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A b s t r a c t 

We extend qual i tat ive reasoning w i th estima­
tions of the relative likelihoods of the possible 
qual i tat ive behaviors. We estimate the l ikel i­
hoods by viewing the dynamics of a system 
as a Markov chain over its transit ion graph. 
Th is corresponds to adding probabil it ies to 
each of the transit ions. The transi t ion prob­
abil it ies follow direct ly f rom theoretical con­
siderations in simple cases. In the remaining 
cases, one must derive them empirical ly from 
numeric simulations, experiments, or subjec­
t ive estimates. Once the transi t ion probabi l i ­
ties have been estimated, the standard theory 
of Markov chains provides extensive informa­
t ion about asymptot ic behavior, including a 
par t i t ion in to persistent and transient states, 
the probabil i t ies for ending up in each state, 
and sett l ing times. Even rough estimates of 
t ransi t ion probabil i t ies provide useful qualita­
t ive informat ion about u l t imate behaviors, as 
the analysis of many of these quantit ies is in­
sensitive to perturbat ions in the probabil i t ies. 
The algori thms are straightforward and require 
t ime cubic in the number of qual i tat ive states. 
The analysis also goes through for symbolic 
probabi l i ty estimates, al though at the price of 
exponent ial- t ime worst-case performance. 

1 I n t r o d u c t i o n 

Qual i ta t ive reasoning seeks to predict the global behav­
ior of a complex dynamic system by par t i t ion ing its state 
space in to a manageable number of qual i tat ive states and 
characterizing its behavior by the sequences of qualita­
t ive states that it can go through. This methodology is 
too weak to describe the l im i t ing behavior of dynamic 
systems. For example, a damped pendulum eventually 
must approach equi l ibr ium either directly below or d i ­
rectly above its p ivot (Figure 1). The first possibil i ty is 
almost certain, whereas the second almost never occurs. 
Qual i ta t ive simulat ion discovers both equi l ibr ia, but can 
neither determine their relative likelihoods nor rule out 

the possibil ity that the pendulum wi l l spin forever. Yet 
quali tat ive considerations suffice for both conclusions, 
independent of the numeric details of the system. 

* Authors listed alphabetically. Jon Doyle is supported by 
the National Library of Medicine under National Institutes 
of Health Grant R01 LM04493. 

Figure 1: Equi l ibr ia of a damped pendulum. 

L imi t ing behaviors are global characteristics of a sys­
tem. To understand them, we must look beyond indi ­
vidual transitions to sequences of transit ions. We must 
assign each sequence a l ikel ihood, ranging f rom impossi­
ble to definite. In this paper, we describe one approach 
to this problem. We estimate the likelihoods of a sys­
tem's asymptotic behaviors by viewing its dynamics as 
a Markov chain over its transit ion graph. This corre­
sponds to adding probabil it ies to each of the transit ions. 
The transit ion probabil it ies follow directly f rom theoret­
ical considerations in simple cases such as the pendulum 
example. In the remaining cases, one must derive them 
empirically f rom numeric simulations, experiments, or 
subjective estimates. 

The standard theory of Markov chains provides exten­
sive information about asymptotic behavior, smoothly 
blending quali tat ive and quant i tat ive informat ion into a 
unifying framework that provides the best possible con­
clusions given the evidence. It derives some sorts of es­
sentially quali tat ive conclusions that qual i tat ive simula­
t ion does not, including a par t i t ion in to persistent and 
transient states and a par t i t ion of the persistent states 
into the probable and the improbable. Many of these 
conclusions follow solely f rom qual i tat ive considerations. 
The remainder, though numerically derived, are insen­
sitive to perturbations in the probabil i t ies. The theory 
also provides quanti tat ive refinements of these qual i ta­
t ive conclusions, including the mean and variance of set­
t l ing times. Unl ike the qual i tat ive conclusions, the quan-
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t i ta t ive results are in some cases sensitive to variations 
in the input probabil i t ies. The algori thms are straight­
forward, involv ing only a topological sort of the transi­
t ion graph and a few mat r i x operations on the t ransi t ion 
probabi l i t ies, and require t ime at most cubic in the num­
ber of qual i tat ive states. The analysis goes through for 
symbolic probabi l i ty estimates, al though at the price of 
exponential- t ime worst-case performance. 

