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Abstract 
Causal probabilistic networks have proved to be 
a useful knowledge representation tool for mod­
elling domains where causal relations in a broad 
sense are a natural way of relating domain ob­
jects and where uncertainty is inherited in these 
relations. This paper outlines an implementation 
the HUGIN shell - for handling a domain model ex­
pressed by a causal probabilistic network. The only 
topological restriction imposed on the network is 
that, it must not contain any directed loops. The 
approach is illustrated step by step by solving a. 
genetic breeding problem. A graph representation 
of the domain model is interactively created by us­
ing instances of the basic network components— 
nodes and arcs—as building blocks. This structure, 
together with the quantitative relations between 
nodes and their immediate causes expressed as 
conditional probabilities, are automatically trans­
formed into a tree structure, a junction tree. Here 
a computationally efficient and conceptually simple 
algebra of Bayesian belief universes supports incor­
poration of new evidence, propagation of informa­
tion, and calculation of revised beliefs in the states 
of the nodes in the network. Finally, as an exam 
ple of a real world application, MUN1N an expert 
system for electromyography is discussed. 

1 Introduct ion 
In recent years, locus has been put on the development of 
expert systems based on a probabilistic scheme where the 
structure of the domain knowledge is represented in a di­
rected graph. Contrary to earlier probabilistic attempts, this 
approach makes the domain structure explicit and utilizes 
the topology of the graph in the control of the inference. The 
probabilistic scheme has as opposed to rule based and logic 
based systems—an intrinsic distinction between so-called 'ex­
pectation evoked' and 'explanation evoked' inference [Pearl, 

* HUGIN stands for Handling Uncertainty In General Inference 
Network. Coincidentally, according to Norse mythology, llugin and 
Munin are two ravens, whispering intelligence into the ears of the 
god Odin. MUNIN is also used a.s acronym for an expert system for 
electromyography. 

1988]. This knowledge representation has been termed dif­
ferently in the literature: Baves belief net [Pearl, 1986a], 
causal probabilistic network [Andreassen et a/., 1987), causal 
networks [Lauritzen and Spiegelhalter, 1988], probabilistic 
causal network [Cooper, 1984], influence diagrams [Howard 
and Matheson, 1981], and so on. 

A causal probabilistic network, which is the term we have 
chosen to use in this paper, is— at a qualitative level—a graph 
where the nodes represent domain objects and the links be­
tween nodes represent causal relations between these objects. 
At a quantitative level, the relations expressed by the links 
are represented by conditional probabilities. Together with 
methods derived from Bayesian decision theory, this formal 
ism offers a consistent means of handling uncertainty inherent 
in expert systems [Horvitz et a/., 1988]. 

The key issue of this formalism is the ability to re­
duce the computation to a series of local calculations us­
ing only variables obtainable from one object and its neigh 
bors in a graph structure. Hereby a calculation of the 
global joint, probability distribution is avoided. Furthermore, 
the graph representation showing explicit dependencies and 
independencies—is a powerful tool in the knowledge acquisi­
tion and verification process [Pearl and Paz, 1987]. 

When the network is singly connected (i.e., at most one 
path between pairs of nodes is allowed), K im and Pearl 
1983] gives a conceptually simple scheme for passing mes­

sages along links between nodes in the causal probabilistic 
network. Unfortunately, not all real world problems can be 
modelled as a. singly connected network, and a multiply con­
nected network (i.e., more than one path between pairs of 
nodes may exist) is required in order to catch the facets of 
the domain. Several schemes are proposed in the literature 
such as reasoning by assumption [Pearl, 1986], and value pre­
serving arc-reversing [Shachter, 1988]. 

This paper outlines the expert system shell MUCIN. This 
shell provides (1) a set of tools for creation of a causal proba­
bilistic network which simultaneously creates a graphical in­
terface to the domain model, and (2) a set of tools for entering 
quantitative information about the state of the domain and 
for propagating this in the network. Behind the scenes, the 
Algebra of Bayesian Relief Universes is used. This scheme 
[Andersen et a/., 1987, Jensen, 1988a, Jensen ct a/., 1988, 
Olesen and Andersen, 1988], which is a substantial simpli­
fication of [Lauritzen and Spiegelhalter, 1988], allows prop-
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agation of evidence in acyclic mult iply connected networks. 
The algebra is conceptually as simple as the method of Kim 
and Pearl [1983] for singly connected causal probabilistic net­
works. This simplicity is achieved by transforming the multi­
ply 

