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Abstract 
A l l the qual i tat ive simulat ion algori thms so 

far proposed depend upon local propagation 
paradigm, and hence produce spurious states. 
Recent approaches use topological constraints 
in phase space diagrams for filtering the spuri­
ous states. We propose an alternative method 
of recognizing global properties in the graphi­
cally expressed qual i tat ive model. Qual i tat ive 
versions of such system-theoretic concepts as 
stabi l i ty and observabil i ty are used to analyze 
the global properties of the system. We first 
present s t ructura l condit ions for recognizing 
qual i tat ive stabi l i ty or instabi l i ty in the qual­
i tat ive model. We introduce the new concept 
of invariant sign pattern which is a qual i ta­
t ive version of fixed point . Once the qual i­
tat ive model becomes the invariant sign pat­
tern, i t remains in that state. The condit ions 
for the qual i tat ive model to have an invariant 
sign pattern are also characterized. A l though 
our method is restr icted to a l inear system, the 
method does not suffer f rom such restrict ions 
coming f rom two dimensional phase space d i ­
agrams, such as the target system must be a 
second order system. We also discuss how to 
extend the method to non-linear systems. 

Introduction 

Qual i tat ive physics [de Kleer and Brown 1984] (or 
qual i tat ive process theory [Forbus 1984]) has been stud­
ied recently. Qual i tat ive reasoning is used for predict ing 
and explaining the behavior of the physical system by 
using symbolic computat ion. 

De Kleer and Brown [de Kleer and Brown 1984] use 
logical proof as the explanation for the physical behav­

ior. They pointed out that the logical proof has undesir­
able features for making causal accouts, and proposed 
mythical causality. Whi le their model ing is rather com­
ponent oriented, Forbus [Forbus 1984] developed pro­
cess oriented modeling. Kuipers ' theory [Kuipers 1986] 
, however, starts f rom abstract ing the mathemat ical 
model preserving qual i tat ive informat ion in the model. 
Both Kuipers [Kuipers 1986] , and de Kleer and Bo-
brow [de Kleer and Bobrow 1984] developed simulat ion 
algori thms on their qual i tat ive models. Both of them 
introduce higher order derivatives to predict change 
precisely. The problems of these qual i tat ive reasoning 
methods are: 

1. A l though these methods provide model ing perspec­
tives, they are not yet ready for the automat ic or 
interact ive generation of the qual i tat ive models of 
large-scale systems such as industr ia l processing 
plants. 

2. They do not use global properties which do not 
come f rom the local propagation of the constraint 
or state. 

Falkenhainer and Forbus 
[Falkenhainer and Forbus 1988] focus on the problem 
of the model ing by considering the granular i ty of the 
model. We focus on the second problem using s t ructura l 
condit ions for global properties. Struss [Struss 1988] 
and Lee and Kuipers [Lee and Kuipers 1988] also dis­
cuss the second problem w i th reference to the phase 
space por t ra i t . We wi l l present an alternative method 
for f i l tering out spurious behavior using global proper­
ties, which can be checked on the graphical ly expressed 
qual i tat ive model. The global properties of the system, 
such that an oscil lation wi l l converge on some point or 
not, can be discriminated to some extent by checking 
the sign structure of the graph. Our method seems to 
be more suitable for symbolic computa t ion than w i th 
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the method using geometric condit ions, however ours 
suffers f rom the l im i ta t ion that the target system must 
be linear. 

Section 2 shows the qual i tat ive model of dynamical 
systems. The qual i tat ive model is a signed directed 
graph obtained by keeping the qual i tat ive information 
of sign structures of a linear system. In section 3, global 
analyses such as stabi l i ty analysis are made on the qual­
i tat ive model . 

2 Qualitative Model of a Dy­
namical System 

2.1 The qual i tat ive model 

Qual i tat ive theory of l inear systems, which has 
been studied extensively in econometrics [Quirk 1965, 
Quirk 1968] and mathemat ical ecology [Jeflferies 1974], 
is used as a-n analysis tool for the qual i tat ive model. In 
many systems such as chemical processing plants dy­
namical behavior is expressed or approximated by a 
linear differential equation: 

We use the qual i tat ive model expressing the signed 
mat r ix As. 1 In the model , an arc is directed f rom node 
i to node j w i th the sign of (A8)ij. Most of the results 
of qual i tat ive system theory are obtained for the state-
space expression of this linear system. Thus, in order to 
direct ly use this qual i tat ive system theory, we transform 
the model into this state-space expression. A l l the in­
teractions whose phase lag are n > 1 are divided into n 
sequential interactions of phase lag 1 by introducing n-1 
dummy variables (nodes). On the other hand, variables 
(nodes) connected by the interact ion of phase lag 0 are 
regarded as one variable (node). In the global analysis 
of section 3, we assume the systems under discussion 
are already normalized. 

