
CONSTRAINT REASONING BASED ON INTERVAL ARITHMETIC1

Eero Hyvonen
Technical Research Centre of Finland2

Lehtisaarentie 2A, 00340 Helsinki
FINLAND

A b s t r a c t
Current numerical constraint propagation systems accept
as input only problems represented by exact numerical
values and correspondingly produce only crisp solutions
as output. In order to remove this limitation we have
designed and implemented a generalized constraint
propagation scheme based on interval arithmetic instead
of conventional arithmetic. By using intervals instead of
exact values we may express inexact numerical
constraints in a well-defined way and compute necessary
condi t ions for consistency in inconsistent
underconstrained or overconstrained situations. If only
singleton intervals are used our system produces similar
results as conventional exact value systems.

1 Int roduct ion
The problem
In this paper two major limitations of current numerical
constraint propagation systems (Steele, 1980; Kanopasek and
Jayaraman, 1984; Leler, 1988) are discussed:
1. The problem of exact input/output. The systems accept as
input only exact values and correspondingly produce only
crisp values for output. In many applications, however, data
may be noisy, uncertain or incomplete and exact values cannot
be determined for input. In such cases the output should reflect
the inexactness of the input: more exact input values should
result in more exact output values. Furthermore, in many
cases it impossible make the distinction between input and
output parameters beforehand. If a given parameter value is
modified by the propagation engine the parameter is
simultaneously input and output parameter. The type of the
parameter is determined dynamically.
2. Reasoning in under- and constrained situations. The
triggering condition for propagation, i.e. problem solving, is
that the problem is perfectly (or over-) constrained. If the
situation is underconstrained, i.e. too few parameter values
are known, the systems typically halt without external help
(like relaxation). When more than enough parameters are
given as input propagation may proceed but usually just finds
the situation inconsistent. In both cases the propagation
systems cannot maintain consistency properly in the
constraint network.
As a solution to these problems the application of interval
arithmetic in numerical constraint reasoning instead of
conventional exact value arithmetic is proposed. By using
intervals we may express inexact, incomplete, and general

1 This work is a part of the FINPRIT research programme, funded
mainly by the Technology Development Centre of Finland.
Financial support was provided also by DEC, Finnish PTT, Nokia,
VTKK, and Wartsila Marine.
215.3.1989-15.3.1990: Electrotechnical Laboratory, Cognitive
Science Section, 1-1-4 Umezono, Tsukuba, Ibaraki 305, JAPAN.

numerical problems in a well-defined way and compute
conditions for consistency in inconsistent situations.

For example, in current exact value systems the temperature
conversion between Celsius (C) and Fahrenheit (F) degrees
F=C*1.8+32 can be represented by the constraint net of
figure 1.1. If C is known (input) F can be computed (output)
and wise versa. However, problems in which both C and F are
partly known cannot be dealt with properly. For instance, we
may have two measurements C:=[1,5] and F:=[27,35] and
want to know under what circumstances the measurements are
coherent. In this kind of problems parameters are regarded
simultaneously as input and output. The problem is
underconstrained because C and F are not known exactly.
However, the situation is also overconstrained because the
measurements are partly conflicting. As result, exact value
propagation techniques are inapplicable even for propagating
the limits of the intervals. By our scheme we are able to
determine as conditions of consistency: C:=[1,1.666...] and
F:=[33.8, 35].

Figure 1.1 A constraint net for temperature conversion.
The idea of propagating simultaneous alternative values is
called tolerance propagation (TP). TP can be applied in
discrete logical domains, too, resulting in a generalization of
clausal and multiple valued logics, tolerance logics (Hyvonen,
1988). A detailed presentation of the general TP scheme can be
found in (Hyvonen, 1989).
Related work
Current inexact reasoning systems typically deal with crisp
numerical values. In Bayesian systems (Pearl, 1988), for
example, probabilities are exact numbers; inexactness is due
to the user's interpretation of the values. However, in
(Quinlan, 1983) a mechanism is developed for propagating
probability intervals in an inference network. To this category
of systems fall also systems based on Dempster-Shafer theory
(Shafer, 1976). In these systems parameters refer to sets of
alternative values and inexactness is embedded - in a sense -
- explicitly in the semantics of the systems. However, the
mechanisms discussed are devised for probabilistic or
uncertain reasoning only. We will develop a general approach
for reasoning with numerical intervals that makes no
commitment to a particular application domain of numerical
reasoning like probabilistic or uncertain inference.
The problem of underconstrained situations can be approached
in two major ways. Firstly, we can try to avoid
underconstrained situations in the first place. Elias (1986),
for example, has developed a technique to help the user in

