Reflection and Action Under Scarce Resources:
Theoretical Principles and Empirical Study

Eric J. Horvitz, Gregory F. Cooper, David E. Heckerman
Medical Computer Science Group
Knowledge Systems Laboratory
Stanford University
Stanford, California 94305

Abstract

We define and exercise the expected value of
computation as a fundamental component of
reflection about alternative inference strategies.
We present a portion of Protos research focused
on the interlacing of reflection and action un-
der scarce resources, and discuss how the tech-
nigues have been applied in a high-stakes med-
ical domain. The work centers on endowing
a computational agent with the ability to har-
ness incomplete characterizations of problem-
solving performance to control the amount of
effort applied to a problem or subproblem, be-
fore taking action in the world or turning to
another problem. We explore the use of the
techniques in controlling decision-theoretic In-
ference itself, and pose the approach as a model
of rationality under scarce resources.

1 Reflection and Flexibility

Reflection about the course of problem solving and about
the interleaving of problem solving and physical activity
Is a hallmark of intelligent behavior. Applying a portion

of available reasoning resources to consider the utility of
alternative inference strategies or the value of continuing

to refine a result before acting enables a computational
agent to generate custom-tailored approaches to a wide
variety of problems, under different time pressures. Such
flexibility can be especially useful in light of uncertain
deadlines and challenges. Uncertainty about problems
and problem solving plagues simple agents immersed In
complex environments. Constraints on an agent's rea-
soning and representation resources lead to inescapable
uncertainties about the problems that may be faced and
about the value of future reasoning in solving those prob-
lems.

The Protos project has pursued the use of deci-
sion theory for real-time control and offline problem-

*This work was supported by a NASA Fellowship under
Grant NCC-220-51, by the National Science Foundation un-
der Grant IRI-8703710, by the National Library of Medicine
under Grant RO1LM0429, and by the U.S. Army Research
Office under Grant P-255l4-EL. Computing facilities were
provided by the SUMEX-AIM Resource under N1H Grant
RR-00785.

solving design. The work has highlighted opportunities
for the principled control of reasoning under scarce re-
sources with problems in sorting and searching and with
decision-theoretic inference itself [Horvitz, 1987a]. We
havp particularly dwelled on the decision-theoretic con-
trol of decision-theoretic inference as a model of rational
computational inference under resource constraints. In
this paper, we present a component of this work cen-
tering on the use of incomplete characterizations of the
progression of probabilistic inference to reason about the
value of continuing to reflect about a problem versus tak-
iIng action in the world. This methodology uses knowl-
edge that partially characterizes relevant dimensions of
problem-solving performance. Such knowledge can be
learned and refined with experience. We shall introduce
components of utility for computational or real-world
actions, and define the expected value of computation
in terms of the likelihood of future probability distribu-
tions over the truth of relevant propositions about the
state of the world. After discussing the theoretical prin-
ciples and empirical results, we describe a component
of research centering on the offline analysis of problem-
solving trajectories. Such offline musing, weighted by
expected challenges, can be important in real-time re-
flection about problem solving.

2 Decision-Theoretic Valuation

Decision theory provides the foundations for a princi-
pled approach to metalevel decision making under un-
certainty. Decision-theoretic metareasoning can be es-
pecially useful in reasoning about the selection, and op-
timal halting time, of reasoning strategies that incre-
mentally refine results as scarce resources are expended
[Horvitz, 1987b, Dean and Boddy, 1988].