Non-l inear systems must be first linearized in the fol­
lowing manner. Develop the system around the point of 
interest, then neglect the higher order non-linear terms. 
This l inear approximat ion is only valid in the neigh­
borhood of the point . The linearized system must be 
expressed in state-space expression for later analysis. 

E x a m p l e 2.1 
The model for the pressure regulator is shown below. 

1 S i g n e d m a t r i x A, of A is a t r ip le value ma t r i x defined as 
fol lows: 

Fig. 2 Qualitative model of 
the pressure regulator 

Fig. 1 shows a diagram of a pressure regulator. F ig . 
2 is the signed digraph expressing the qual i tat ive model. 
Since the phase lag of all the arcs is normalized to 1, 
only the sign is indicated in the arc. 

2.2 Causality and system theoretic 
concepts 

In dynamical system theory, many concepts such as ob­
servability and stabi l i ty have been studied. Since these 
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Xs : a rea a v a i l a b l e f o r t h e f l o w 
t h r o u g h t h e v a l v e 

Po 
Pi 
DP 
Qi 
Qo 

: pressure at outlet 
: pressure at inlet 
: pressure drop across the valve 
: inflow to the valve 
: outflow from the valve 

a, b, c, e, f: appropriately chosen 
positive constants. 



concepts have in tu i t ive explanatory power, they may be 
used as aids for causal account. There seems to be an 
impor tan t relation between the concept of observability 
and causality. In system theory, observabil i ty is defined 
as: 

"A system is said to be observable by an ob­
server if i t is possible to determine the in i t i a l 
state by observing the ou tput signal f rom the 
observer dur ing a f inite t ime s tar t ing f rom the 
in i t ia l t ime." 

We can use the observabil i ty 2 (or its dual concept of 
controlabi l i ty) as a tool to check the potent ia l causabil-
ity. It is not against our in tu i t ion to say that the event 
dX = + (or —) can cause the event dY = + (or —) only 
when X is observable f rom Y. 

3 Global Analysis 

The main advantage of using state-space expression (2-
1) of the qual i ta t ive model is that it allows many system 
theoretic analyses, especially the global analysis. This 
section presents several results which can be used as a 
tool for a global analysis on the qual i tat ive model. 

3.1 Qualitative stabil i ty analysis 

A property of a system is called qual i tat ive if it is de­
termined only by the sign structure of the qual i tat ive 
model. In this section, we discuss the qual i tat ive prop­
erty of the qual i tat ive model. T w o kinds of qual i tat ive 
stabil it ies, and qual i tat ive observabil i ty are defined as 
follows. 

D e f i n i t i o n 3 . 1 . (sign stabi l i ty and potent ial sta­
bi l i ty) 

A qual i tat ive model As is called sign (potent ia l ) sta­
ble if all (some of) instances of the model are stable 3. 

D e f i n i t i o n 3 .2 . (sign observabil i ty) 
The qual i tat ive model w i th the observer is said to be 

sign observable if all instances of the model are observ­
able f rom the observer. 

In the example 2.1, the graph indicates that the 
model can be decomposed into two strongly connected 

2 The observabil ity of the l inear system can be checked by 
a mat r i x . Let y = Cx,y € RlXm,C € RnXm be ob­
served output of the linear system (2-1), then the observabil­
i ty f rom y can be known by testing whether or not the mat r i x 
[C1CAyCA2

>...iCAn-1] have the fu l l rank . 
The solution of the system wi l l asymptot ical ly converge on 

an equ i l ib r ium point. 
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components corresponding to the subsystem Pi and 
the subsystem consisting of Po, Q, Xs. Pi is observable 
f rom the subsystem of Po, Q, Xs and not in opposite 
way. Notice, however, that even if the model is decom­
posed in to strongly connected components, the affecting 
subsystem may not be observable f rom the affected sub­
system in such cases that the affecting subsystem has a 
constant mode or two effects canceling each other. (Ob­
viously, the affected subsystem is not observable f rom 
the affecting subsystem.) 