Hyvonen 1 1 9 3

selecting correct input parameter set for computing desired
output parameters. For dealing with underconstrained problem
formulations several techniques has been developed (Leler,
1988) like using defaults or heuristically determined values,
applying relaxation (Newton-Raphson method and others)
(Kanopasek, Jayaraman, 1984), or exploiting redundant
views and algebraic transformations (Gosling, 1983). In these
proposals underconstrained situations are made perfectly
constrained by some strategy external to propagation.
Furthermore, exact value arithmetic is used and inexact,
possibly inconsistent, problem formulations (init ial
situations) or solutions (situations after propagation) cannot
be represented. In our system problems and solutions can be
represented in inexact terms and conditions for consistency be
determined in inconsistent situations.

2 Interval Constraints
In this chapter basic notions of (rational) interval arithmetic
(IA) (Moore, 1966) are presented and representation of
interval constraints in our system is discussed.
Rat ional in terval ar i thmet ic
The interval X is a continuum (set) of real numbers
represented as a number pair:

1194 Knowledge Representation

than x is represented as x+ and x-, respectively. By this way
open intervals can be approximately represented. For
example:

[1+,2-]=[1.00...1. 1.99...9]=(1,2)
Meaning of "slightly" depends on the accuracy we want or can
use in computations. For example, if two numbers x and y are
considered equal iff |x-y|<d (absolute criterion), then we can
use conventions x+=x+d, x-=x-d. For "infinitely" large and
small numbers symbols will be used,
respectively. In practical systems, an infinitely large/small
number will have some finite value.
In our experimental system an IA equation is represented in
prefix notation. For example, the third order equation
constraint PX3+QX=-R is represented as:

(ADD= (TEXP3 X) (MULT Q X) (OPP R)) (2 .2)
Equations are parsed into sets of primitive constraints. For
example, (2.2) is transformed into a set of A3=B (TEXPT3),
A*B=C (MULT), -A (OPP), and A+B-C (ADD) primitives:

((TEXP3 X G1)(MULT Q X G2) (OPP R G3) (2 .3)
(ADD G1 G2 G3))

The last argument represents the value of the function; if it is
missing a dummy parameter (G/) is generated. Problems (to
be called propositions) are represented by substituting each
parameter an interval value. The value assignment defines the
situation of the proposition. For example, the problem of
solving the equation pair

(2 .4)

3 Conditions of Consistency
In this chapter a technique for computing the conditions of
consistency of an interval proposition is developed.
Admiss ib i l i ty and consistency
Let C(Pi ,...,Pn), Pi'=Xj, i=1...n be a proposition of a a single
constraint C. The proposition is admissible iff

is satisfied

Admissibility means that there is a way of selecting exact
values consistently for the parameters within the tolerances.
We say that a parameter PJ:=XJ, i=1...n, is consistent in the
proposition iff:

For example, in the proposition
A-fB-C (3 .1)
Ar-11,2], B:=[3,4], C:-[4,6]

C is consistent. If C:=[4,6.1], then C is inconsistent because
values 6<c<6.1 cannot be obtained by any pair of exact values
for A and B.
A single contraint proposition is consistent iff its every
parameter is consistent. Consistency of a proposition means
that if we select any exact value for any parameter within its
tolerance, it is possible to assign exact values to the other
parameters within their tolerances in such a way that the
constraint is satisfied. For example, (3.1) is consistent.
With constraint nets, i.e. sets of constraints, we will use two
notions of consistency: A proposition is locally consistent if its
every constraint is consistent independently from each other,