We usu comprehensive value, U., to refer to the util-
ity associated with the value attributed to the state of
an agent in the world. This value is a function of the
problem at hand, of the agent's best default action, and
of the stakes of a decision problem. We call the net
change expected in the comprehensive value, in return
for some allocation of computational resource, the ex-
pected value of computation (EVC). It is often useful
to view the comprehensive utility, at any point in the
reasoning process, as a function of two components of
utility: the object-level utility, uy and the inference-
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related cost, u;.! The object-level utility of a strategy

IS the expected utility associated with a computer re-
sult or state of the world. We say that the object-level
utility is a function of a vector of attributes, v. For
example we may assign an object-level utility to an in-
completely sorted file of records, based on several differ-
ent dimensions of incompleteness. The inference-related
component is the sum of the expected disutility intrin-
sically associated with, or required by, the process of
problem solving. This cost can include the disutility of
delaying an action while waiting for a reasoner to infer a
recommendation. In general, the inference-related cost
is a function of a vector of resource attributes, 7, rep-
resenting the quantity that has been expended of such

commodities as time and memory.

There is generally uncertainty in the object-level state
resulting from the expenditure of computational re-
sources. Thus, in the general case, we must sum over
a probability distribution of object-level attributes to
generate an expected comprehensive utility. If ¥ and
T are the vectors representing object-level and inference-
related attributes without additional computation, re-
spectively, and the v and 7 are the revised vectors, ex-
pected with additional computation, the net, or change
in, comprehensive utility, given some allocation of re-
sources Is

EVO(F) = D u (7,7 ) p(# [F') — ue(#,7)

In cases where the inference-related and object-level util-
ities can be decomposed, and are related through addi-
tion, the EVC is just the difference between the increase
In object-level utility and the cost of the additional com-
putation,

EVC(F) = D uol@ ) p(F |7 ) =uo()] = [wi (F ) =i (7))

In another study, we considered the refinement of multi-
dimensional attributes of partial results with computa-
tion [Horvitz, 1988]. Here, we will simplify our object-
level focus to a probability of a state in the world, H,
and the quality of an associated decision to act, A, given
uncertainty about the truth of the state. We will sim-
plify the inference-related component to a consideration
of computation time.

The decision-theoretic approach to metareasoning in
difficult machine intelligence problems was introduced by
|.J. Good over 2 decades ago, in the context of the control
of game-playing search [Good, 1968]. Good had earlier
discussed the explicit integration of the costs of inference
within the framework of normative rationality, defining
Type 1 rationality as inference that is consistent with
the axioms of decision theory, regardless of the cost of
inference, and Type |l rationality as behavior that takes
iInto consideration the costs of reasoning [Good, 1952].
Related work in decision science has focused on the
Ikely benefit of expending effort for decision analyses
‘Matheson, 1968, Watson and Brown, 1978]. Our group

More comprehensive notions of the value of a reasoning
system in an environment are discussed in [Horvitz, 1987D].
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researched the general applicability of decision-theoretic
control of computation, with an emphasis on metarea-
soning problems with probabilistic inference and knowl-
edge representation [Horvitz, 1987b]. Early investiga-
tion demonstrated that multiattribute decision-theoretic
control of reasoning had promise for guiding the so-
lution of a variety of tasks, including such fundamen-
tal problems as sorting a file of records or search-
ing a large tree of possibilities [Horvitz, 1987a]. In-
deed, there have been recent studies of the value of
computation in the control of sorting [Horvitz, 1988]
and of game-playing search [Russell and Wefald, 1988,
Hansson and Mayer, 1989]. In related research on the
control of logical inference, Smith, and Treitel and Gene-
sereth, have explored the use of decision theory for select-
ing alternative logical reasoning strategies [Smith, 1986,
Treitel and Genesereth, 1986].

3 Complexity of Inference

In reasoning about real-world actions under uncertainty,
an agent generally must consider alternative decisions
and outcomes, preferences about the possible outcomes,
and the uncertain relationships among actions and out-
comes. We have been investigating the use of influ-
ence diagrams [Howard and Matheson, 1981] for repre-
senting and solving automated reasoning problems. The
influence diagram is an acyclic directed graph containing
nodes representing propositions and arcs representing in-
teractions between the nodes. Nodes represent a set of
mutually exclusive and exhaustive states; arcs capture
probabilistic relationships between the nodes. Influence
diagrams without preference or decision information are
termed belief networks. A belief network defines a model
for doing probabilistic inference in response to changes
In information.