connected network into a set of belief universes organized 
as a tree, a, junction tree, and by providing the operations for 
propagation of information between belief universes in the 
tree. The basic operation is calibration of one belief uni­
verse with another. Calibration is the basis for two oper­
ations: Distribute Evidence and CollectEvidtnee. which dis­
tributes evidence from one belief universe to all other belief 
universes, and collects evidence to one belief universe from 
all other belief universes, respectively. The idea of a separate 
representation lor propagation purposes is also used in the 
approaches of Dechler et al [1988] and Shaler and Sheuoy 
[1988]. 

In order to illustrate the HUGIN shell, 1 he next section 
deals with an example from genetics. The reader is guided 
through the major steps from specifying the model to mak­
ing it operational, and finally inferring beliefs based on data 
entered into the model. In Section 3, the use of the algebra 
of Bayesian belief universes is outlined. Section 1 contains 
an overview of the HUG1N shell architecture, and finally Sec­
tion 5 discusses problems in applying HUGIN to real world 
applications, exemplified by M U N I N , an expert system for 
electromyography. 

2 An example: Breeding 
We will demonstrate the HUGIN shell by going through 
an example taken from genetics (inspired by Spiegelhalter 
[1989]). The example concerns breeding and would typically 
be found within animal husbandry, but in order to make it 
more attentive, we state it in terms of human beings: 

Florence and Gregory are about to reproduce. How­
ever, Gregory is Florence's nephew, and in the an­
nals of Bartholomew, the father of Florence and 
grandfather of Gregory, a. life-threatening disease 
has haunted. The disease is caused by a domi­
nant allele A, and appears in a rather late stage 
of the individual's life-time. Bartholomew married 
twice, hence Florence and Gregory's mother are 
half-siblings. Neither Florence nor Gregory, their 
parents, nor Gregory's grandmother have shown 
any signs of the disease. What is the risk that their 
child will inherit the fatal characteristic? 

2.1 Qua l i t a t i ve m o d e l l i n g 

The first step in a HUGIN session is to formulate the problem 
in terms of a causal probabilistic network. The genealogical 
structure of our example is shown in Figure 1. 

Each individual is represented by name, and parent-child 
relations are represented by arrows from parent to child. 
Note that the diagram contains two different paths from 
Bartholomew to H: via Eliza and Gregory, and via Florence. 

In general, we are interested in determining the genotype 
of the individuals. To each individual, we associate a node 
labelled with his/her ini t ial and as states the possible geno 
types identified by the combination of alleles. Hence, each 
individual is of exactly one of the genotypes AA, Aa, or aa. 

Figure J: Genealogical structure for the example. 
In our case, where one allele is dominant, this means that the 
genotypes A A and A a arc carriers of the disease, whereas aa 
is not. \\ hat can be observed is whether the disease is prcsenl 
or not. but this can only be determined when the individual 
has reached a mature age due to the sneaky character of the 
disease. In order to be able to enter relevant information on 
observed occurrences and ask for expectations of the disease, 
we add disease nodes to the elder and the coming generation. 
These nodes, labelled by the individuals initial with index d, 
have two possible states, yes and no, corresponding to the 
presence and absence of the disease, respectively. 

At, this point , the qual i tat ive structure of our problem is 
determined, and we invoke the H U C I N shell. The shell is 
menu-driven, and most operations are done by mouse selec­
t ion. Figure 2 shows the main screen w i th the model en­
tered. Here a domain specific window labelled Brttding is 
created, and the model is constructed: this is done by se­
lecting the Create domain entry on the main menu (attached 
to the H U C I N icon). A l l nodes and links are entered, and 
the corresponding graphical symbols are created. For each 
node, a display name and the states are typed in . Enter ing 
states for the disease nodes is not necessary though, as the 
states yes and no apply as default. If so desired, the domain 
model can be saved at any point , for later cont inuat ion by 
reloading. 

1The reader may feel a need for a discussion of temporal relationships 
appropriate, but this is outside the scope of this paper. 
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2.2 Q u a n t i t a t i v e m o d e l l i n g 

Let us complete the model by specifying the numeric par t of 
the l inks. This is done by means of condit ional probab i l i t y 
tables. For each node, we give a condit ional probabi l i ty for 
each state given the states of its parents. Thus for the disease 
nodes, we have tables as specified in Table 1. 