A necessary and sufficient condi t ion for a qual i tat ive 
model to be sign stable is obtained w i th the concept of 
sign observabil ity. 

T h e o r e m 3.3 . 
A qual i tat ive model is sign stable if and only if the 

qual i tat ive model has the fol lowing propert ies. 
(1) There is no positive loop 5 and there exists at 

least one negative loop, 
(2) there is no positive circui t of length two, 
(3) there is no circui t of length greater than two, and 
(4) by sett ing the subsystem of negative loops as ob­

server, the rest of the subsystem is sign observable f rom 
the observer. 

Proof 
The condit ions ( l ) - ( 3 ) guarantee that the system does 

not have divergent mode 6 . In order to fur ther guaran­
tee that the system does has neither constant mode nor 
pure periodical modes we only have to put the condi­
t ion that that the signals are always observable f rom the 
node having a negative loop. In other words, if the sys­
tem has pure periodical modes then the signal may not 
be observable by the cancellation of the oscil lations of 
different phase. Likewise, if the system has a constant 
mode the signal is not observable. 

E x a m p l e 3 .4 . 
To demonstrate the power of the sign stabi l i ty , let 

us consider the mass-spring system whose state-space 
expression is as below: 

dX/dt = V 
dV/dt = —kX — fV where k and / are posit ive con­

stants. 

4 Strongly connected component is such subgraph that for all 
the pairs of nodes in the subgraph there exists a path f rom both 
sides. 

5 A circuit is a closed path where the path is a graph connect ing 
many nodes by arcs of the same direct ion sequentially. The sign 
of a c ircui t is a mul t ip l ica t ion of all the signs of the arcs included 
in the c i rcui t . The length of the c i rcui t is the number of all the 
arcs included in the circui t . The circui t of length 1 is called a 
loop. 

6 For the system (2-1), divergent mode, pure periodical modes, 
and constant mode are realized when the mat r i x A has eigenvalues 
w i t h posit ive real part , pure imaginaries, and 0 respectively. 



Fig. 3 shows the diagram of a mass-spring system 
wi th dashpot. The qual i tat ive model of the mass-spring 
system is shown in Fig. 4a. This system is known 
to be sign stable, since all the conditions of theorem 
3.3 are satisfied. Thus, oscil lation w i l l always converge 
eventually. When / = 0 (when there is no loop at node 
V) , however, the system is always in a pure periodical 
mode. 

The necessary and sufficient conditions for a quali­
tat ive model to be potent ia l ly stable have not yet been 
obtained. We present some heuristics which wi l l be used 
to ident i fy the potent ia l ly stable sign structure. 

T h e o r e m 3.5. 
A qual i tat ive model is potent ia l ly stable if the sub­

graph of the the qual i tat ive model is potent ial ly stable. 
Proof 
One of the powerful heuristics used in the system the­

ory is that 

"A property of a system is preserved after a 
change of the system if the property is locally 
invariant to the change." 

Since the stabi l i ty holds even wi th a small change of 
parameter, the qual i tat ive model obtained by adding 
arcs to the sign stable qual i tat ive model has a stable 
instance supposing the added arcs represent the inter­
actions w i th small absolute values. This argument is 
also true when adding arcs to the stable instances oi a 
potent ia l ly stable qual i tat ive model. Q.E.D. 

We have obtained another sufficient condit ion for the 
potent ia l stabi l i ty. 

T h e o r e m 3.6. 
A qual i tat ive model of n nodes is potent ial ly stable 

if the signed digraph has the negative circuit of length 
exactly k for every integer k = 1, 2, . . . ,n. 

P r o o f (see [Ishida ct a/., 1981] ) 
As for the necessary condi t ion, we obtained the fol­

lowing theorem. 
T h e o r e m 3.7. 
If a qual i tat ive model is potent ial ly stable then the 

signed digraph has a set of negative circuits whose sum 
of length is equal to k for every integer k — 1 . . . n . 

