we 
describe a technique to control refitting process by influencing 
the selection of the schema instance that is used to reduce a 
refit-task. 

In general, the planner reduces refit-tasks just as it 
reduces other tasks during from-scratch planning. The default 
selection strategy is to fetch schema instances that are indexed 
under the goals of the refit-task, discard the instances whose 
filter conditions are not satisfied in the new problem situation, 
and select one of the remaining schema instances (arbitrarily) to 
reduce the refit-task. (This is representative of the normal 
schema selection procedure in most hierarchical nonlinear 
planners.) In many domains, the number of schema instance 
choices remaining at this stage is still quite large. In the case of 
the reduction of refit-tasks, this choice can be effectively con­
trolled by exploiting the constraints afforded by the failing vali­
dations (that necessitated the refit-task) and by minimizing the 
disturbance to the rest of the applicable plan. To do this, we use 
the following choice selection procedure when the planner 
reduces a refit-task: 

Step 1. Getting Plausible Choices: This step basically duplicates 
the default choice selection mechanism of the planner. In PRIAR's 
case, this consists of fetching all the schema instances that are 
indexed under the ?todo pattern of the refit-task, and filtering out 
those instances whose filter conditions do not hold in the new 
problem situation. In the case of a replace reduction refit-
task, this fetch can be made efficient by exploiting the fact that 
any instance that shares the failing filter conditions of the reduc­
tion being replaced would also be inapplicable. 
Step 2. Ordering the choices to minimize interactions: This 
step is the heart of the refitting procedure. It uses a technique 
called task kernel based ordering to rank the remaining choices 
by the amount of disturbance they would cause to the applicable 
parts of the plan. Reducing the refit-task by the choice that is 
ranked best by this ordering would localize refitting, as it causes 
the least amount of disturbance to the rest of the plan. For the 
purpose of this ordering, we define a structure called task kernel 
for each refit-task. It encapsulates the conditions that should be 
preserved by any choice of task reduction for that refit-task, so 
as to leave the rest of the plan undisturbed. 



Step 3. Selecting and Installing the Best choice: The schema 
instance ranked best by the task kernel based ordering is 
selected to reduce the refit-task. Next it has to be installed in 
the task network properly. This requires a comparison between 
the chosen schema instance, S, and the annotations A on the 
node being reduced, to take care of the validations that S does 
not promise to preserve. It w i l l involve ( i ) pruning parts of the 
task network whose sole purpose is to achieve e—preconds of 
A that are not required by S, (ii) adding refit-tasks to take 
care of any effects of A (n) that are used elsewhere in the plan, 
but are not guaranteed by S, and (iii) adding refit-tasks to take 
care of the p —conds of A that do not persist over S. 

Once a schema instance is selected by the above pro­
cedure and installed properly, the control is passed back to the 
planner. The planner then reduces the refit task at by the 
chosen schema instance in the normal way, detecting and resolv­
ing any interactions caused in the process. In the rest of the 
paper, we concentrate on step 2 of this refitting procedure. 

4. Refitting with Task Kernels 

4.1. Representation of Task Kernels 
The task kernel is calculated for every refit-task node of an 
annotation-verified plan, prior to refitting. It estimates the poten­
tial interactions that a reduction choice at this node wi l l have 
with the rest of the annotation-verified plan. It contains three 
different types of conditions— the effects of this node that are 
used elsewhere in the plan (called e—conds of the task kernel), 
the conditions that have to persist over this node (p-conds), and 
the external preconditions that are required by this node 
(e-preconds). Depending upon its type, a refit-task may not 
have all three types of task kernel conditions. (In fact, only 
replace reduction refit-tasks have all three.) The task kernel 
K of a node is computed as follows: 

(1) The e—conds of K(n) consist of ( i ) effects that arc 
inherited by n (these would be the required effects of 
the reduction of ), and (ii) any other effects of that 
are used elsewhere in the plan. Thus, for example, in 
the hierarchical task network of Figure 1, the e —conds of 
the task kernel of node wi l l be and 

(2) The p-conds of K consist of (i) p -conds that are 
inherited by from upper levels (these persist over some 
sub-reduction of which is a part) and {ii) p —conds that 
have to persist over at this level. Thus, in Figure 1, 
the p -conds of the task kernel of node w i l l consist of 
p - C 1 (which is inherited), and p—c2 (which is at the 
level of ). 

(3) The e-preconds of K consist of the external (unsu­
pervised) preconditions of the schema instance that 
reduced Thus, in Figure 1, e—preconds of the task 
kernel of node wi l l be e-pi and e~p2. 

