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Abstract

All the qualitative simulation algorithms so
far proposed depend upon local propagation
paradigm, and hence produce spurious states.
Recent approaches use topological constraints
In phase space diagrams for filtering the spuri-
ous states. We propose an alternative method
of recognizing global properties in the graphi-
cally expressed qualitative model. Qualitative
versions of such system-theoretic concepts as
stability and observability are used to analyze
the global properties of the system. We first
present structural conditions for recognizing
qualitative stability or instability in the qual-
itative model. We introduce the new concept
of Invariant sign pattern which is a qualita-
tive version of fixed point. Once the quali-
tative model becomes the invariant sign pat-
tern, it remains Iin that state. The conditions
for the qualitative model to have an invariant
sign pattern are also characterized. Although
our method is restricted to alinear system, the
method does not suffer from such restrictions
coming from two dimensional phase space di-
agrams, such as the target system must be a
second order system. We also discuss how to
extend the method to non-linear systems.

1 Introduction

Qualitative physics [de Kleer and Brown 1984] (or
qualitative process theory [Forbus 1984]) has been stud-
led recently. Qualitative reasoning is used for predicting
and explaining the behavior of the physical system by
using symbolic computation.

De Kleer and Brown [de Kleer and Brown 1984] use
logical proof as the explanation for the physical behav-
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lor. They pointed out that the logical proof has undesir-
able features for making causal accouts, and proposed
mythical causality. While their modeling is rather com-
ponent oriented, Forbus [Forbus 1984] developed pro-
cess oriented modeling. Kuipers' theory [Kuipers 1980]
, however, starts from abstracting the mathematical
model preserving qualitative information in the model.
Both Kuipers [Kuipers 1986] , and de Kleer and Bo-
brow [de Kleer and Bobrow 1984] developed simulation
algorithms on their qualitative models. Both of them
introduce higher order derivatives to predict change
precisely. The problems of these qualitative reasoning
methods are:

1. Although these methods provide modeling perspec-
tives, they are not yet ready for the automatic or
interactive generation of the qualitative models of
large-scale systems such as industrial processing
plants.

2. They do not use global properties which do not
come from the local propagation of the constraint
or state.

Falkenhainer and Forbus
[Falkenhainer and Forbus 1988] focus on the problem
of the modeling by considering the granularity of the
model. We focus on the second problem using structural
conditions for global properties. Struss [Struss 1988]
and Lee and Kuipers [Lee and Kuipers 1988] also dis-
cuss the second problem with reference to the phase
space portrait. We will present an alternative method
for filtering out spurious behavior using global proper-
ties, which can be checked on the graphically expressed
qualitative model. The global properties of the system,
such that an oscillation will converge on some point or
not, can be discriminated to some extent by checking
the sign structure of the graph. Our method seems to
be more suitable for symbolic computation than with



the method using geometric conditions, however ours
suffers from the limitation that the target system must
be linear.

Section 2 shows the qualitative model of dynamical
systems. The qualitative model is a signed directed
graph obtained by keeping the qualitative information
of sign structures of a linear system. In section 3, global
analyses such as stability analysis are made on the qual-
itative model.

2 Qualitative Model of a Dy-
namical System

2. The qualitative model

Qualitative theory of linear systems, which has
been studied extensively in econometrics [Quirk 1965,
Quirk 1968] and mathematical ecology [Jeflferies 1974],
Is used as an analysis tool for the qualitative model. In
many systems such as chemical processing plants dy-
namical behavior is expressed or approximated by a
linear differential equation:

(2-1) dz/dt = Az, A € R**",

We use the qualitative model expressing the signed
matrix A.. ' In the model, an arc is directed from node
| to node j with the sign of (Ag);. Most of the results
of qualitative system theory are obtained for the state-
space expression of this linear system. Thus, in order to
directly use this qualitative system theory, we transform
the model into this state-space expression. All the in-
teractions whose phase lag are n > 1 are divided into n
sequential interactions of phase lag 1 by introducing n-1
dummy variables (nodes). On the other hand, variables
(nodes) connected by the interaction of phase lag 0 are
regarded as one variable (node). In the global analysis
of section 3, we assume the systems under discussion
are already normalized.

Non-linear systems must be first linearized in the fol-
lowing manner. Develop the system around the point of
interest, then neglect the higher order non-linear terms.
This linear approximation is only valid in the neigh-
borhood of the point. The linearized system must be
expressed in state-space expression for later analysis.

Example 2.1
The model for the pressure regulator is shown below.

dXs/dl = —a- Po
dQi/dt = b- (DP —c-Qi*/ X s)
dPo/dt = e-(Qo* — f - Po)

'Signed matrix A, of A is a triple value matrix defined as

follows: |
(A)ij=+4,—,01{(A4);; >0,<0,=0 respectively.