2 Q u a l i t a t i v e dynam ics in phase space 
The first step in our analysis of a system is to derive 
its states and transit ions f rom the phase space of the 
system. The phase space for a system of f irst-order dif­
ferential equations 

(1) 
is the Cartesian product of the x, 's domains. One can 
convert higher-order equations to f irst-order ones by in­
t roducing new variables as synonyms for higher deriva­
tives. Points in phase space represent states of the sys­
tem. Curves on which equation (1) is satisfied, called 
trajectories, represent solutions. A phase diagram for a 
system depicts its phase space and trajectories graphi­
cally. The topological and geometric properties of trajec­
tories characterize the qual i tat ive behavior of solutions. 
For instance, a point t rajectory, called a fixed point, in­
dicates an equi l ib r ium solut ion, whereas a closed curve 
indicates a periodic solut ion. A fixed point is stable if ev­
ery nearby t ra jectory approaches it asymptot ical ly and 
unstable otherwise. More generally, the stable manifold 
of a f ixed point is the set of trajectories that approach 
it asymptot ical ly. (See Hirsch and Smale [Hirsch and 
Smale, 1974].) 

For example, the standard model for a damped pen­
du lum is 

(2) 
wi th 0 the angle between the arm and the vert ical , / the 
length of the (weightless r igid) arm, m the mass of the 
bob, g the grav i tat ional constant, and µ the damping 
coefficient, as shown in Figure 2. Figure 3 shows the 
pendulum's phase diagram. The symmetry and 2n pe­
r iodic i ty of the pendulum equation make i t natura l to 
employ the cyl indr ical phase space obtained by ident i fy­
ing the lines T w o trajectories spiral 
toward the unstable fixed point at the rest spiral 
toward the stable fixed point at (0 ,0) . 

A complete qual i tat ive description of a system con­
sists of a par t i t ion of its phase space in to sets of qual i ta­
t ively equivalent trajectories. The equivalence cr i ter ion 
depends on the problem task. Mathematic ians generally 
focus on topological equivalence, whereas coarser rela­
tions are more useful in engineering applications. We 
follow standard AI practice and equate all trajectories 
that go through a specific sequence of regions in phase 
space. Our qual i tat ive dynamics consists of a par t i t ion 
of phase space in to regions along w i th a graph of possible 
transit ions between regions. 

Sacks [Sacks, 1988c] shows how to translate t rad i t iona l 
qual i tat ive reasoning in to our qual i tat ive dynamics w i t h ­
out loss of in format ion or increase in complexity. Qual i ­
tat ive states correspond to rectangular regions in phase 
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Figure 3: The pendulum's phase diagram. 

space, and qual i tat ive s imulat ion amounts to f inding the 
possible transit ions between regions. A transi t ion oc­
curs f rom region A to region B if the derivative of the 
system on the boundary between the regions points in to 
B. A t ransi t ion occurs f rom a region to a neighbor­
ing fixed point unless all the eigenvalues of the fixed 
point have posit ive real par t , as explained in the next 
section. For example, automatic analysis of the damped 
pendulum equation results in six qual i tat ive states corre­
sponding to four rectangles and two fixed points 
( (0 ,0 ) , as shown in Figure 4. Figure 5 shows the 
transit ion graph over these qual i tat ive states. 

The probabil ist ic conclusions about the pendulum's 
asymptot ic behavior follow f rom purely dimensional ar­
guments, which in tu rn may be determined by inspec­
t ion of the eigenvalues of the fixed points. By the sta­
ble manifold theorem [Guckenheimer and Holmes, 1986, 
p. 13], the dimension of the basin of a f ixed point equals 
the number of its eigenvalues that have negative real 
parts.1 The real parts of the eigenvalues are both neg­
ative at (0,0) and of opposite signs at Hence, 
the basin of has zero measure because it is a one-
dimensional submanifold of the two-dimensional phase 
space, whereas the basin of (0,0) has posit ive measure. 
A similar argument shows the unstable equi l ibr ia of any 
system to be unlikely. Bu t this approach is insufficient to 
yield all conclusions of interest in general, since systems 

1This theorem applies to hyperbolic fixed points. The 
number of positive real parts at an arbitrary fixed point suf­
fices for our analysis. 