We will use same function symbols for both interval and exact
value operations. Which operation is in question can be
determined by the arguments. When possible, capital letters
will be used in interval functions.
For computational purposes, definitions relating the limits of
argument intervals to the limits of the value interval can be
derived:

IA differs from exact value arithmetic with respect to some
basic algebraic laws. Distributive law does not hold in interval
arithmetic. However, for any intervals I,J, and K the
subdistributivity law holds. For example:

for every set of interval numbers X-| Xn for which the IA
operations in F are defined.
Representation of constraints
In this paper we consider closed intervals. For notational
convenience, a slightly larger and slightly smaller number

An important property of interval arithmetic is inclusion
monotonicity stating that

and This applies also more
generally (Moore, 1966, theorem 3.1): If F(Xi X n) is a
rational expression in the interval parameters Xi, . . . ,Xn , i.e. a
finite combination of X-|,...,Xn and a finite set of constant
intervals with IA operations, then

and globally consistent if its every constraint is consistent
simultaneously.
Solut ion funct ions

In IA, arithmetic functions are used in one direction for
computing the combined interval from the arguments. For
example, if A=[1,2] and B=[3,4] we know that A+B=[4,6].
However, interval functions constrain values in other
"directions", too. Symmetrically, the value condition of each
parameter PI :=XJ in a constraint can be represented by the
solution function Xj=Fj(X1 . . .X i - 1 , Xj+i1 l...,Xn). For example,
the solution functions for the interval addition constraint
A+B=C are:

A=F(B,C)=C-B, B=F(A,C)=C-A, C=F(A,B)=A+B
In conventional arithmetic the relationships expressed by the
solution functions hold simultaneously if one of them holds
(excluding undefined exceptional cases, like division by zero).
For example, a=c-b, b=c-a, and c=a+b in situation {a:=1,
b:=2, c:=3}. IA is different in this respect. For example, in
si tuat ion (3.1) we get C=A + B = [4,6], but A=C-

and
It can be shown (Hyvonen, 1989) that:

Theorem 3 .1 . A constraint proposition C(P1 Pn) ,
PJ:=XJ, i=1...n, is consistent iff its every solution function
Fj, i=1...n, satisfies:

It is assumed here that each Fj is sound and complete, i.e. it
produces exactly the actual interval of values for Pj. It is easy
to see that the rational IA functions of (Moore, 1966) (2.1),
for example, satisfy this condition. Hence, for instance, (3.1)

and In our system we
can also define solution functions for more complex
constraints, like exponential, logarithmic, trigonometric, and
hyperbolic constraints.
Hierarchical problem space

A situation S={X-| :^[...],...,Xn:=[...]} is called more general
than S'={Xi ' :=[.. .] , . . . ,Xn ' :=[.. .]}, i.e. iff
i=1...n. The situations of a constraint net form mathematically
a hierarchical lattice defined by the relation. Based on this
observation the tolerance constraint satisfaction problem
(TCSB) can be stated as: Determine the least general common
consistent situation (solution) of the given proposition.
Intuitively, the task is to find the most constrained interval
values still containing exactly the same exact value solutions
as the original proposition. This formulation generalizes the
conventional Boolean constraint satisfaction problem (BCSB)
formulation (Macworth, 1987) (with its extensions to
continuous domains) in which the situation space defined by
the value assignments is non-hierarchical. A BCSB (in
continuous domains) can be represented as a TCSB in which
singleton tolerances (e.g. [3.14, 3.14]) are used as values for
known parameters and value is used for unknowns.

A proposition may have none, one or infinitely many
(sub)solutions. Generating all consistent subsolutions for a
proposition is in the general case impossible without some
kind of external heuristic preferences for selecting between
the solutions. In our scheme such heuristics are not needed.
The problem of finding a consistent solution that generalizes
every consistent solution of the original proposition can be
accomplished by purely mathematical means and without
producing infinitely many individual subsolutions.