Suppose that the sub-reduction R of node in Figure 1 has 
to be replaced (i.e., there is a replace reduction refit-task at ). 
Then the task kernel for this refit-task, K would be: 

Notice that by this definition, the task kernel of a node n 
is a subset of the annotations A on that node. The reason ker­
nel contents are not the same as the contents of the node anno­
tations is the fol lowing. Since the purpose of the task kernel is 
to control the choices for the reduction of a refit-task, the task 
kernel conditions should be at the same level of detail as the 
conditions in the schema instances that comprise the reduction 
choices. Thus, e-preconds, e-conds and p-conds of A which 
come from parts of the task network that are below the level of 

are not made part of K For example, in Figure 1, the 
task kernel of node n w i l l not include the e—cond and the 
e-precond e-p3. It is not possible to tell if a given choice of 
schema instance to reduce the refit-task at wi l l need, achieve 
or preserve such conditions, before it is completely reduced to 
the primitive level. 

4.2. Ordering refitting choices using Task 
Kernels 
The essential idea of using task kernels to order refitting choices 
is to choose the schema instance that preserves as many of the 
task kernel conditions as possible. This strategy has the follow­
ing desirable effects: 
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(1) By preserving the e-conds of the task kernel, we avoid 
the need to add additional steps to reachieve the useful effects 
of this node. 
(2) By preserving the p -conds of the task kernel, we minim­
ize the interactions that refitting at this node will have with 
the rest of the plan, thus preserving as much of the old appli­
cable plan as possible and reducing the cost of refitting. 
(3) By preserving the e-preconds of the task kernel, we util­
ize the already existing sub-reductions that give rise to those 
preconditions and thereby reduce the cost of reduction of the 
current node (by avoiding the need to reachieve a new set of 
external preconditions). 

We use the following procedure for ordering the schema instance 
choices to reduce a refit-task. 
Step 1. Order the refitting choices (schema instances) according 
to the number of task kernel e-conds they preserve. For each 
e-cond ec of the task kernel, if a schema instance S has an 
effect e that unifies with ec, we consider that 5 preserves ec. 
Step 2. Pick the set of schema instances that are ranked best by 
step 1. Order them according to the number of task kernel 
p—conds they preserve. A task kernel p—cond p—c is con­
sidered preserved by a schema instance S, if the effects of S do 
not negate p —c. 
Step 3. Pick the set of schema instances that are ranked best by 
step 2. Order them according to the number of task kernel 
e-preconds they preserve. An e—precond e-p is considered 
preserved by a schema instance S, if S has an external precondi­
tion that unifies with e —p 
The best ranked schema instances at the end of this three-layered 
process are returned as the schemas that are preferred by the task 
kernel based ordering. One of them will then be selected by the 
planner to reduce the refit-task. 

Notice that this three-layered procedure effectively 
imposes levels of importance on the three types of task kernel 
conditions, preferring the preservation of e -conds, p —conds and 
e-preconds in that order. These implicit levels of importance 
reflect the effect of violation of those conditions upon the overall 
refitting cost. We can also differentiate among the conditions of 
the same type, based on the relative effect the violation of those 
conditions will have on the cost of refitting. We suggest some 
methods for doing this in section 7. 

Let us consider again the replace-reduction refit-task at 
node n in Figure 1. We discussed the task kernel of this refit-
task in section 4.1. Suppose there are four schema instances 
capable of reducing this refit-task, specified as follows: 

Si: ?todo: e, prec: e-p6,e-p5 
eff: e , ^ , - .p -c 2 

S2: ?todo: e, prec: e-p!,e-p6,e-p7 

eff: e r , - ip -c 2 - 'P -C7 
S3: ?todo: e, prec: e-p l .e-p 7 

eff: er,eu,-ip-c2.-'P-C7 
S4: ?todo: er prec: e - p 6 , e - 5 

eff: ey.e^,-ip-c2,-ip-ci 
The ordering with respect to the task kernel e-conds would 
prefer the schema instances SiS3 and S4, since S2 does not 
preserve eu. Next, from these three, the ordering with respect 
to the task kernel p-conds would prefer Sx and S3 since they 
preserve one p-cond (p-c1) while S4 preserves none. Finally, 
from these two choices, the ordering with respect to the task ker­
nel e-preconds picks S3 since it can utilize one previously 
achieved precondition (e-pb. Thus, S3 would be suggested as 
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the best refitting choice. 

