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Abstract 

This paper describes the mathematical ba­
sis for a computer language which can be used 
for representing natural human reasoning with 
imprecise linguistic information. The approach 
to doing this employs a collection of abstraction 
mechanisms which are based on the concept of 
a linguistic variable first introduced by Zadeh 
[1975]. The present semantics differs from that 
of Zadeh, however, in that (i) it does not require 
the use of fuzzy sets for the interpretation of 
linguistic terms, and (ii) the meanings of logi­
cal inferences are given as algorithms which act 
directly on linguistic terms themselves, rather 
than on their underlying interpretations. Two 
distinct types of deduction algorithm are pro­
posed. The overall objective is to devise a rea­
soning system having sufficient generality that 
it can conveniently employ these plus others in 
a unified frame. 

1 Introduction 
One of the central problems in the theory of approximate 
reasoning is how to model natural human reasoning with 
imprecise linguistic information. To illustrate, one would 
like to have an effective means of representing inferences 
like "MOST professional basketball players are VERY 
TALL; Bill is a professional basketball player; therefore 
it is VERY LIKELY that Bill is AT LEAST TALL." 

A wide variety of approaches to this problem have 
been proposed. Primary among these is the semantics 
based on fuzzy sets, known as possibility theory, de­
veloped by Zadeh [1965, 1975, 1978, 1986] Dubois and 
Prade [1979, 1987], and many others. As a result of more 
than two decades of research, possibility theory has now 
reached a respectable level of conceptual sophistication 

* This work was supported by the Office of Naval Re­
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and has encompassed a rich collection of natural lan­
guage phenomena. A second approach has focused on 
the probabalistic concept of uncertainty as a means of 
representing linguistic imprecision. Works in this genre 
include those of Shafer [1976] and Pearl [19S8]. A third 
approach, explored separately by Baldwin [1987] and by 
Dubois and Prade [1987, 1989], employs a notion of pos­
sibility and necessity measures. Such measures are an 
extension of possibility theory that evidently are inspired 
by the literature on modal logics. 

All such reasoning systems have their relative ad­
vantages and disadvantages. Typically there is an in­
herent tradeoff between semantic richness and computa­
tional tractability. In Zadeh's work semantic richness is 
achieved at the expense of almost overwhelming compu­
tational complexity. The approaches developed by Bald­
win and Dubois and Prade, on the other hand, are com­
putationally manageable but treat only limited aspects 
of the overall problem. Shafer's and Pearl's systems sim­
ilarly encompass only a portion of the desired set of lin­
guistic ideas. 

The present work represents an ongoing effort to 
resolve these difficulties through a somewhat different 
conception of natural language reasoning. A major dif­
ference between this conception and those that have gone 
before is that here no attempt is made to ground the var­
ious deduction procedures on an underlying semantics 
for the linguistic terms. For example, in the inference 
rule given above, Zadeh's approach would be to interpret 
each linguistic term as a possibility distribution over a 
universe of discourse (e.g., TALL is interpreted as a dis­
tribution over a set of heights), and the inference itself 
is then modeled as an operation on those distributions. 
A primary motivation for this and all similar approaches 
has been to establish a coherent model of natural lan­
guage reasoning on an intuitively plausible foundation. 

By contrast, the approach taken here yields what 
may be regarded as a naive semantics in that it makes 
no similar attempt. Rather, logical inferences are de­
fined as operations performed directly on the linguistic 
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terms—i.e. , w i t hou t appeal to their under ly ing inter­
pretat ions. In th is respect, the present system is akin 
to classical logic in tha t i t employs direct manipulat ion 
of symbols b u t at the same t ime impl ic i t l y captures the 
linguistic invariance of the logical connectives. In what 
fol lows, one obtains invariant aspects of the logical OR 
and A N D , together w i t h various linguistic hedges (like 
V E R Y and AT L E A S T ) and several varieties of l inguis­
t ic negat ion. Moreover, two dist inct variants of logical 
inference are por t rayed, and what forms of l inguistic 
qual i f icat ion are allowed w i l l in part depend on the type 
of inference scheme that is to be employed. 

Thus the present research accomplishes at least a 
par t of the overall goal. In reference to the example in­
ference given above, however, it st i l l falls short of deal­
ing w i t h l inguist ic quantif iers (l ike M O S T and F E W ) 
and the concept of l inguist ic l ikel ihood. Nonetheless, 
it is believed tha t the present system can be extended 
to capture these concepts as wel l , and a future work is 
planned which deals w i th these, together w i th a concept 
of l inguist ic tempora l i ty (w i t h modifiers like S E L D O M 
and U S U A L L Y ) . In this manner one should arrive at 
a system which is simple to implement, yet which at 
the same t ime is sufficiently comprehensive to be use­
fu l in many real-world appl icat ions. The in i t ia l a im 
shall be to develop deduction techniques for use in rule-
based expert systems. Once this is accomplished, then 
these l ikely w i l l be adaptable to associative nets and 
inheri tance systems. It also seems feasible that such 
techniques could be implemented on a type of neural 
computer. 