Table J: Conditional probability table for genotype-disease rela­
tions. Each entry specifies the probability of the disease givei 
t he genotype. 

A skeleton for the table is automat ica l ly generated, and 
the numbers are typed in . Now the domain model is com­
plete and a selection of Compile w i l l generate an operat ional 
run- t ime system. A l though this last step appears simple, i t 
actual ly holds the key to the success of the method. W h a t 
happens is that the state space of the model is factorized in 
order to allow for efficient computat ions. This is discussed 
in more detail in Section 3. 

2.3 I n t e r a c t i v e p r o b l e m s o l v i n g 

Asking for the belief in node Hd, we see a risk of 10% (Fig­
ure 1) for // being a v ic t im of the disease. This seems reason­
ably low, and we can give Florence and Gregory our blessings. 
Unfortunately, while s t ructur ing the model, Bar tho lomew, 
our young lovers' common ancestor, has caught the disease. 
To see whether this affects our approval of the marriage, let 
us enter this new fact into our model. Select Set state on Bd 

and enter the fact; then update the beliefs by selecting Prop­
agate. 

Table 2: Conditional probabil i ty table for parent-child relations. 
Each entry specifies the probabil ity distribution for the geno­
type of the child (A A, Aa, aa) given the genotypes of parents P1 

and P2 

For the parent-chi ld relations, we get tables as shown in 
Table 2, where parents P1 and P2 have offspring C. Since top-
nodes do not have any parents ( in our model that is), their ta­
bles degenerate to a pr ior i values for their genotypes. Assume 
that the condit ions for Hardy-Weinberg equ i l ib r ium are ful­
f i l led, and let the frequency of A be p and the frequency of a 
be q {p+q — 1). Then the a pr ior i probabi l i t ies for the geno­
type of any indiv idual N is P0(N) — (p2,2pq,q2). For p — 
0.01, we get P(A) = P(C) = (0.001)1,0.0198,0.9801). For 
Bar tholomew, we est imate P(B) = (0.0025,0.2500,0.7475) 
as his grandmother was known to sutler f rom the disease. 

We wi l l now enter these considerations into H U G I N . Select 
the Specify table ent ry f rom the menu attached to the node 11 
in the Breeding w indow, and a new dialogue window pops up 
(Figure 3). 

A request for belief in Hd now yields a risk of 36%, forcing 
us to implore Florence and Gregory to reconsider their plans. 

Suppose that the informat ion about Bartholomew's alleged 
misfortune was wrong, but tha t instead Al ison showed the 
disease. We would then Retract the f ind ing on Bd ( re turn ing 
to the a, pr ior i belief for B) and follow the described procedure 
on Ad. Al ternat ively, we could choose Initialize and repeat 
as above. In both cases, we f ind IPs risk to be 22%. 

At this po int other possibilities could be investigated, but 
we wi l l leave our friends wi th their worries here and close the 
section. 

3 Beh ind the scenes 

In the example of Section 2, several things happen behind the 
scenes, but the user does not need to worry about that unless 
the model has a complexi ty that requires manual intervent ion 
(see Section 5). 

In this section, we out l ine the most impor tan t features 
from behind the scenes. In [Lauri tzen and Spiegelhalter, 
1988] and in the discussion by Jensen [1988b], and by Olesen 
and Andersen [1988] in the same art ic le, an exposit ion of the 
methods can be found. A ful l descript ion of the methods is 
given in [Jensen et a/., 1988] and in [Jensen, 1988a]. 
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3.1 T r a n s f o r m a t i o n o f t h e causa l n e t w o r k 

The inference in a causal network is in HU IN not done 
direct ly in the network. Instead, the domain represented by 
the network is par t i t ioned in to a set of subdomains called 
belief universes. 

A belief universe U consists of a set of nodes, denoted |U| 
and a belieftabic. For reasons to become clear soon, the node 
sets are called cliques. A belief table is a non-normalized 
table for the jo in t probabi l i t ies of the belief space. 

The construct ion of a system of belief universes, equivalent 
to the or ig inal domain model , consists of the fol lowing steps: 

• Form the moral graph: For each node in the network, 
add l inks between all of its parents. Drop the direct ions. 