DP = Pi - Po
Q: = Qo
Xs : area available for the flow

through the valve
Po : pressure at outlet

Pi : pressure at inlet
DP : pressure drop across the valve
Qi : inflow to the valve

Qo : outflow from the valve
a, b, c, e, f. appropriately chosen
positive constants.

Fig. 1 Diagram of
the pressure regulator

OC

Fig. 2 Qualitative model of
the pressure regulator

Fig. 1 shows a diagram of a pressure regulator. Figqg.
2 1s the signed digraph expressing the qualitative model.
Since the phase lag of all the arcs is normalized to 1,
only the sign is indicated in the arc.

2.2 Causality and system theoretic

concepts

In dynamical system theory, many concepts such as ob-
servability and stability have been studied. Since these
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concepts have intuitive explanatory power, they may be
used as aids for causal account. There seems to be an
important relation between the concept of observability
and causality. In system theory, observability is defined
as:

"A system is said to be observable by an ob-
server if it is possible to determine the initial
state by observing the output signal from the
observer during a finite time starting from the
initial time.”

We can use the observability ° (or its dual concept of
controlability) as a tool to check the potential causabil-
ity. It is not against our intuition to say that the event
dX = + (or —) can cause the event dY = + (or —) only
when X is observable from Y.

3 Global Analysis

The main advantage of using state-space expression (2-
1) of the qualitative model is that it allows many system
theoretic analyses, especially the global analysis. This
section presents several results which can be used as a
tool for a global analysis on the qualitative model.

3.1 Qualitative stability analysis

A property of a system is called qualitative if it is de-
termined only by the sign structure of the qualitative
model. In this section, we discuss the qualitative prop-
erty of the qualitative model. Two kinds of qualitative
stabilities, and qualitative observability are defined as
follows.
Definition 3.1.
bility)
A qualitative model A is called sign (potential) sta-
ble if all (some of) instances of the model are stable °.
Definition 3.2.
The qualitative model with the observer is said to be

sign observable if all instances of the model are observ-
able from the observer.

(sign stability and potential sta-

(sign observability)

In the example 2.1, the graph indicates that the
model can be decomposed into two strongly connected

The observability of the linear system can be checked by
a matrix. Let v = Cxy € R*™C € R™ be ob-
served output of the linear system (2-1), then the observabil-
ity from y can be known by testing whether or not the matrix
[CiCA,CA®....CA"™']  have the full rank.

The solution of the system will asymptotically converge on
an equilibrium point.
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components corresponding to the subsystem Pi and
the subsystem consisting of Po, Q, Xs. Pi is observable
from the subsystem of Po, Q, Xs and not in opposite
way. Notice, however, that even if the model is decom-
posed into strongly connected components, the affecting
subsystem may not be observable from the affected sub-
system in such cases that the affecting subsystem has a
constant mode or two effects canceling each other. (Ob-
viously, the affected subsystem is not observable from
the affecting subsystem.)

A necessary and sufficient condition for a qualitative
model to be sign stable is obtained with the concept of
sign observability.

Theorem 3.3.

A qualitative model is sign stable if and only if the
qualitative model has the following properties.

(1) There is no positive loop ° and there exists at
least one negative loop,

(2) there is no positive circuit of length two,
(3) there is no circuit of length greater than two, and

(4) by setting the subsystem of negative loops as ob-
server, the rest of the subsystem is sign observable from
the observer.

Proof

The conditions (1)-(3) guarantee that the system does
not have divergent mode °. In order to further guaran-
tee that the system does has neither constant mode nor
pure periodical modes we only have to put the condi-
tion that that the signals are always observable from the
node having a negative loop. In other words, if the sys-
tem has pure periodical modes then the signal may not
be observable by the cancellation of the oscillations of
different phase. Likewise, if the system has a constant
mode the signal is not observable.

Example 3.4.

To demonstrate the power of the sign stability, let
us consider the mass-spring system whose state-space
expression is as below:

dX/dt = V
dv/idt = —kX — fV where k and / are positive con-
stants.

*Strongly connected component is such subgraph that for all
the pairs of nodes in the subgraph there exists a path from both
sides.

°> A circuit is a closed path where the path is a graph connecting
many nodes by arcs of the same direction sequentially. The sign
of a circuit is a multiplication of all the signs of the arcs included
in the circuit. The length of the circuit is the number of all the
arcs included in the circuit. The circuit of length 1 is called a
loop.

° For the system (2-1), divergent mode, pure periodical modes,
and constant mode are realized when the matrix A has eigenvalues
with positive real part, pure imaginaries, and 0 respectively.