Figure 4: Phase space regions of the qual i tat ive states of 
the damped pendulum. 

Figure 5: Qual i ta t ive state t ransi t ion graph of the 
damped pendulum. 

may have mul t ip le stable equi l ibr ia and other states w i th 
posit ive asymptot ic probabil i t ies. 

3 T r a n s f o r m i n g f lows i n t o M a r k o v 
chains 

We estimate the l ikelihoods of a system's asymptot ic be­
haviors by construct ing a Markov process whose states 
are regions in phase space. The dynamic system i t ­
self is an uncountable Markov process whose states are 
the points of phase space,2 but direct analysis or use 
of this Markov process is impract ical . Instead, we 
lump the point-states in to a manageable number of re­
gions in phase space, each of which represents a dist inct 
qual i tat ive state of the system. Sacks [Sacks, 1988a, 
Sacks, 1988b, Sacks, 1988d] presents a system that auto­
mat ica l ly identifies such regions and the possible transi­
t ions between them for second-order systems of ordinary 
differential equations. Most of the ideas extend directly 
to larger systems. One can also work w i t h the rectangu­
lar regions that qual i tat ive s imulat ion impl ic i t ly defines. 

The second step in construct ing the Markov process is 
to associate probabil i t ies w i th each of the possible t ran­
sit ions between regions. These probabil i t ies reflect the 
l ikel ihood of the system's state moving f rom one state-
space region to another in uni t t ime. We may obtain the 

2 In fact, this Markov process is deterministic: all state 
transition probabihties are zero or one. 

probabil it ies directly f rom dimensional considerations in 
simple cases such as the pendulum example. Ordinar­
i ly, though, they w i l l come f rom numeric simulations or 
physical experiments that sample representative points 
in each quali tat ive region and count how many go to 
each region. In this procedure, stable equi l ibr ium points 
must be represented by regions large enough to exhibi t 
positive entry probabil it ies. Every stable at t ractor is 
surrounded by such a region, and one can be found by 
sampling w i th larger and larger small areas around the 
attractor. One can also obtain subjective estimates f rom 
domain experts. The quali tat ive analysis is insensitive 
to errors in these probabil it ies. 

The transit ion probabil i t ies represent the imprecision 
in the quali tat ive model of the dynamic system. If we 
were able to choose as regions the actual attractors of the 
system, there would be no imprecision and the transi t ion 
rules would be perfectly deterministic. The great diff i­
culty of determining the opt imal set of regions for anal­
ysis helps motivate the stochastic approach to analyzing 
behaviors. Addi t ional factors that t ransi t ion probabi l i ­
ties can model include (1) uncertainty about in i t ia l con­
ditions which induces a distr ibut ion of possible trajecto­
ries, (2) uncertainty about the parameters of the model 
equations, and (3) uncertainties (or noise sources) explic­
i t ly occurr ing in the system's equations, as in stochastic 
differential equations. 

Our analysis treats the Markov process constructed 
f rom a dynamic system as a Markov chain. Tha t is, we 
assume that the transit ion probabil it ies remain constant 
over t ime and that they depend only on the qual i tat ive 
state of or igin, independent of past history. The first as­
sumpt ion holds for autonomous equations that are free 
of their independent variable. One can reduce any gen­
eral system to an autonomous one by treat ing the inde­
pendent variable, t, as a state variable governed by the 
equation t' = 1. 

The second assumption holds to the extent that the fu­
ture trajectory of the system is insensitive to its distant 
past. The most questionable case is that of conserva­
t ive systems in which the volume of each region in phase 
space is preserved for all t ime by the flow, causing small 
differences between trajectories to retain their signifi­
cance forever. Conservative systems pose problems for 
qual i tat ive reasoning generally, not just for the stochas­
tic analysis, as the regions of interest must be chosen 
carefully. Fortunately, most realistic systems are dissi-
pative, hence volume shrinking, causing differences be­
tween trajectories to shrink exponentially. 