Tolerance propagat ion procedure
By theorem 3.1 a constraint is satisfied iff its solution
functions are satisfied This provides a practical

The procedure converges - at least asymptotically - towards a
unique solution, if there exists one, or towards an
inadmissible situation. The computational complexity of
procedure 3.1 depends on the topology of the constraint net,
constraints, initial values, the strategy used for updating the
Agenda, and the accuracy demanded.
Consider as example the constraint equation

X 3 - 9X = -4 (3 .2)
as an instance of (2.2). From situation the
procedure 3.1 converges towards solution X:=[0.46.., 2.75..].
The actual positive roots of the equation are x:=0.46, and
x:=2.75. By tolerance propagation we could constrain the
tolerance of X as far as this was possible without losing any
exact value solutions of the original proposition. If we consider
subintervals X:=[0.46, 1.6] and X:=[1.6, 2.75] separately
the procedure converges towards the two positive roots.
Proposit ion decomposi t ion
However, if initial value is used in (3.2)
problems arise because the solution function Q=G2/X of
multiplication constraint (MULT Q X G2) (2.3) is not defined
if Oe X. Our solution is to divide the problematic situation into
an equivalent set S of less general (sub)situations for which
procedure 3.1 can be applied. It is demanded that the division S
is compiete and sound. In such a division, each exact value
solution of the original situation is a solution of one situation
in S and each exact value solution of the situations in S is a
solution of the original situation (i.e. exact value solutions are
neither lost nor introduced). Similar decomposition strategy
is used in situations in which a solution function produces
multiple interval values (like in square or sinus constraints).
In both cases multiple solutions may result. For example, if

in (3.2) the negative root X:=[-3.20... -3.20..]
is obtained, too.
We have used following criteria for situation decomposition:
Definability. Given a constraint C defined by solution functions
Fj, each Fj must be defined within the argument intervals.

Monotonicity. For each (exact value) solution function fj only
one of the following situations holds within the argument
intervals:

Hyvonen 1195

means for computing the conditions of consistency for
propositions. The procedure for doing this is represented
below. The idea is to cautiously constrain tolerance values by
the solution functions until each solution function of each
constraint is satisfied or inadmissibility is found. In the
procedure we have assumed that within the intervals of the
original proposition situation the solution functions are
defined, sound, and complete.

In the continuous case monotonicity assumption means that the
partial derivatives of the solution functions with respect to
each argument parameter

do not change sign within the corresponding interval

The reason for making this assumption is that the interval
value [min.max] of the corresponding interval function Fj can
now be determined easily without deeper functional analysis
by:

Here each is either min(Xj) or
max(Xj) .

As an example, consider the general logarithmic/exponential
relationship defined by the solution functions:

By the definability assumption we get limitations b>0, b#1,
x>0, y#0. By considering the derivatives of the solution
functions one additional division point, x=1, is found:

Altogether, the assumptions mean that parameter values must
be considered separately within following limits: Y: {[-i,0-],
[0+,+i]}. X: {[0+.1-], [1 , + i]}, B: {[0 + .1-], [1+, + i]}. In
the worst case each argument interval contains a division point
and 8 cases must be computed separately. If the original
intervals do not contain division points, exactly one solution
(or none, if the proposition is inadmissible) emerges. For
example, to satisfy Y=B log(X) in {B:=[0.5,3], X:=[2,7],
Y:=[-100,89]}, cases B:=[0.5,1-] and B:=[1 + ,3] must be
considered separately with both positive and negative Y-values
(four different subsituations).
Due to the monotonicity assumption the solution functions are
defined easily as:

Monotonicity assumption is a sufficient condition for
computing function value limits from argument limits. It is
not a necessary condition because a function may have absolute
maximum and minimum points at interval limits but be
nonmonotonic in between. We apply monotonicity assumption
due to its simplicity and generality although it in some cases
may entail unnecessarily many substitutions to be considered
separately.