5. Example 
Consider the example of reusing the plan for the three block 
stacking problem (3bs) shown in Figure 2(a), to make a plan for 
the four block stacking problem (4bs) shown in Figure 2(b). 
PRIAR interprets the 3bs into 4bs using the object mapping 
[A →LB,→K,C→J ]. Figure 2(c) shows the task network after 
the annotation verification. The annotation verification procedure 
reveals two validation failures in the interpreted plan. The valida­
tion to the phantom node A [Clear (L)] is failing, and On (J J) is 
an extra goal. PRIAR then places a refit-task A [Clear (L)] at the 
site of the failing validation for re achieving the phantom goal 
condition (node n 11 in Figure 2(c)), and a refit-task A [On (JJ)] 
parallel to the interpreted plan to take care of the extra goal 
(node n 10 in Figure 2(c)). (For details of this process, see [7].) 

Consider the refit-task A [Clear (L)] at node n 11 in figure 
2(c). From the methods described in the previous section, we 
can calculate n i l ' s task kernel as: 

AT ( n i l ) = [e-cond: Clear (L) 
p--ond: Clear(J\Clear(K\On(JJ) ] 

Since this refit-task does not replace any parts of the pre­
vious plan, its task kernel will not have any e-preconds. On (J J) 
occurs in the task kernel because A [On (J,J)] is not yet ordered 
with respect to the plan and thus it is preferred that R (n 11) 
preserve On (J,J). 

The default selection strategy finds that this refit-task can 
be reduced by the following three schema instances: 

A : MakeClear-Table(LJ) 
eff: Clear (L ),On (J.Table) 

B : MakeClear -Block (L,J\K) 
eff: Clear (L ),On (J,K -Clear (K) 

C: MakeClear-Block (LJJ) 
eff: Clear (L ),On (JJ ),-,Clear (I) 

Where, the schema MakeClear-Block(?X,?Y,?Z) clears ?X by 
putting ?Y (which is on top of ?X) on top of ?Z, and the 
schema MakeClear -Table (?X,?Y) clears ?X by putting ?Y on 
the Table (which is always clear). 

When the above schema instances are ordered using 
K(n\\\ we find that the task kernel e-cond Clear(L) is 
preserved by all the three choices. So, they all survive to the 
next layer ordering with respect to the task kernel p -conds. At 
this stage, however, the p-cond Clear(K) is violated by choice 
B and the p-cond On (J,J) is violated by choices A and B. So 
the task kernel based ordering prefers choice C, 
Make-Clear {L,J,J). This will be sent to the planner as the 
schema instance with which node n ll should be reduced. 
Notice that this choice would in fact minimize the refitting cost. 
It also has the serendipitous side effect of achieving the extra 
goal, On (J,l). 

In this example, while the choice between B and C could 
have been made through a delayed binding of objects (e.g., the 
merge objects critic in NOAH [11]), such a strategy will not be 
able to deal with A, which is an instance of a different schema. 
Thus, controlling the choice among alternative schema instances 
involves more than delayed binding of objects. In particular, 
there may be different schemas that can reduce the same refitting 
task, with significant differences among their effects and precon­
ditions. Choices made with the help of task kernel based order­
ing will be able to effectively control refitting in such cases also. 



As another example, consider the fol lowing plan to attend 
a birthday party at San Fransisco: 

Suppose this plan has to be reused in a new situation where the 
airport does not have a gift shop, i.e., —chouse (Gift shop .Airport). 
This breaks the filler condition for the sub-plan 
GOTO(Giftshop .A i rpor t ) , necessitating a replace reduction 
refit-task at this place. The task kernel of this refit-task wi l l be: 

Thus, the task kernel based ordering prefers choices that do not 
take the agent away from the airport, do not involve spending 
too much money (because money w i l l be needed at 
BUY-FROM-SHOP (? Gift)), and do not cause the agent to lose pos­
session of the ticket. Consider two alternatives for refitting this 
plan: 

The task kernel based ordering prefers choice A to choice B. 
This is because A preserves the p-cond at (Airport) and also 
utilizes the old e-precond at (Airport), while B does not. 
Notice that to localize the refitting and reduce refitting cost, this 
is the best choice. However, this may not necessarily be the 
choice that leads to a plan with minimal execution cost. 