Fig. 3 shows the diagram of a mass-spring system
with dashpot. The qualitative model of the mass-spring
system is shown in Fig. 4a. This system is known
to be sign stable, since all the conditions of theorem
3.3 are satisfied. Thus, oscillation will always converge
eventually. When / = 0 (when there is no loop at node
V), however, the system is always in a pure periodical
mode.

The necessary and sufficient conditions for a quali-
tative model to be potentially stable have not yet been
obtained. We present some heuristics which will be used
to identify the potentially stable sign structure.

Theorem 3.5.

A qualitative model is potentially stable if the sub-
graph of the the qualitative model is potentially stable.

Proof

One of the powerful heuristics used in the system the-
ory is that

"A property of a system is preserved after a
change of the system if the property is locally
invariant to the change.”

Since the stability holds even with a small change of
parameter, the qualitative model obtained by adding
arcs to the sign stable qualitative model has a stable
iInstance supposing the added arcs represent the inter-
actions with small absolute values. This argument is
also true when adding arcs to the stable instances o/ a
potentially stable qualitative model. Q.E.D.

We have obtained another sufficient condition for the
potential stability.

Theorem 3.6.

A qualitative model of n nodes is potentially stable
If the signed digraph has the negative circuit of length
exactly k for every integer k = 1, 2, ... ,n.

Proof (see [Ishida ct a/., 1981] )

As for the necessary condition, we obtained the fol-
lowing theorem.

Theorem 3.7.

If a qualitative model is potentially stable then the
signed digraph has a set of negative circuits whose sum
of length is equal to k for every integer k — 1 ... n .

Proof (see [Ishida ef a/., 1981])

Example 3.8.

Consider the qualitative stability of the pressure reg-
ulator example. Since the subsystem Pi is always con-
stant, only the subsystem composed of Po, Q, Xs is
analyzed. By theorem 3.3, this model is not sign stable
because of the circuit of length 3. However, this model is
potentially stable, since the graph has negative circuits
of length 1, 2, and 3. The model can be made stable by
making the effect of negative circuits of length 1 and 2

relatively stronger than that of length 3. Notice, how-
ever, these analyses are valid only in the neighborhood
of the equilibrium point where the changes around the
point are considered. In order to consider the neighbor-
hood of a different point, we must use different models
linearized on the other point.

Fig. 4a
Qualitative model of
mass-sSpring system

.

_‘ ()
) —

Fig. 4b
Qualitative model
having invariant sign patterns

Other than the conditions for sign stability and poten-
tial stability so far proposed, the following condition of
sign instability can also be used as a tool to check the
qualitative stability, since the potential stable class is
the complementary set of the sign unstable class.
Theorem 3.9
The qualitative model obtained by making all the
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signs of arcs to some nodes opposite in the sign stable
model is sign unstable.
Proof (see [Ishid a ct a/., 1981])

3.2 Invariant sign pattern of a system

There is a class of qualitative model in which the ini-
tial sign pattern can be specified from the current sign
pattern. In this section, we define the new concept of
invariant sign pattern.  Also, we discuss the relation
between it and the class of qualitative stability.

Definition 3.10. (invariant sign pattern)

A sign pattern x5 is called invariant sign pattern of a
qualitative model if the model stays at the sign pattern
x5 all the time, once it attains the state.

It is easily checked whether or not a given qualitative
model has Invariant sign patterns.

Theorem 3.11.

A strongly connected qualitative model has an invari-
ant sign pattern if

(1) All the circuits have positive sign, and

(2) All the reconvergent fanout paths ' between two
nodes have the same sign.

Proof

We first show that the qualitative model has the in-
variant sign pattern if the sign equation xs = Asxs has
a solution X0 and that this solution Xo itselfis the invari-
ant sign pattern ® . The solution must have determined
sigh mode (4+, — ,or 0) as its elements.

The solution xs of sign equation satisfies that {dx/dt);
and {xs); are of the same sign. Thus, if x5 is given as the
primary sign pattern (sign pattern of the initial value
vector of the system (2-1)) it does not change for all
the time after. Now we will show that the existence
of a solution of the sign equation is equivalent to the
conditions for a strongly connected qualitative model.

Necessity: Suppose there exists a negative circuit
from node x; then the change direction imposed
through the circuit is opposite to the sign pattern of
(Xs),. Thus (xs); must be 0 otherwise it becomes un-
determined mode. However, if it is equal to 0 then all
the patterns of the elements of xs must be 0, for the
model is strongly connected. Therefore, the sign equa-
tion has no invariant sign pattern other than a trivial
one (0 ... 0).

Suppose next that there are two reconvergent fanout
paths whose signs are opposite and both have common

Reconvergent fanout paths are such paths that share the ini-
tial and terminal nodes.