The problem of probabilistic inference with belief net-
works is NP-hard [Cooper, 1987]. Thus, we can expect
algorithms for doing inference to have a worst-case time
complexity that is exponential in the size of the problem
(e.g., the number of hypotheses and pieces of evidence).
Some methods for inference in belief networks attempt-
to dodge intractability by exploiting independence re-
lations to avoid the explicit calculation of the joint-
probability distribution. A variety of exact methods has
been developed, each designed to operate on particu-
lar topologies of belief networks [Horvitz et al., 1988a].
Other methods forego exact calculation of probabilities;
these approximation techniques produce partial results
as distributions or bounds over probabilities of interest.
The complexity of precise inference and the availability
of alternative reasoning approaches highlight the need
for robust approximation strategies and intelligent con-
trol techniqgues. We have sought to develop and con-
trol decision-theoretic inference for reasoning under un-
certainty in high-stakes and time-pressured applications,
such as medical decision making.

4 Decisions Under Scarce Resources

Let us explore concerns that arise in automated decision
making under scarce resources. The graph in the lower
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Figure 1: A representation of a time-pressured decision
problem. From top to bottom, the three sections of the
figure portray (a) the decision-theoretic metareasoning
problem, (b) a belief network representing propositions

and dependencies in intensive-care physiology, and (c) a

closeup on the respiratory status node, and its relation-
ship to the current decision problem.

portion of Figure 1 depicts an object-level influence-
diagram representation of a time-pressured problem that
might face an automated physician's assistant: A 75-
year-old woman in the intensive-care unit suddenly
shows signs of breathing difficulty. The patient may be
merely showing signs of mild respiratory distress or may
be in the more serious situation of respiratory failure. In
this context, the primary decision is whether or not to
recommend that the patient be placed on a mechanical
ventilator. The decision (square node) depends on the
probability of respiratory failure, which, in turn, depends
on the probabilities of propositions in a large belief net-
work serving as a medical knowledge base (represented
by the graph above the object-level problem in Figure 1).
The large oval nodes in the base decision problem rep-
resent uncertain states associated with placing an older
person on a ventilator. The diamond represents the util-
ity associated with different outcomes. Factors to con-
sider in a decision to act include the possibility that it
may take a long time to wean a patient with severe lung
disease from a ventilator that is applied needlessly; thus,
the patient may face a long hospital stay and be placed
at high risk of mortality from a disease such as pneumo-
nia. However, if the patient turns out to be in respira-
tory failure, and is not treated immediately, she faces a
high risk of cardiac arrest based on the disrupted phys-
lology associated with abnormal blood levels of oxygen
and carbon dioxide.

4 .1 Actions and Outcomes in the World

In our simple example, there are only four different fun-
damental outcomes. The patient either is in respiratory
failure (H) or is not in respiratory failure (—~H), and we
either will place the patient on a ventilator (.4) or will
not do so (—A). Thus, we may erroneously decide not
to treat a patient who is suffering from respiratory fail-
ure (mA,H), we may correctly treat a patient who is
suffering from respiratory failure (AH), we may erro-
neously treat a patient who is not suffering from respira-
tory failure (A, ~H), or we may correctly forego treating
a patient who is not suffering from respiratory failure
(mA,~H). The expected object-level utilities of action
[u(A)] and of no action [u(—A)] in terms of the proba-

bility of respiratory failure, P(H), are described by the
following equations:

u(A) = p(H)u(A, H)+ p(~H)u(A,-H)
u(—A) = p(H)u(—~A,H) + p(~H)u(—-A,-~H)

The lines described by these equations intersect at a
probability of 77 denoted p* The desired action (the
decision with the highest expected utility) changes as
the utility lines cross at ;P*. A utility analysis dictates
that a patient should not be treated unless a decision
maker's belief in the truth of H is greater than p™