2 L ingu i s t i c Var iab les 

A linguistic variable A w i l l be represented as a t r ip le 
( T , U , M ) , where T is a set of linguistic terms, U is a 
universe of discourse, and M is a meaning assignment, 
each described as follows. 

The set T of l inguist ic terms is of the fo rm E u S , 
where E is a set of elementary linguistic terms and S 
is a (possibly empty) set of synonyms for elementary 
terms. For each A, the corresponding E is assumed to 
contain a unique primary term A. To i l lustrate, for the 
l inguist ic variable Height, a natura l choice of pr imary 
te rm would be T A L L . Where ant(A) represents the con­
cept of an an tonym, and med(A) represents the concept 
of an intermediate t e rm , we shall allow tha t E may have 
any of six possible forms. For notat ional convenience, r, 
v, and e w i l l be used as abbreviat ions for the linguistic 
hedges R A T H E R , V E R Y , and E X T R E M E L Y . The six 
forms are 

a) {ant(A), A} 

b) {an t (A ) , med(A), A} 

c) {an t (A) , r -ant(A), med(A), r-A, A) 

It w i l l be assumed that the terms in each version of E 
are ordered by a relat ion < in the manner shown. 

If nonempty, the set S contains alternative l inguis­
tic equivalents for members of E. For example, if A = 
Height, w i th pr imary te rm = T A L L , then natural 
choices of synonyms for med and ant would be 
M E D I U M and SHORT. In addi t ion, S might contain 
phrases considered as being equivalent w i th an elemen­
tary term, e.g., the synonyms for m e d ( T A L L ) might 
include N E I T H E R T A L L N O R SHORT. The introduc­
t ion of synonyms into the system is not only for the 
convenience of the user, but also to enrich the system's 
overall expressive power. They play no essential role, 
however, in any of the deduction schemes. Rather, de­
ductions are defined exclusively on elementary terms. 
For this reason, whenever a member of S appears in a 
deduction, it is impl ic i t l y assumed as representing the 
corresponding elementary te rm. 

In some instances there w i l l be more that one nat­
ural choice of pr imary te rm for a given l inguistic vari­
able. For example, if A = Age, then one might choose 

= O L D or A = Y O U N G . Under the current defini­
t ion, one obtains a dist inct l inguistic variable for each 
such choice of pr imary te rm. 

The universe U is a set of objects that is used for 
providing meanings for the terms in T. For example, 
if A = Age is intended as a l inguist ic variable for ages 
of people, then a choice for U might be the ages in 
years f rom 0 to 150. It is allowed tha t U be empty. 
Such would be appropriate for a l inguistic variable like 
Kindness, for which there is no presumed measurement 
scale. 

The meaning assignment M is defined only if U # 0. 
There wi l l be three permissible interpretat ion schemes. 
For r € T, M ( r ) is either 

1) a subinterval of U, 

2) a possibil i ty d is t r ibut ion over U, or 

3) a probabi l i ty d is t r ibut ion over U. 

The mapping M is used to determine which term 
in T should be ascribed to an ind iv idual A, given some 
measurement u for A along U. For example, suppose M 
is defined for a version of Age using subintervals, and 
M ( O L D ) = [70, 125]. Then , if A is known to be 84 
years o ld , one would ascribe A the term O L D . If pos­
sibi l i ty distr ibut ions are used, then A is ascribed the 
term in T w i th which A's age has the highest degree of 
possibility. If probabi l i ty d ist r ibut ions are used, then 
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one ascribes the term for which A's age has the highest 
probabil i ty. Note that in the latter it would be natural 
to use probabi l i ty distributions determined by a statis­
t ical sampling. Which interpretation method is used, or 
whether any interpretations are used at al l , turns out to 
be irrelevant for the purposes of the deduction methods 
described below. 

3 Inference M e t h o d A 
An earlier version of this method appeared as [Schwartz, 
1987]. There the problem was simplified by l imi t ing the 
consideration to elementary decision rules of the form 

where and are given as linguistic terms con­
sidered as unary relations all of the same individual vari­
able. To i l lustrate, where T = T A L L , C = C O O R D I N A T -
ED, M = M O T I V A T E D , and S = S U I T A B L E , the infer­
ence 

T(X), C(X), M(X)=>S(X), 

might be used to determine the suitabi l i ty of an in­
dividual X for a basketball team. The deduction al­
gor i thm is defined in such a way that an individual's 
having a strong rating along one hypothesis wi l l coun­
terbalance that individual's having a weak rat ing along 
another. For example, even though indiv idual A is only 
R A T H E R C O O R D I N A T E D , i f A is M O T I V A T E D and 
VERY T A L L , then A should be SU ITABLE . The de­
duction scheme in this way mimics the type of reasoning 
employed in mult i -cr i ter ia decision making. 