°This fact can be generalized to the non-linear system, i.e.
The invariant sign pattern of the system dx/dt = f(x) is the so-
lution of x = f(x).
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initial node x4, and common terminal node Xj. Then the
sign pattern of (x5)j is undetermined whether (x5); is -f
or —. Again, (xs); must be 0 and hence the sign equa-
tion does not have any invariant sign pattern except a
trivial one.

Sufficiency: Suppose the sign equation does not have
the solution. This is because some sign pattern has
become undetermined mode. And the cases where the.
undetermined mode cannot be avoided occur when sign
of a variable imposes a different sign on other variables.
These cases occur only when negative loop or reconver-
gent fanout paths of the other sign exist. Q.E.D.

The invariant sign pattern itself can be obtained from
the sign structure of the qualitative model.

Theorem 3.12.

A sign pattern xs is an invariant sign pattern of a
strongly connected qualitative model if it satisfies

(1) (xs)y — -for— foralh =1...n, and

(2) (xf), = +(—) if there exists an arc (x”x,) such
that sgn(xk, Xi)(x,)k = -f(—) wheres?n(xjt, xJ) is the
sign associated with the arc (x*,x,).

Proof

Immediate from the sign equation.

Theorem 3.13.

If a strongly connected qualitative model has an in-
variant sign pattern x, then all the sign subpatterns
converge on the invariant sign pattern. Sign subpattern
Is the sign pattern obtained by replacing some (but not
all) of -f or — with 0 in the original sign pattern.

Proof

Since the qualitative model is strongly connected, all
the elements of the sign pattern vector will converge on
a non-zero pattern except the trivial all zero pattern.
Further, they are not undetermined, for the qualitative
model has two invariant sign patterns whose sign is op-
posite to each other. Thus, the primary sign pattern
will converge on an invariant sign pattern which has
the sign pattern as sign subpattern according to the
dynamics of the system. Q.E.D.

In connection with the qualitative stability discussed
In the previous section, the next theorem holds.

Theorem 3.14.

If the sign equation xg = Agxs has a solution then
the qualitative model of the sign structure Ag is sign
unstable.

Proof

If the sign equation has the solution x, then the so-
lution of all the instances of the qualitative model with

Ay does not converge on 0. Q.E.D.
Theorem 3.15. °

This theorem can be generalized to the non-linear system
dx/dt = f(x). That is, the subspace where an equilibrium point



If there is a qualitative state assignment for the qual-
itative model such that the total effect on each node is
not definite sign then the qualitative model potentially
has an equilibrium point in the subspace specified by
the assignment.

Proof

This assignment can be obtained by solving a sign
equation of 0 = Axs. This means that the matrix po-
tentially have 0 eigenvalue. Q.E.D.

Example 3.16.

A qualitative model shown in Fig. 4b has an invari-
ant sign pattern x; — (+—) and hence (— +) (If a
gualitative model has a invariant sign pattern x;, then
—Xs also.) For example, (xs)1 — + is preserved for all
the time, since feedback circuit from both x7 itself and
X2 keep x\ increasing. Similarly, sign patterns of (xg),
are also preserved. Thus, the subpattern (+ 0) and
(0 —) will fall into the sign pattern (-f —) by theorem
3.13. Further, it is also known by theorem 3.15 that
this model has an equilibrium point in subspace (4- -f)
or (——) in case the system has a constant mode.

As we have known that the qualitative model of the
pressure regulator example is potentially stable, it does
not have any invariant sign pattern. The model does
not have a non-zero equilibrium point.

4 Conclusion

We have shown that such global properties as stability
and observability can be investigated purely from the
qualitative information of dynamical interaction.

So far we have discussed a global analysis of a linear
system. As often done in system theory, the results of
linear system can be used for non-linear systems in the
following three manners:

(1) Non-linear systems can be approximated as linear
systems in the neighborhood of the equilibrium point
as in the example 2.1, and hence the results for linear
systems hold there.

(2) The results of linear system dx/dt - Ax holds for

the non-linear system dx/dt = A(f)x if the change of
A(t) is very slow.
(3) By locally invariant heuristics, some properties

such as stability of the system dx/dt = Ax +e. F(x, 1)
do not change from that of dx/dt = Ax if € is sufficiently
small.

We can use these approaches to the qualitative anal-
ysis for the non-linear system. That is, we divide the
non-linear system into a set of linear systems each of

can potentially exist is specified by solving the possible sign pat-
tern for 0 = f(x).

which is an approximation of the non-linear system at
some point and the neighborhood of the point. Sum-
ming up the results of these linear systems, the qual-
itative aspects of the non-linear systems are analyzed.
Implementation of such an inference engine that syn-
thesizes the results of global properties of non-linear
systems is left for future work.
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