• Triangulate the moral graph: \ graph is triangulated if 
all cycles of length > 3 have a chord. Add links to the 
moral graph unt i l a t r iangulated graph is obtained. 

• Form the system of belifuninerses: The node sets are 
the cliques of the t r iangulated graph (a clique is a max­
imal set of nodes, all of which are pairwise l inked). The 
in i t ia l belief tables are calculated as appropriate prod­
ucts ol the condit ional probabi l i ty tables (described by 
Laur i tzen and Spiegel halter [1988]). 

• Organize the system as a junction tree: Links between 
belief universes are int roduced. This is done such that 
a tree w i th the following property results: For all uni­
verses U, V, each belief universe on the unique path be 
tween U and V contains |C| ∩ |V| . In Figures 5 and 6, 
a junc t ion tree for the domain from Section 2 is given. 
As proved by Jensen [1988a], a junct ion tree can be con­
structed by a max imal spanning tree a lgor i thm. 

A l l steps except the second are determinist ic: There is only 
one moral graph, and the set of cliques of a tr iangulated 
graph is unique. There may be several junct ion trees, though, 
but the differences are not (at this po in t ) essential. 

The second step—the t r iangulat ion is not t r i v ia l . There 
is a wide range of l i terature on t r iangulat ion [Rose et a/., 
1976, Yannakakis, 1981, Tarjan and Yannakakis, 1981, Kong, 
1986], and it is an NP-complete problem to find a t r ian­
gulat ion g inv ing the min imal tota l table size [Gavr i l . 1977. 
In FUGIN, the a lgor i thm used for t r iangulat ion is maxi­
mum cardinal i ty search [Tarjan and Vannakakis, 1984]. An 
a l g o r i t h m - giv ing much better results on sparse graphs—has 
been constructed [Jensen and Kj ierulf f , 1989] and wil l be in 
tegraled into the next version ol HUGIN . 

Figure 5: Distribute Evidence is called from {.4, Ad), and the ev 
idence is propagated to all universes. 

3.2 P r o p a g a t i o n o f e v i d e n c e 

A belief table is a non-normalized assessment of jo in t prob­
abil i t ies for a cl ique. Let V be a belief universe wi th belief 

Figure (i: The flow of evidence when Collect Evidence is called in 

table /J , and let ,S C \U\. An assessment of j o in t probabi l i t ies 
for 5 can be obtained from B by summing up al l beliefs in B 
for S. This operation is called marginalization. In part icular , 
the belief in a single node can be obtained by marginalizat ion 
in the normalized table of anv belief universe containing i t . 

Evidence is t ransmit ted between belief universes through 
the calibraton operat ion. A belief universe U calibrates to 
another belief universe V as follows [.Jensen t-t ai. 1988]: 

1. Calculate the belief table for |C| ft |\ | by marginalizing 
i he belief table of C 

tn 

2. Calculate the belief table for the same intersection by 
marginal izing in V''. 

3. Mu l t i p l y the belief table for V bv the rat io of the tables 
achieved by (2) and (1) (i.e., the table achieved by (2) 
is divided by the table achieved by (1)). 

In H U G I N , an object oriented style is used: Each belief 
universe is an object holding its own data and its own meth­
ods. They communicate only wi th neighbors in the junct ion 
tree. 

Cal ibrat ion is the local propagation method. For a global 
propagation, the evidence is propagated to all belief universes 
through the junct ion tree. 

There are two ways of propagating evidence. A forward 
propagation performed by the operation Distribute Evidence, 
and a backward propagation performed by the operation Col-
lectEmdence. 

Distribute Evidence is used when evidence from a single 
belief universe must propagate to the ent i re system: Evi­
dence is t ransmit ted to neighbors, and their DistributeEv-
ulence method is called (see Figure 5). Collect Evidence is 
used when evidence i rom the entire system must be propa­
gated to a single belief universe: U asks neighbors to Col-
lectEvidencc, and then U makes a mul t ip le cal ibrat ion to 
them [Jensen et a/., 1988] (see Figure 6). 

When findings have been entered into more than one belief 
universe, they can be propagated to the ent ire system by a 
call to Collect Evidence, followed by a call to Distribute Evi­
dence f rom an arb i t rary belief universe. 