Time-dependent transit ion probabil it ies imply that 
the current par t i t ion of phase space is too coarse: dif­
ferences w i th in a prior region express themselves in the 
current region because the distances between points in 
the prior region are too great to damp out in one t ime 
step. One approach, fol lowing Sacks [Sacks, 1988a, 
Sacks, 1988b], involves i terat ive improvement of the 
model (though unlike that work, we have not automated 
this refinement process). If one observes time-dependent 
behavior in constructing the transit ion probabil i t ies, one 
subdivides or otherwise refines the set of regions and 
starts over. In principle, the process ends when the chain 
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assumption appears correct for all regions, but in prac­
tice the choice of when to accept a model as satisfactory 
involves a tradeoff of model complexi ty against model 
accuracy. The aptness of the chain assumption can also 
be tested against empir ical observations or long te rm nu­
meric simulat ions. 

4 Analys is of M a r k o v chains 
In this section, we summarize the theory of Markov 
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chains. The details appear in our longer paper 
and Sacks, 1989] and in Roberts [Roberts, 1976]. 
S = { s 1 , . . . , sn} be the set of states of the qual i tat ive 
dynamics, that is, the set of nodes of the dynamic d i ­
graph. Each of these wi l l also be a state of the Markov 
chain. We describe the entire chain by specifying, for 
each nonexclusive choice of states S{ and Sj, the transi­
t ion probabi l i ty p i j ; tha t i f the system is in state s, at 
one instant, it w i l l be in state Sj after one t ime un i t has 
passed. We wr i te P = {p t j ; } to mean the nxn transition 
matrix of al l t ransi t ion probabi l i t ies. P is also called a 
stochastic matrix, which means that al l entries are non-
negative and tha t each row sums to 1. Each row of P 
is called a probability vector. The transition digraph of 
a stochastic ma t r i x is the graph over the states w i t h a 
directed arc f rom s ito s j i f f p i j # 0. 

The probabi l i ty tha t the chain is in state Sj at t ime 
t given tha t it starts in state S{ at t ime 0 is wr i t ­
ten pij and called a higher-order transition probabil­
ity. Th is probabi l i ty is the i, j entry of P*, the f t h 
power of P. If we star t the Markov chain at random, 
where the probabi l i t ies of s tar t ing in each state are given 
by an initial probability vector p(0' = (p\ , . . . , P n ), 
then the probabi l i t ies of being in part icular states at 
t ime tf, p(*' — (p\ ,. • • iPn )» a r e given by the equation 
p{t)=p(0)pt 

A set C of states is closed if pij = 0 for all s, £ C 
and Sj £ Cj that is, if once in C the chain can never 
leave C. A closed set C is ergodic if no proper subset 
is closed. A state is ergodic if it is in some ergodic set, 
and is transient otherwise. A state that forms an ergodic 
set by itself is called an absorbing state. Chains whose 
states fo rm a single ergodic set are called ergodic chains, 
and chains in which each ergodic set is a singleton are 
called absorbing chains. 

The mathemat ical analysis of the asymptot ic behavior 
of a Markov chain is divided in to two parts: the behavior 
before entering an ergodic set, and the behavior after 
entering one. One then combines these sub-analyses to 
get the overall asymptot ic behavior. 

1. In the first step, one creates an absorbing chain by 
lumping all states in each ergodic set in to a single 
compound state. The t ransi t ion probabi l i ty f r om a 
transient state s to a compound state c is the sum of 
the t ransi t ion probabil i t ies f rom s to the members of 
c. The t ransi t ion probabi l i ty f rom c to other states 
is 0 by def in i t ion. The main result of the analysis is 
the long-term probabi l i ty of entering each ergodic 
set when star t ing in each of the transient states. 
The probabi l i ty of eventually entering some absorb­
ing state is 1. 

2. In the second step, one analyzes each ergodic set 
as a separate ergodic chain, unaffected by the other 
states. The result of the analysis is the long-term 
probabi l i ty of being in each of the states of the set. 