4 Interval constraint reasoning
In this chapter some properties of the TP scheme are
discussed.
Reasoning in under/overconstrained s i tuat ions
in current propagation systems (Leler, 1988) a solution
function cannot be computed before its arguments are known
For example, for the addition constraint x=y+z two out of
three parameters must be known. If less than enough
parameters are known the situation underconstrained and the

1196 Knowledge Representation

system keeps on waiting until enough values are provided from
the outside. In many situations such values may never come
and local propagation halts. We call this problem the problem
of underconstrained situations, PUS. On the other hand, if
more than necessary parameters are known the situation is
overconstrained. Such situations are usually inconsistent and
conditions for consistency cannot be determined in a well-
defined way. Instead, ad hoc heuristics are used for forcing the
situation consistent. We call this the problem of
overconstrained situations, POS.
In our scheme both PUS and POS (partly) can be solved. PUS
cannot occur because all parameters always have a value.
Situations are actually always "overconstrained" in the above
sense. However, the POS does not occur in our scheme as
severely as in the exact value case: Conditions for consistency
can be determined for inconsistent situations. Only if the
situation is inadmissible POS is encountered.
Consider as an example of the PUS the circular equations

(4 .1)

constraining y to be the average of x and z. By local
propagation alone we cannot determine either y or t from the
situation {x:=1, z>11 t:=unknown, y:=unknown} because both
addition constraints are locally underconstrained. However, at
the global level the problem is perfectly constrained (two
independent equations with two unknowns) with result
{y>6,t:=5}. In the TP scheme the PUS is solved without
introducing special techniques, like relaxation. The problem
can be represented by the following interval value assignment:

The difference with the exact value case is that our procedure
does not halt but actually verifies consistency. The tighter the
initial intervals Y and T are the better estimates we get. For
example,
Local and global consistency condit ions
The IA rules of (Moore, 1965) (2.1) often produce larger
intervals than one would intuitively expect. There seems to a
kind of mismatch between algebraic and arithmetic equalities.
For example, consider equations:

Our algebraic intuition suggests that the values of A and B
should be always equal because their syntactic expressions are
equivalent due to the distributivity law. However, in IA the
distributivity law is substituted by the subdistributivity law

leading to conclusion The mismatch
is due to the fact that IA rules treat the multiple instances of
parameters as if they were totally different parameters with
equal values. The rules are local and fail to notice that the
instances refer globally to the same parameter with identical
simultaneous exact value interpretation. The rules are too
"cautious", i.e. produce too large intervals as result, but they
never rule out correct exact value interpretations.
The problem of multiple parameter instances can be
encountered (1) locally within a single constraint when
defining the solution functions and (2) globally in cyclic
constraint nets.

As an example of (1) consider the square constraint X2=Y. If
interval multiplication (2.1) is used for defining the solution
function Y=X2 we get, for example, from X=[-2,3] value
Y=[-2,3]*[-2,3]«[-6,9], although the actual interval is
Y=[0,9]. In such cases, special functions must be used that
take into account of the global constraints. In the above case,
for instance, we use the interval function:

The problem (2) means that in a cyclic network a locally
consistent solution produced by our procedure (3.1) is not
necessarily globally consistent, although it always has the
global solution as a subsolution, if there exists one.
(Intuitively, we get a solution that is not the best one with the
tightest conditions). For example, in example (4.1) we could
not find the global solution {T=[5,5], Y:=[6,6]} by TP. The
problem can be approached by transforming the equation set
algebraically into acyclic form. Gosling (1983) describes a
technique for performing such transformations by eliminating
critical parameters in the cycles. As result the constraint net
is transformed to a single higher level constraint - to be
called universal relation. Gosling's technique can be
generalized for the interval case. However, instead of applying
it to PUS - as Gosling did - we apply its generalized version to
solving the problem of finding the globally consistent solution
by the local propagation procedure (3.1). In our scheme, the
universal constraint corresponding to a set of equations S with
parameters Xj is defined (as any constraint) by a set of
(universal) solution functions Fuj. In general, there may be
several algebraic solutions Fug for Xj. In order to respect
them all the intersection of the FU values must be used as
the universal solution function:

For example, by eliminating T from the equations (4.1) we get
universal AVE-constraint with solution functions X=2Y-Z,
Y=(X+Z)/2, and Z=2Y-X. (In this simple case only one partial
function FUI,J can be derived for each parameter.) By the
AVE-constraint we always get the global conditions for
consistency for X, Y, and Z. In our example (4.1), procedure
3.1 finds the solution with {T:=[5,5], Y:=[6,6]}.