Here this method is extended to include terms that 
represent n-ary relations and to permit a few addit ional 
variations. One wi l l now be able to express inferences 
such as 

S I M I L A R ( X , Y ) => S I M I L A R ( Y , X ) 

and, where PREF denotes a preference relation, 

P R E F ( X , Y), PREF(y , Z) => P R E F ( A , Z), 

and to make more specialized requirements on what 
such inferences should mean. 

Let A = ( T , U , M ) be a linguistic variable wi th 
primary term A rank g is assigned to each term 

according to: (i) if T consists of only the two 
terms ant and A, then = — 1 and = 1, 
(i i) in all of the five other cases, = 0, the 
terms greater than med w i th respect to the ordering 
< are assigned in increasing order the successive pos­
itive integers 1,2, . . . , and the terms less than med 
are assigned in decreasing order the negative integers 
— 1, — 2, .. .. Then a distance measure ό may be defined 
on the terms r in T by 

1070 Commonsense Reasoning 

In practice it is l ikely tha t one w i l l want to tai lor 
this scheme to different s i tuat ions. Such wi l l in fact be 
necessary in case the te rm set for the inference's con­
clusion contains only the two terms A and ant(A). Here 
one must specify which of these to choose as 
Other modif icat ions may also be appropriate under cer­
ta in condit ions, e.g., one might want special provisions 
in case some of the in the inference are st r ic t ly less 
than rned in their respective te rm sets. An extreme 
modif icat ion would be to ind iv idua l ly specify for each 
possible choice of completely by-passing 
the use of the summat ion. It is envisioned tha t , in an 
implementat ion, each inference would 
be represented w i th in a more complex data structure 
(akin to a frame) which includes an indicat ion of the 
associated inference computa t ion . 

A variant of this method was discussed by Lee and 
Schwartz and Lee [1988]. There l inguist ic terms were 
reinterpreted v ia some "generic" possibi l i ty d is t r ibu­
t ions, and the distance measure 6 was given as a hor­
izontal distance between such dist r ibut ions. This has 
the advantage tha t the distance measure to a certain 
extent reflects the shape of the d is t r ibut ions. It has the 
disadvantage, however, tha t the measure is not addi­
t ive: for terms and T3 f r om the same linguistic 
variable, one does not in general have tha t 

For the purposes of appl icat ion in 
expert systems, i t may t u r n out tha t this disadvantage 
outweighs the advantages. 

Another var iat ion, also considered in [Lee and 
Schwartz, 1988], is to apply weight ing factors to the 



distances in the summation, reflecting that some of the 
hypotheses are more important than others. This fur­
ther exploits well-known methods of multi-criteria de­
cision analysis. 

4 Inference Method B 
Earlier versions of the ideas in this section have ap­
peared as [Schwartz 1987 and 1988b]. For the present 
purposes, the concepts of Section 2 must be expanded 
to include a set of operators defined generally for all 
linguistic variables. In addition to proposing some intu­
itively plausible renditions of these operators, the defi­
nitions themselves serve to illustrate a general definition 
method. It should be clear that many further operators 
can similarly be introduced by these means. 

Let A be a linguistic variable with term set T. The 
expressions of A are defined as follows: (i) terms in 
T are expressions of A, (ii) if e and ε' are expressions 
of A, then (ε OR ε'), (ε AND ε'), and NOT t ε are 
expressions of A, (iii) if r is a term in T, then all of 
NOT0 r, NOT8 r, NOTa r, NOTv r, AT LEAST r, 
and NO MORE THAN r are expressions of A. 

The expressions e of A are provided with a relative 
meaning p(ε), given as a subset of T. Here "relativity" 
is with respect to the set T. Let r € T, and let < be 
the ordering defined on members of T. For the special 
case that T does not contain the term med(λ), assume 
that statements such as r < med(A) are replaced by the 
analogous statements involving ranks, p(r) < 0. 

For arbitrary r €T, set 

p(r) = {T}. 

Thus the relative meaning of any term is just the sin­
gleton composed of itself. For arbitrary expressions ε,ε' 
of A set 

p(e OR ε') =: p(ε)Up(ε'), 

p(ε A N D ε') = p(ε)np(ε'), 

p(KOTtε) = T-p(ε), 

where U, ∩, and — are ordinary set operations. 