There ^re other methods for calculation of probabil i t ies 
in networks w i th loops [Pearl, 1988, Shachter, 1988]. These 
methods also contain graph manipulat ions w i t h a potent ial 
for a combinatorial explosion. 'These manipulat ions are per­
formed every t ime evidence is propagated in the causal net­
work. The methods in H U G I N have the advantage that the 
graph manipulat ions are performed once and for all when the 
graph is t r iangulated. When the junct ion tree has been con­
structed, an upper l im i t on t ime and space requirements for 
evidence propagation can easily be est imated. 
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In general, the task of probabi l is t ic inference in causal net­
works is NP-hard [Cooper, 1987]. The methods in H U G I N 
makes it unnecessary to solve an NP-hard problem every 
t ime evidence is propagated. Instead the NP-hard problem 
is tackled in the construct ion phase, where much effort can 
be devoted to f inding op t ima l solutions. 

4 Schematic overview of H U G I N 

A typical H U G I N session is d iv ided into three subtasks: 
(1) Creation of a domain model , (2) generation of a run­
t ime system, and (3) the actual problem solving. These tasks 
must be performed sequentially, but the session can be sus­
pended at any point , and resumed later. The M U C I N shell 
is organized in a modular lashion as unhealed in Figure 7. 

Figure 7: The structure of H U G I N , and the flow through the 
system from a domain model to a run-time system. 

The graphical interface module does al l the necessary 
book-keeping and provides access to facil i t ies for creat ion, 
saving, loading, and deletion of domains. The editor module 
offers facil i t ies for creat ing and ed i t ing a causal probabil is­
t ic network, i.e., creation and deletion of nodes and causal 
l inks, creation and ed i t ing of condi t ional probab i l i t y tables 
etc. The compiler module creates a junc t ion tree in which all 
calculations are done (cf. Section 3.1). The inference module 
maintains a set of current beliefs in al l nodes in accordance 
w i t h entered f indings. 

The H U G I N shell is implemented in C. and the graphical 
interface is clone in NeWS.2 

5 The M U N I N networks 

So far we have i l lustrated the use of H U G I N only by means of 
a. simple example. In the E S P R I T project P599: "A Knowl ­
edge Based Assistant for E lect romyography" [Andreassen et 
a/., 1987, Andreassen et a/., 1989, Olesen et a/., 1989], large 
networks are being constructed in order to diagnose muscle 
and nerve diseases. These nets const i tu te the M U N I N 3 ex­
pert system. 

In M U N I N , we are dealing w i t h networks consisting of 
several hundred nodes. Handl ing networks on th is scale of 
size raises new problems. The main problem concerns space 
and—as an impl icat ion hereof—time. The automat ic t r ian-
gulat ion in H U G I N is achieved by the m a x i m u m cardinal i ty 

2NeWS™ is a trademark of Sun Microsystems, Inc.. 
3MUscle and Nerve Inference Network. 
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search a lgor i thm. This method is sufficient for small prob­
lems, but it is inadequate for large networks as it produces 
unnecessarily large belief universes. 

As an example, one of the nets in M U N I N consists of 
57 nodes, having f rom 2 to 21 states. In this network, at 
least one belief universe consisting of 14 nodes is created. 
This results in a huge belief table, and hence implies slow 
and space consuming propagat ion. The best known cover­
ing of this net consists of two 8-node belief universes and 13 
other belief universes, g iv ing a to ta l size of about 2.2 mi l l ion 
numbers in the belief tables. 

6 Conclusion 
We have presented a new expert system shell lor model l ing 
domains by causal probabil ist ic net works. The main achieve­
ment is the handl ing of mu l t ip ly connected networks by 
t ransformat ion to a t ree structure where the inlerence can 
be done ellu ieutly. The shell, which employs the newest re-
search results, has proved its capabi l i ty to handle domain 
models of non-t r iv ia l size as exemplif ied by the M U N I N ap­
pl icat ion. 

HUG IN is now a well-suited tool for construct ion of 
research-like expert systems. However, much work st i l l needs 
to be done before a full-size expert system shell is con 
st ructed. In part icular , the fo l lowing ideas and funct ional­
ities are under investigation and development: 

• detection of confl ict ing evidence 

• explanat ion facil it ies 

• search for crucial findings 

• p lanning 

• learning 

• extension to continuous variables 
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