Algebraic transformations can be applied to making interval
reasoning more efficient, too. They also give us a tool for
defining more abstract constraints. A major problem with the
approach is that in some cases the solution functions may be
difficult to obtain or cannot be determined at all by algebraic
means. Another problem is that transformations are
computationally costly. In problematic situations local
tolerance propagation can always be applied and benefits of
algebraic and constraint based arithmetic reasoning can be
combined. For example, the non-linear equations (2.4) are
hard to manipulate algebraically. However, by procedure 3.1
we obtain X:=[-1.61... 0-], Y:=[.4, 2.73..] as local conditions
of consistency without using any global techniques. By dividing
these intervals further and propagating values, the exact
solution x:=.385.., y:=1.247.. is easily found with enough
precision in a few iterations.

In terval re laxat ion
Tolerance propagation can be used instead of exact value
relaxation in under/overconstrained situations. On the other
hand, relaxation techniques can combined with interval
reasoning. For example, interval reasoning can be applied to
solving the problem of determining the rough magnitude of the
initial guess values in exact value relaxation. (After finding a
local interval solution exact value relaxation can be applied
for the global solution.) A major benefit of the TP approach is
completeness: Tolerance propagation does not "lose" solutions.
For example, with exact value relaxation techniques, like
Newton-Raphson method, we cannot always determine whether
there exists a root within an interval. Consider as example the
problem of finding the roots of a fourth order equation
X4 + 2X 3 + 3X2+4X+5=0, By procedure 3.1 we
first get the (locally consistent) solution X:=[-2.34.., -.02].
We know that if the original equation has roots they must be
within this interval. By considering, for example, the
intervals X:=[-2.34.., -1.67] and X:=[-1.67 -.02]

inadmissibility is found in both cases immediately. After this
we can be sure that (within the accuracy used) the original
equation has no real roots. With TP we can consider infinite
numbers of exact value solution candidates simultaneously. By
reasoning with more general structures (intervals) we can
obtain more general results.

5 Example of Application
In this chapter we apply our scheme as example to a
mathematically simple but yet non-trivial design problem.
The goal is to illustrate the practical applicability of the TP
scheme.

Our problem is to allocate the working time of r researchers
in p projects. The working time XY of each researcher X in
project Y is constrained as follows: (1) Each researcher X has
an individual total capacity of X hours. (2) Each project Y
needs resources of Y hours. This basic problem is quite
common in many organizations. Problems of similar structure
are met in various design tasks. However, satisfactory tools
for solving it have not been developed.
In the problem, the mathematical relations between the
parameters are simple additions. For example, the arithmetic
constraints for three researchers A, B, and C and three
projects P1, P2, and P3 are:

Figure 5.1. A simple constraint network
By current spread sheets or exact value propagation systems
arithmetic computations cannot be performed unless the
problem is perfectly constrained by the user (enough and
right parameter values are known). This not usually possible,
especially in the beginning of the allocation design process
when most allocations are unknown and are to settled more or
less simultaneously. Furthermore, some parameter values
cannot perhaps be represented by exact numbers. It is also
quite hard to see what are the input parameter combinations
from which a set of desired output parameter could be
computed. A change in any parameter value may affect any
other parameter's value.