By virtue of these interpretations, any subset T' of 
T is taken as representing the logical disjunction of the 
terms in T ' . The special case that p(ε) = 0 is taken 
as saying that e is contradictory or impossible. It fol­
lows that the conjunction of any two distinct elementary 
terms is contradictory. The particular form of NOT de­
fined above is called total negation and is interpreted as 
expressing "anything except ε." We now consider the 
other forms of NOT and the two adverbial phrases. 

Ordered Negation. A very common form of negation is 
one wherein NOT r means "something less than T" if r 
is above med(A) and means "something more than r" 

if r is below med(A). Th is may be represented here as 
an operator N O T o defined by 

Strong Ordered Negation. A form that is closely related 
to ordered negation is one in the sense of "not at all r", 
which would natural ly apply only to either A or ant(A). 
This may be defined by 

A possible variant of this might addit ional ly include a 
clause for "not at all med(A)," represented as a subset 
of T w i th a gap in the middle. How this is defined, 
however, may depend on which fo rm of T is being em­
ployed. 

Antonymical Negation. Another frequently used form 
of negation is the reference to the antonym of a term. 
This also wi l l ordinar i ly be applied only to either A or 
ant(A). We have 

The "Not Very" Negation. In the l i terature on fuzzy 
logic, one frequently finds a term like N O T V E R Y T A L L 
being interpreted as meaning the same th ing as VERY 
SHORT. In ordinary English usage, however, this ex­
pression more often means something like R A T H E R 
T A L L . Thus we may define 

The Adverbial Modifier "At Least." This operator may 
be d e l i e d by 

An abbreviation for AT LEAST wi l l be A L . 

The Adverbial Modifier "No More Than.'' This may be 
defined by 

Schwartz 1071 



An abbreviat ion for NO M O R E T H S N wi l l be N M T . 

We may now consider the inferences for Me thod B. 
These have the same general fo rm as for Me thod A, w i th 
the exception tha t the hypotheses and conclusion may 
be expressions. Thus, where T = T A L L , S = S H O R T , and 
A = A C C E P T A B L E , one may have inferences such as 

N O T 0 T A N D N O T 0 S ( X ) => AT L E A S T A(X), 

and, where P denotes a preference re lat ion, 

The associated deduct ion a lgor i thm is as fol lows. 
Where the collection of variables X1',..., X'm is a subset 
of X1,1 ,......,X1,m1, Xn1, . . . , Xn,mn, let 

Then the a lgor i thm for Scheme B has tha t , if al l of 
the hypotheses are satisfied in th is way by indiv iduals 

then one may conclude 

where are the indiv iduals corresponding to 
X1',... ,X'm. It is wor th not ing tha t , even though Pro­
log does not provide all the abstract ion mechanisms de­
scribed here, the general effect of this deduct ion method 
can be replicated in that language. 

5 T h e Synthes is 

In tegrat ing the two inference methods in to a unif ied sys­
tem requires dealing w i t h three separate bu t interre­
lated problems: forward chaining, backward chaining, 
and evidence combinat ion. Due to lack of space, only 
the f irst of these w i l l be discussed. Suppose we have 
two inferences 

where the conclusion r of the former is composed of 
term(s) f rom the same l inguist ic variable as one of the 
hypotheses of the la t ter . F i rs t consider the case tha t 
the former inference is of type A and the lat ter is of type 
B. Then the conclusion of the former is a te rm, and, 
since the relative meaning of terms is defined, there is 
no problem in determin ing whether is satisfied. Thus, 

for th is s i tuat ion, the mechanism for forward chaining 
is already provided. 

Second suppose tha t the former inference is of type 
B and the lat ter of type A. Then w i l l in general be 
represented as a subset of the associated te rm set T, 
whi le the deduct ion a lgor i thm for the lat ter inference 
involves a distance measure which is defined only be­
tween terms. Th is shortcoming is easily remedied by 
s imply extending the distance measure 6 to a measure 

defined on the subsets of T: where T1 , T2 C T, set 

or, al ternatively, replace m in w i t h max. Th is distance 
measure may be applied to the relative meanings of ex­
pressions. In order for this to make in tu i t i ve sense, i t 
w i l l typ ical ly be necessary to restr ict such meanings to 
be only those which consist of unbroken sequences of 
l inguist ic terms, i.e., sets of terms which do not contain 
gaps. 

Backward chaining wi l l be more complex than in 
Prolog, bu t should nonetheless be tractable. Evidence 
combinat ion w i l l have several different schemes, w i th 
the choice depending par t ly on the part icular l inguistic 
variable and par t ly on the part icular inference scheme 
being employed. 
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