P r o o f (see [Ishida et a/., 1981]) 
E x a m p l e 3.8. 
Consider the qual i tat ive stabi l i ty of the pressure reg­

ulator example. Since the subsystem Pi is always con­
stant, only the subsystem composed of Po, Q, Xs is 
analyzed. By theorem 3.3, this model is not sign stable 
because of the circuit of length 3. However, this model is 
potent ia l ly stable, since the graph has negative circuits 
of length 1, 2, and 3. The model can be made stable by 
making the effect of negative circuits of length 1 and 2 

relatively stronger than that of length 3. Notice, how­
ever, these analyses are valid only in the neighborhood 
of the equi l ibr ium point where the changes around the 
point are considered. In order to consider the neighbor­
hood of a different point, we must use different models 
linearized on the other point. 

Other than the conditions for sign stabi l i ty and poten­
t ia l stabil i ty so far proposed, the fol lowing condit ion of 
sign instabi l i ty can also be used as a tool to check the 
quali tat ive stabil i ty, since the potent ial stable class is 
the complementary set of the sign unstable class. 

T h e o r e m 3.9 
The quali tat ive model obtained by making all the 
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signs of arcs to some nodes opposite in the sign stable 
model is sign unstable. 

P r o o f (see [Ishid a ct a/., 1981]) 

3.2 Invariant sign pattern of a system 
There is a class of qual i tat ive model in which the in i ­
t ial sign pattern can be specified f rom the current sign 
pat tern. In this section, we define the new concept of 
invariant sign pattern. Also, we discuss the relation 
between it and the class of qual i tat ive stabi l i ty. 

D e f i n i t i o n 3 .10 . ( invariant sign pat tern) 
A sign pattern xs is called invariant sign pattern of a 

qual i tat ive model if the model stays at the sign pattern 
x5 all the t ime, once it attains the state. 

It is easily checked whether or not a given qual i tat ive 
model has invariant sign patterns. 

T h e o r e m 3 . 1 1 . 
A strongly connected qual i tat ive model has an invari­

ant sign pat tern if 
(1) A l l the circuits have posit ive sign, and 
(2) A l l the reconvergent fanout paths 7 between two 

nodes have the same sign. 
P r o o f 
We first show that the qual i tat ive model has the in­

variant sign pat tern if the sign equation xs = Asxs has 
a solution X0 and that this solution Xo itself is the invari­
ant sign pat tern 8 . The solution must have determined 
sign mode (4+, — ,or 0) as its elements. 

The solution xs of sign equation satisfies that {dx/dt) i 

and {x s ) i are of the same sign. Thus, if xs is given as the 
pr imary sign pat tern (sign pat tern of the in i t ia l value 
vector of the system (2-1)) it does not change for all 
the t ime after. Now we wi l l show that the existence 
of a solution of the sign equation is equivalent to the 
conditions for a strongly connected qual i tat ive model. 

Necessity: Suppose there exists a negative circui t 
f rom node x i , then the change direct ion imposed 
through the circuit is opposite to the sign pat tern of 
( x s ) , . Thus (x s ) i must be 0 otherwise it becomes un­
determined mode. However, if it is equal to 0 then all 
the patterns of the elements of xs must be 0, for the 
model is strongly connected. Therefore, the sign equa­
tion has no invariant sign pat tern other than a t r iv ia l 
one (0 . . . 0). 

Suppose next that there are two reconvergent fanout 
paths whose signs are opposite and both have common 

Reconvergent fanout paths are such paths that share the ini­
tial and terminal nodes. 

8This fact can be generalized to the non-linear system, i.e. 
The invariant sign pattern of the system d x / d t = f(x) is the so-
lution of x = f(x). 
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in i t ia l node x% and common terminal node Xj. Then the 
sign pat tern of (xs)j is undetermined whether (xs)t is -f 
or —. Again, (xs)t must be 0 and hence the sign equa­
t ion does not have any invariant sign pat tern except a 
t r i v ia l one. 

Sufficiency: Suppose the sign equation does not have 
the solut ion. This is because some sign pattern has 
become undetermined mode. And the cases where the. 
undetermined mode cannot be avoided occur when sign 
of a variable imposes a different sign on other variables. 
These cases occur only when negative loop or reconver­
gent fanout paths of the other sign exist. Q.E.D. 

The invariant sign pat tern itself can be obtained f rom 
the sign structure of the qual i tat ive model. 

T h e o r e m 3 .12 . 
A sign pat tern xs is an invariant sign pat tern of a 

strongly connected qual i tat ive model i f i t satisfies 
(1) (xs)t — -f or — for alh = 1 . . . n, and 
(2) ( x f ) , = +( —) if there exists an arc ( x ^ x , ) such 

that sgn(xk, Xi)(x,)k = - f ( —) wheres^n(xj t , xt) is the 
sign associated w i th the arc ( x * , x , ) . 