6. Related Work 
Interal dependency structures of plans have been used previ­
ously in replanning and plan revision to locate failures and to 
undo the wrong decisions (e.g., [15]). The novelty of oui 
approach is that we use the dependency structures also to con­
trol the refitting of the plan. Minimization of disturbance to the 
overall plan has been used as a basis for modification and repair 
of plans in other systems. Hammond's case-based planner, CHEF 
[5], uses the explanation of an execution time failure to suggest 
various minimally interactive ways of repairing that failure, and 
then uses domain dependent heuristics to select among the repair 
strategies. The debugger in Simmons' GTD system [12] selects 
among possible repairs by doing a causal simulation of the plan 
with the suggested repairs, followed by an assessment of the glo­
bal effect of the suggested repair on the final outcome of the 
plan. Aiterman's PLEX system [1] depends on the helpful cues 
from the new problem situation to trigger the retrieval of 
appropriate refitting choices. In comparison to these systems, 
PR1AR utilizes the already existing dependency structures of a 
plan to anticipate the interactions that would be caused by 
potential refits, and chooses the ones which cause least amount 
of disturbance to the rest of the plan. Domain dependent solu­
tions to plan refitting are embodied in PRIDE [9] and CAS [14] 
which store specific hand-coded strategies for repairing indivi­
dual failing preconditions, and use them to guide refitting. We 
realize that information such as these domain dependent repair 
rules, and justifications for planning decisions [2], may be able 
to exert a stronger control over refitting. The goal of our work, 
however, has been to demonstrate that even in the absence of 
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such domain specific information, refitting can be effectively 
guided by the dependency structures of the plan. 

7. Discussion 
The utility of the refitting control strategy presented in this 
paper ultimately depends on the trade-off between the effort 
invested in ordering the refitting choices with the use of task ker­
nels, and the effort that would be required to do the refitting 
without such an ordering. Since poor refitting choices cause 
interactions and give rise to increased planning cost (by increas­
ing the plan length and possibly causing costly backtracking), we 
believe that this trade-off falls in favor of the control strategy. 
The strategy is especially useful in cases where the number of 
refit-tasks is small compared to the length of the plan. In such 
cases, choices based on the task kernel based ordering lead to 
substantial savings in the refitting cost by keeping the refitting 
localized. Conservatism is thus an emergent property of this 
refitting control strategy. 

There are two types of costs associated with planning— 
the cost of planning, and the cost of execution of the produced 
plan. By localizing changes to the plan being reused, the 
refitting control strategy reduces the cost of planning for the new 
problem. It does not however guarantee the optimality of the cost 
of execution of the plan. This may not be a serious limitation 
since many domains where reuse has utility are also domains 
where it is more important to arrive at a plausible plan quickly 
than to guarantee the optimality of the produced plan. 

As the refitting control strategy relies on the dependency 
structures that are provided by the planner, an important issue to 
be addressed is the effect of incorrect and incomplete domain 
models on refitting. When the planner's domain models are not 
correct and complete, it is possible that both the plans that are 
generated from scratch and the plans that are produced by PR1AR 
through reuse may fail during execution, thereby necessitating 
plan repair and debugging (e.g., CHEF [5], GTD [12]). One of the 
goals of PRIAR's refitting strategy is to ensure that the plans it 
produces are at the same level of correctness as the the ones that 
are produced by the planner from scratch (the difference would 
be in the efficiency of producing the plan). If a refitted plan 
fails, it would be because of the inadequacy of the planner's 
domain models rather than due to incorrectness of modification. 
This is important since debugging is a costly operation. PRlAR's 
philosophy is that robust refitting of plans is not possible in the 
absence of internal dependency structures of the plan, and that 
dependency structures of the plan, even if they are incomplete, 
can help in locating applicability failures and localizing the 
modification. 

The task kernel based ordering presented in section 4 can 
be refined further by gauging the importance of the conditions 
in each layer of the kernel more precisely. For example, the 
hierarchical level of a validation could be used to measure the 
importance of that validation. In this sense, in the task kernel of 
node n in Figure 1, the p-cond p - c 1 which is inherited from 
an upper level, should be considered more important than p -c 2, 
since it may take more effort to refit the plan if p-cx is violated 
than if p-c 2 is violated. Another way of measuring the impor­
tance of a validation is to measure the number of nodes in the 
reduction which give rise to or use that validation. Thus in Fig­
ure 1, the external precondition e-px is given by the node nb, 
and so a measure of its importance is the number of nodes in 
R (nb). We are currently exploring such alternative ordering stra­
tegies to make the kernel-based ordering reflect the estimated 
cost of refitting more faithfully. 

Finally, although we presented the task kernel based ord­
ering in the context of plan reuse, we believe that it can also be 
profitably used in guiding replarming (repairing a plan in 
response to an execution failure due to an unexpected event). 
Another area where we expect potential utility for this type of 
control strategy is design reuse [10]. Notice that all these prob­
lems share the requirement of minimal modification to an exist­
ing structure to make it satisfy the constraints of a new problem. 
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