4.2 Decisions About Computation

Let us now integrate explicit knowledge about the pro-
cess of reasoning into the decision problem. In answer
to a query for assistance, our automated reasoner must
propagate observed evidence about the patient's symp-
tomology through a complex belief network. The results
of an approximate probabilistic-inference scheme may be
a probability distribution over a final probability. This
probability is the value that a computer will calculate
from a belief network, given sufficient time to finish its
computation. Assume that our reasoner may apply one
of several incremental-refinement algorithms that can it-
eratively tighten the distribution on the probability of
Interest over time. We wish the system to make a ratio-
nal decision about whether to make a treatment recom-
mendation immediately, or to defer its recommendation
and continue to reason, given its knowledge about the
costs of time needed for computation.

4.2.1

The example of a patient gasping for breath, facing the
risk of a long hospitalization or a cardiac arrest depend-
Ing on our decision, poignantly demonstrates the salience
of reasoning-resource constraints in a high-stakes situa-
tion. Sc far, we have considered the utilities of alter-
native outcomes to be independent of time. Assume
that the utility of treating a patient in respiratory fail-
ure depends on how long the patient has been in failure.
Assume, also, that the initial presentation of respira-
tory symptoms occurs in the presence of the reasoner
and that analysis of the problem begins at this time,
t.. We represent the cost of delaying treatment, when
that treatment is needed, by considering a continuum of
mutually exclusive decisions to treat at different times,
A(i). where t = 1, + Al. A cost function can capture

Costs of Inference-Based Delay
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the decay of utility of action with time. At some time t,
the utility of acting in the presence of respiratory failure
reverts to the utility of not acting at all. We substitute
the static utility equation for u(A), defined previously,
with a time-dependant equation:

ulA)] = p(H)ulA@),H]+p(-,H)u(A,->H)

where u[A(t), H] reverts to u(~A, H) as some function of
time?. In this example, we assume that delay of action
will not affect the utility of a patient that does not re-
quire the intervention. With the time-dependent utility
function, our p* threshold will change with time.

As indicated by the network in the upper portion Fig-
ure 1, a more complete representation of the respiratory
decision problem includes knowledge about the costs and
benefits of applying different inference strategies. This
iInfluence diagram represents the metareasoning prob-
lem. The node labeled U, in the metareasoning network
Is just the value node from the object-level decision prob-
lem represented at the bottom of Figure 1. Rather than
seek to optimize the object-level value, our agent's goal
IS to optimize the utility associated with the value node
In the metareasoning problem, labeled U.. As demon-
strated by the relationships among propositions in the
metareasoning problem, U, is a function of the object-
level value and the inference-related cost, Ui, which in
turn depends on computational delay, time availability,
and the context. The integration of inference-related and
object-level utility allows agents to treat decisions and
outcomes regarding the control of reasoning just as it
does decisions about action in the world.

4.2.2

Our agent's attention is centered on the calculation of
p(H), the probability of respiratory failure. We define <¢
to be the probability that the agent would compute if it
had sufficient time to finish its computation. That is, ¢
Is value of p(H) that the reasoner will report after com-
plete computation. At the present moment—before the
inference is completed—our automated reasoner may be
uncertain about what the value of ¢ will be. The current
uncertainty is described by some probability distribution
over ¢. We denote the uncertainty about ¢ at the present
moment by p(¢). Although this distribution can change
with reasoning, investigators [Howard, 1970] have shown
that the belief a decision maker should use for decision
making, if she has to act immediately, is the mean of
p{), denoted by < ¢ >. After spending additional time
t on inference about ¢, our reasoner may have a new
distribution over ¢, denoted by p,(¢).

An automated reasoner may have useful knowledge
about how a distribution over a belief—and thus how
the new mean of the distribution -will change with ad-
ditional computing. An important class of knowledge
about ¢ is of the form, p(py(¢$)). This measure refers to
belief at the present time about the likelihood of alterna-
tive belief distributions over ¢ that might be generated

Reflection About Future Belief

In this domain, we could capture the cost of delay with a
stochastic model describing the probability of a cardiac arrest
as a function of the time we delay therapy; cost models can be
useful summaries of the utility of a large number of outcomes.
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after computation for additional time t. This notion is
central in reflection about the value of initiating or con-
tinuing decision-theoretic inference, as opposed to that
of acting with the current best decision.