P r o o f 
Immediate f rom the sign equat ion. 
T h e o r e m 3.13. 
If a strongly connected qual i tat ive model has an in­

variant sign pat tern x, then all the sign subpatterns 
converge on the invariant sign pat tern. Sign subpattern 
is the sign pattern obtained by replacing some (but not 
all) of -f or — w i th 0 in the original sign pat tern . 

P r o o f 
Since the qual i tat ive model is strongly connected, all 

the elements of the sign pat tern vector wi l l converge on 
a non-zero pat tern except the t r iv ia l all zero pat tern. 
Further, they are not undetermined, for the qual i tat ive 
model has two invariant sign patterns whose sign is op­
posite to each other. Thus, the pr imary sign pat tern 
wi l l converge on an invariant sign pat tern which has 
the sign pattern as sign subpattern according to the 
dynamics of the system. Q.E.D. 

In connection wi th the qual i tat ive stabi l i ty discussed 
in the previous section, the next theorem holds. 

T h e o r e m 3.14. 
If the sign equation x8 = A$xs has a solut ion then 

the qual i tat ive model of the sign st ructure As is sign 
unstable. 

P r o o f 
If the sign equation has the solution x, then the so­

lu t ion of all the instances of the qual i tat ive model w i t h 
A9 does not converge on 0. Q.E.D. 

T h e o r e m 3.15. 9 

This theorem can be generalized to the non-linear system 
dx /d t = f(x). That is, the subspace where an equi l ibr ium point 



If there is a qual i tat ive state assignment for the qual­
i ta t ive model such that the to ta l effect on each node is 
not definite sign then the qual i tat ive model potential ly 
has an equi l ibr ium point in the subspace specified by 
the assignment. 

Proof 
This assignment can be obtained by solving a sign 

equation of 0 = Axs. This means that the matr ix po­
tent ial ly have 0 eigenvalue. Q.E.D. 

E x a m p l e 3 .16. 
A qual i tat ive model shown in F ig. 4b has an invari­

ant sign pat tern xs — ( + —) and hence (— +) ( I f a 
qual i tat ive model has a invariant sign pattern xs, then 
—xs also.) For example, (xs)1 — + is preserved for all 
the t ime, since feedback circui t f rom both x1 itself and 
X2 keep x\ increasing. Similarly, sign patterns of (xs)2 

are also preserved. Thus, the subpattern (+ 0) and 
(0 —) w i l l fall into the sign pat tern (-f —) by theorem 
3.13. Further, it is also known by theorem 3.15 that 
this model has an equi l ibr ium point in subspace (4- - f ) 
or ( ) in case the system has a constant mode. 

As we have known that the qual i tat ive model of the 
pressure regulator example is potent ia l ly stable, it does 
not have any invariant sign pat tern. The model does 
not have a non-zero equi l ibr ium point. 

4 Conclusion 

We have shown that such global properties as stabi l i ty 
and observabil i ty can be investigated purely f rom the 
qual i tat ive informat ion of dynamical interact ion. 

So far we have discussed a global analysis of a linear 
system. As often done in system theory, the results of 
l inear system can be used for non-linear systems in the 
fol lowing three manners: 

(1) Non-l inear systems can be approximated as linear 
systems in the neighborhood of the equi l ibr ium point 
as in the example 2.1, and hence the results for linear 
systems hold there. 

(2) The results of l inear system dx/dt - Ax holds for 
the non-linear system dx/dt = A(t)x if the change of 
A(t) is very slow. 

(3) By locally invariant heuristics, some properties 
such as stabi l i ty of the system dx/dt = Ax +ε. F(x, t) 
do not change f rom that of dx/dt = Ax if ε is sufficiently 
small . 

We can use these approaches to the qual i tat ive anal­
ysis for the non-l inear system. Tha t is, we divide the 
non-linear system in to a set of linear systems each of 

which is an approximation of the non-linear system at 
some point and the neighborhood of the point . Sum­
ming up the results of these linear systems, the qual­
i tat ive aspects of the non-linear systems are analyzed. 
Implementat ion of such an inference engine that syn­
thesizes the results of global properties of non-l inear 
systems is left for future work. 
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