Combin ing these results yields the long-term probabi l i ty 
of being in each of the states of the chain. Th is is jus t 
the product of the probabi l i ty of entering an ergodic set 
containing that state (this is zero if the state is t ran­
sient) t imes the probabi l i ty of appearing in tha t state 
once in the ergodic set. Stabi l i ty analysis shows tha t 
these asymptot ic probabil i t ies are insensitive to varia­
tions in the input probabil i t ies. 

5 Examples 
We present two examples to i l lustrate the techniques of 
stochastic analysis. The first makes precise the analy­
sis of the damped gravi tat ional pendulum. The second 
example, that of a charged pendulum in the presence 
of two other charges, is representative of a large class 
of everyday systems in which there are several asymp­
tot ic behaviors of nonzero probabi l i ty . The analysis of 
the charged pendulum calculates these probabi l i t ies, and 
examines the dependence of their sizes on the magnitude 
of the charges. We have applied stochastic analysis to 
other problems as wel l , including systems which exhibi t 
chaotic behaviors in some regions, but space l imi tat ions 
do not permi t us to present these examples here. 

W i t h the Markov theory in hand, we can make precise 
our in tu i t ive analysis of the damped pendulum equation 

0" + - ^ 0 ' + ^ s i n 0 = O. 
m I (3) 

The transi t ion graph forms an absorbing chain w i th ab­
sorbing states (0,0) and (TT,0) . The pendulum must 
eventually approach one of these states; it cannot cy­
cle between the remaining, transient states forever. The 
transi t ion probabil i t ies in to (7r, 0) are 0 by dimensional 
analysis, as discussed in Section 2, so all trajectories end 
up at (0,0) w i t h probabi l i ty 1. I f the t ransi t ion proba­
bil i t ies f rom (—,+) and ( + , —) to (0,0) are each a << 1, 
then the sett l ing t ime when star t ing in a transient state 
is approximately 4 / a . 

The damped pendulum model presupposes that the 
force on the bob is independent of the bob's locat ion. 
The model for the variable at t ract ion between a posi­
t ively charged pendulum bob and two negative charges 
is more complicated (Figure 6). Each negative charge 
exerts a force 

/ (< * , * ) = *^ * ^ (sin a)(d2+dl+2l2-2l(d+l) cos a ) ~ 3 / 2 

(4) 
along the line between it and the bob, w i th a the angle 
between that line and the pendulum, k the coefficient of 
electrostatic at t ract ion between the bob and the charge, 
/ the length of the arm, and d the vert ical distance f rom 
the bob's orbi t to the line connecting the two negative 
charges. The two-charge pendulum obeys the equation 

0" + }LQ> + f(0 + a t l) + f(0 _ a> t2) = o 
m (5) 

wi th a the angle between each pole and the vert ical , 
k\ and k2 corresponding to the left and r ight charges, 
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µ the damping coefficient, and m the mass of the bob. 
Figure 7 contains the qual i tat ive dynamics for the case 
of equal charges (k1 = k2). Saddles appear at 
and (0,0) where the charges cancel each other. A sink 
appears where each charge is strongest. The pendulum 
can spin (A -B -C-D and E-F-G-H), oscillate around both 
negative charges (A-B-C-D-E-F-G-H) , oscillate around 
the left charge (A -B -G-H) , or oscillate around the r ight 
charge (C-D-E-F) . It can also switch from spinning to 
oscil lat ing and f rom oscil lating around both charges to 
osci l lat ing around either charge. 

Figure 6: A posit ively charged pendulum attracted by 
two negative charges. 

The sinks are located at the points on the 6 axis where 
We cannot locate them 

exactly because the equation has no closed-form solution 
and because the parameters are subject to measurement 
error. Instead, we bound each sink w i th in a small region 
of phase space by numeric simulat ion or by experimen­
ta t ion . Unl ike the sinks, which have zero exit proba­
bi l i t ies a pr ior i , the bounding regions can have positive 
exit probabi l i t ies, which must be estimated empirically. 
One can either incorporate the exit probabil i t ies into the 
Markov model or shrink the bounding regions unt i l their 
exit probabil i t ies become negligible. The choice involves 
a tradeoff between model ing t ime and analysis t ime. 