Expected Value of Perfect Computation  Suppose
that, after thinking for only a few milliseconds, an auto-
mated reasoner has generated a probability distribution
over ¢. We first introduce the expected value of perfect
computation on ¢, denoted by EV PCy4. The EVPC,
may be viewed as the value of instantaneous complete
computation of the target probability in a decision set-
ting. Instantaneous complete thinking would collapse
the current probability distribution over ¢ into an im-
pulse. Given the current probability distribution p(¢)
over ¢, we define EV PC, as follows:

EVPCy = / p(¢) max u,[D(¢)] dp — max u,[D < ¢ >]
¢

where maxy u.[D < ¢, >] is the utility, associated with
the best decision D, based on taking an immediate action
using the current mean belief, < ¢, >. This measure
tells us that the value of computing the final answer is
just the difference in utility between the current best ac-
tion and the summation of future best actions weighted
by the probability of different final beliefs.

Belief About Changes in Belief Real-world com-
puters rarely deliver the full expected value of perfect
computation on difficult problems because they must
expend valuable resources in the reasoning process. As-
sume that our agent in the intensive-care unit, faced with
determining the probability that our elderly patient is
in respiratory failure, has incomplete knowledge about
what p(¢) will be at some future time t, which we re-
fer to as p(p,(¢)). For example, the system may have
a probability distribution over the future bounds on o
with additional computation. Such knowledge may have
been acquired through an empirical analysis of a network
In addition to an upper bound that has been proved the-
oretically. Our reasoner could apply this type of knowl-
edge by considering the EVC(t) based on the information
about probability distributions over p(¢), obtained with
computation for an additional time ¢, as

EVC(t) = ] p(pi(9)) /

p(8) max u[D(6),1] do dp.(6)
Pi(¢) ¢

~ max u,[D(< ¢o >)]

That is, we sum over the new probability distributions
on ¢ expected at time t, weighted by the current belief,
p(p:(¢)), that thinking until t will lead to each of the
revised distributions. In terms of the mean, < ¢; > of
the future distributions, p;(¢),

EVC = / p(pi(9)) max u.[D(< ¢, >,t)] dpi(o)
pe(#) b

~ max uo[D(< ¢ >)]

When, for all t, the cost of computation, embod-
led within our comprehensive utility function, becomes
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Figure 2: |In reasoning about the value of continuing
to reflect about belief, versus that of taking immediate
action, an EVC-evaluation module considers the deci-
sion problem and the probability distribution over future
probability distributions [p(pt (@))] that may be gener-
ated with the allocation of computational resource.

greater than the benefit of computing (EVC < 0O), an
agent should cease reflection and act. The EVC formula
can be used to study the value of alternative inference
schemes. Of course, there can be significant overhead
In the real-time application of an EVC-based control
strategy. Thus, a central goal of research on decision-
theoretic control is to identify tractable solutions to the
EVC evaluation problem. Alternatively, offline analysis
and compilation of control strategies may be useful In
situations where the complexity of meta-analysis limits
the gains of real-time decision-theoretic control.

Analogous value-of-computation approaches can be
used to valuate and control other problem classes. For
example, we can use an EVC(t) calculation for control-
ling the nature and extent of a search or sort problem;
we associate a cost with the time required to expand
another node in a tree, or to perform a set of tests and
swaps in a partially sorted file, and consider a probability
distribution over the expected object-level gains, given
the allocated time. The development of tractable EVC
approximations for these and other problems, make pos-
sible useful normative control through iterative testing
of the value of continuing to reason.

5 Value of Probabilistic Bounding

We have pursued tractable solutions to the EVC through
examining parameterized families of distributions. For
example, we have explored the use of the EVC approach
to control probabilistic bounding methods. Assume that
our automated reasoner has, with some initial amount of
computation, computed upper and lower bounds on g),
with an upper bound at b and lower bound at a. If our

reasoner does not have any information about where g
iIs—except that the final computed result will be between
the current bounds—then it is reasonable to assume a
uniform distribution over @ between the bounds. A uni-
form distribution within bounds is consistent with an
agent being ignorant of the final belief, except for the
bounds information. Detailed knowledge about conver-
gence could change this distribution. Let us focus on
the value structure of assuming uniformity at both cur-
rent and future distributions about belief. We denote
the problem by EVC/BU, the expected value of compu-
tation for a bounding algorithm given an assumption of
uniformity.

An agent may have useful knowledge about p«(a) with-
out having information about how the mean < g; > will
change, except for knowing that @ will be constrained
to tighter bounds. As an example, a system could make
use of certain or uncertain knowledge about the rate of
bounds convergence to valuate a decision to continue to
compute. We have analyzed how a system can apply
knowledge that the bounds on the belief for a node in a
belief network will converge at a rate dictated by a frac-
tion, C, which, when multiplied by the current bounds
Interval at t,, dictates the interval at t. That is,

intt = C . in'tl.,

where int is just the interval, or the difference between
the upper and lower bounds. If we were uncertain about
the convergence, we would have a probability distribu-
tion over this convergence fraction.

We have applied the EVC equation to the bounding
problem, considering future distributions expected with
additional computation. Given a convergence fraction
that allows us to calculate the future bounds, we must
consider all possible configurations of the new bounds
given the current constraints. As we sweep the expected
future interval over the current interval, the mean of the
future distribution sweeps between positions within the
current bounds. When the mean is above p*, we sum
over the utility of acting for all states of belief greater
than that threshold; when the mean is below p* we simi-
larly consider the utility of not acting. Given our current
bounds and a convergence fraction, we sum the utilities
of the best decision at the future means and subtract
the utility of the best action without additional compu-
tation. Solving the uniform distribution case for different
possible p* boundary conditions yields functions that re-
port the EVC as a function of (1) the utilities for each
of the four outcomes, (2) the current bounds on g, (3) a
function describing the expected convergence of bounds
(e.g., aC, with time, and (4) the cost of delay. Under un-
certain performance, a rational agent's reflection based
on the EVC formalism involves the interlacing of probes
for positive EVC(t) and continued inference. Computa-
tion should continue until action is indicated by a non-
positive EVC. This volley of reflection and inference is
demonstrated in Figure 2.

5.1 Partial Characterization of Inference

We have experimented with decisions about computation
and action within alternative utility contexts. We have

Horvitz, Cooper and Heckerman 1125



particularly explored the behavior of recently-developed
graceful approximation methods for probabilistic infer-
ence. These strategies include a flexible variant of Pearl's
method of conditioning [Pearl, 1986], called bounded con-
ditioning [Horvitz et al., 1988b].

In the method of conditioning, a multiply connected
network is reformulated to a set of singly connected net-
works by locating a set of nodes that break cycles. The
complete set of cycle-breaking nodes is called the Jloop
cutset. The nodes ofthe loop cutset are instantiated with
each possible value (or combination of values), and the
resulting joint probabilities of each instance are calcu-
lated as prior probabilities of the instantiated variables.
Algorithms for solving the singly connected network sub-
problems can be applied to the solution of each network
iInstance. In bounded conditioning, instances are ana-
lyzed in order of their expected contribution to the tight-
ening of bounds. The instances are sorted according to
their prior probability, and are solved in sequence. A
bounding calculus generates logical bounds on the final
probability of interest by considering the maximum and
minimum contributions of the unexplored subproblems.

We applied bounded conditioning to several random
networks as well as to a belief network describing prob-
abilistic relationships among findings and pathophyiso-
logic states in an intensive-care unit.” The structure
of this belief network is captured by the graph in the
middle of Figure 1. The network consists of 37 mul-
tiply connected nodes. We studied the performance of
several loop cutsets for this network. A sample loop cut-
set consists of 5 nodes that leads to 144 different singly
connected-network problems.