Figure 8 i l lustrates the first strategy. We assign each 
bounding region entrance probabi l i ty p and exit prob­
abi l i ty q, assign the saddles zero probabil i t ies, and as­
sume the remaining transit ions to be equally likely. The 
result ing Markov chain consists of three ergodic chains: 
the two saddles and a pr imary chain containing all the 
remaining regions. The asymptotic probabil it ies of the 
pendu lum being in each region, given that it starts in 
the pr imary chain, appear in Figure 9. As q approaches 
zero, the probabi l i t ies of the sinks approach .5 and those 
of the remaining regions approach zero. The sink prob­
abil i t ies depend only on the rat io p/q; for example given 
p/q = 10, they are each .37. The second strategy de­
rives the asymptot ic probabil i t ies directly by treat ing s1 

and s2 as absorbing states, but incurs the diff iculty of 
construct ing regions on which q is negligible. 

When the two nearby charges are of unequal mag­
n i tude, the unstable equi l ibr ia move away f rom (0,0) 
and and the stable equi l ibr ia are positioned asym­
metr ical ly around the axis, but otherwise the qualita­

Figure 9: Asymptot ic probabil it ies of the pendulum be­
ing in each region, given an in i t ia l state in the pr imary 
chain. 

l ive dynamics appears just as in Figure 7. The transi­
t ion probabil it ies, however, change to reflect the greater 
and lesser attractions of the unequal charges, w i t h entry 
probabilit ies p1 and p2 and exit probabil i t ies q\ and q2-
Let and respectively represent the asymptotic 
probabilit ies of appearing in states 1\ and s2, averaged 
over all possible transient start ing states. For simplic­
i ty, we assume that trajectories cannot escape the t rap­
ping regions, so that q1= q2 = 0. Calculat ing the rat io 

The dependence of . on p1 and p2 agrees w i th our 
intui t ions. The rat io increases monotonical ly f rom 0 as 
P1 increases f rom 0 to 1 and decreases monotonical ly 
from oo as p2 increases from 0 to 1. It equals 0 when 

and 1 when p1 equals p2. 

6 Conclusions and fu ture work 
We apply the theory of Markov chains to estimate the 
likelihoods of possible behaviors of a system, thereby fill­
ing a serious gap in the predictions of qual i tat ive simu­
lat ion. This theory enables us to draw the best possible 
conclusions from the available informat ion. We can de­
termine the possible long term behaviors of a system 
directly f rom its qual i tat ive dynamics. More detailed 
information, such as the likelihoods of the possible be­
haviors and the expected sett l ing times for each in i t ia l 
state, require estimates of the t ransi t ion probabil i t ies be­
tween qualitat ive states. The estimates can be numeric 
or symbolic; the analysis is formal ly identical in both 
cases, but has 0(N3) t ime-complexity in the former and 
exponential t ime-complexity in the latter. We exhibi t 
the ut i l i ty of our method in several examples, and an­
alyze the robustness of its conclusions to perturbat ions 
in the transit ion probabil i t ies. The likelihoods of the 
long term behaviors are never sensitive to perturbat ions 
in the transit ion probabil i t ies, whereas the expected set­
t l ing t ines can be sensitive. 

Our current analysis is only a first step towards fu l l ex­
ploi tat ion of the stochastic approach to qual i tat ive rea­
soning. We have not ful ly explored the potent ia l of 
Markov theory. Further investigation may yield sim­
ple ways of determining other qual i tat ive properties of 
systems through application of known techniques. One 
might also relax the chain assumption underly ing our 
treatment and instead view the qual i tat ive dynamics as 
describing a more general Markov process in which t ran ­
sitions depend on past states. There is a r ich theory of 
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Figure 8: Transi t ion probabil i t ies for the two-charge pendulum. The probabil i t ies f rom and to the bounding regions 
of the sinks are p and q respectively. The unmarked transit ions of each node have equal probabil i t ies. 

these processes which may support many of the same 
conclusions as above in the more general sett ing. Incor­
porat ing global properties of flows, such as energy con­
servation, into stochastic analysis is another topic for fu ­
ture research. Final ly, automat ing the model refinement 
is a major machine learning challenge. 
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