We sought to characterize the refinement of bounds
with additional computation. Our analyses focused on
updating belief in the intensive-care network with single
pieces of evidence. We found that the convergence of the
bounds could by approximated by an exponential decay
of the size of the interval with time. This convergence
was modeled approximately by the function

inl = ¢~ k(t+1)

Additional discussion of bounded conditioning, includ-
iIng analysis of the basis for such convergence, is found
iIn [Horvitz et al., 1988b]. As an example, the conver-
gence of a typical update in the network is captured by
an exponential decay with an approximate half-life of
36 seconds. That is, after 36 seconds of analysis by a
Motorola-68020-based computer, running at a 17 MHz
clock rate, the bounds converge to one-half of their orig-
iInal bounds. At 72 seconds, the bounds are halved once
again to an interval of approximately 0.25. This conver-
gence is modeled by the exponential decay with kK = 0.02.
The convergence is displayed in Figure 3.

This convergence information can be used to calcu-
late an EVC associated with continuing to apply the
bounding algorithm. Evaluating the EVC within our
testbed intensive-care belief network has shown, for sam-
ple updates and associated sets of utility estimates, that
a p* decision threshold can be crossed well before the

>This network, called ALARM, was constructed by Ingo
Beinlich [Beinlich et al., 1989].
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Figure 3: The application of the bounded-conditioning
method to the intensive-care unit belief network prob-
lem. The graph shows the convergence of the upper and
lower bounds, and the mean of the approximation (cen-
ter curve), to a probability of interest as additional in-
ference subproblems are solved.

computation of final belief. Experimentation with ratio-
nal metareasoning to select among alternative inference
strategies, and to control the length of time that they
are applied is continuing on a variety of belief networks
and decision contexts.

5.2 Acquisition of Control Knowledge

Our formalism for the calculating the value of proba-
bilistic bounding operates on knowledge about conver-
gence on bounds. We have performed theoretical anal-
ysis of worst-case performance of bounded condition-
Ing. We have also recorded empirically derived partial-
characterization information. Clearly, an agent could
benefit by continually bolstering its knowledge about
partial characterizations with extensive empirical study
of problem-solving trajectories during idle-time. A com-
ponent of our research focuses on an offline analysis of
the performance of reasoning strategies of different net-
works. The analyses are aimed at capturing useful par-
tial characterization of the expected performance of dif-
ferent strategies by performing Monte Carlo simulation
to generate plausible patterns of evidence, and summa-
rizing and storing a set of performance indices. For ex-
ample, we are interested in the convergence of bounds in
response to a state of evidence. This information can be
extremely useful to a control reasoner that is attempt-
ing to valuate the EVC for a set of competing solution
strategies. We are researching the automated acquisi-
tion of partial characterizations of stategy performance
within the intensive-care unit application area.



6 Summary

We have described research on the rational interlacing
of decision-theoretic inference with action under scarce
resources. We highlighted the use of partial characteriza-
tions of probabilistic inference to reason about the value

of continuing to reason about a problem versus that of

taking action in, the world. After defining the expected
value of perfect computation, we explored the expected
value of computation for reasoning about belief in a de-
cision context. We focused on the valuation of future
computation, based on a consideration of future prob-

ability distributions over the truth of a proposition of

interest. We described the use of normative metareason-
ing techniques for valuating and controlling probabilistic
inference for time-pressured medical decisions. Prelimi-
nary empirical work has demonstrated that a probability
bounding algorithm can deliver a large fraction of the
expected value of perfect computation well in advance
of complete inference. We are continuing to experiment
with different distributions over belief and are working to
characterize useful dimensions of algorithm performance.
We foresee that advances in the application of decision-
theoretic reflection will play an important, role in the
development of effective normative reasoning systems.
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