With exact value techniques we end up in a tedious iteration or
relaxation where some set of values (typically XY's) are
guessed, others (A, B, C and P1,P2,P3) are computed, and
results evaluated (with respect to the problem constraints)
until a satisfying assignment of parameter values emerges. The
solution - if found - is always exact and cannot reflect
inexactness of input data. By our scheme the user can initially

Hyvonen 1 1 9 7

set the intervals for the parameters as wide or as strict as he
wants. In any inconsistent (but admissible) design state
suggested by the user the system can derive a consistent
solution for the problem. Problem solving proceeds not by
iteration but by stepwise refining the constraints for the
problem until a satisfying solution of acceptable precision
emerges. Consultation mode is mixed initiative: The user
proposes a refinement to the problem formulation or a
solution and the system determines additional interval
constraints derivable.

For example, the intervals of the parameters may initially be

If the user increases the lower limit of project P2 up to 160,
i.e. P2:=[160,480], the system can infer {P1 :=[0,320],
P2:=[0,320], TOTAL:=[160,480]}. If we accept this and
constrain the problem further by saying that A should not
work in project P1 less that 120 hours, i.e. A1 :=[120,160],
then the system can infer seven necessary modifications for
the other parameters: {P1 :=[120,320], P2:=[1 60,360],
P3:= [0 ,2 0 0] , T O T A L : = [2 8 0 , 4 8 0] A P 2 : = [0 ,4 0] ,
AP3:=[0,40], A:=[120,160]}. In this case only one limit of
one parameter was changed in a quite simple constraint model.
In the general case we may modify both lower and higher
limits of several parameters simultaneously. Furthermore,
more complex arithmetical relationships than addition can be
applied.

If the problem in some phase of designing is found to be
inadmissible the system can easily propose one potential way
of making the system consistent again, i.e. a suggestion is made
for making some interval larger than it was in the original
problem formulation.

6 Conclusions
In this paper we have generalized numerical exact value
propagation into interval propagation. Semantically, the main
difference between exact value and tolerance propagation is: In
TP, the propositions/solutions constitute a hierarchy (lattice)
defined by the partial generality relation between their
situations. Tolerance satisfaction means determination of the
least general common consistent situation that generalizes each
exact value solution of the problem. Major contributions of
this view are: We can represent inexact and general problems
in terms of intervals, perform computations at a more
abstract level by interval functions, perform numerical
reasoning in underconstrained situations and with inconsistent
data, and represent inexact and generalized solutions. The
consistency maintenance scheme can be used to support several
intelligent functions, like stepwise refinement strategy in
problem solving and mixed initiative consultation mode.

Acknowledgements
Fruitful discussions with Seppo Linnainmaa, Matti Hamalai-
nen, Aarno Lehtola, and Tapio Niemela are acknowledged.

References
Elias, A. L. 1986. Knowledge Engineering of the Aircraft
Design Process. In Kowalik, J. S. (ed.): Knowledge Based
Problem Solving. Englewood Cliffs, New Jersey, Prentice-
Hall, pp. 213-256.
Gosling J. 1983. Algebraic Constraints. Doctoral Dissertation.
Pittsburgh, Pennsylvania, Department of Computer Science,
Carnegie-Mellon University.

1198 Knowledge Representation

Heintze, N. C. et. al. 1987. Constraint Logic Programming: A
Reader. Fourth IEEE Symposium on Logic Programming, San
Francisco, 31.8.-4.9.1987.
Hyvonen, E. 1988. Truth Maintenance of Incomplete
Knowledge. Paper, Helsinki, Technical Research Centre of
Finland, Lab. for Information Processing, 10 pp.

Hyvonen, E. 1989. Tolerance Propagation. An Approach to
Inexact Constraint Reasoning. Working paper, Helsinki,
Technical Research Centre of Finland, Lab. for Information
Processing, 150pp.

Jaffar, J., Lassez, J-L. 1986. Constraint Logic Programming.
Clayton, Victoria, Australia, Monash University, Dept. of
Computer Science, Technical Paper.
Kanopasek, M., Jayaraman, S. 1984. The TKISolver book.
Berkeley, California, McGraw-Hill, 458 pp.
Leler, W. 1988. Constraint Programming Languages. Their
Specification and Generation. Reading, Massachusetts, Addison-
Wesley, 202 pp.
Macworth, A. K. 1987. Constraint Satisfaction. In Shapiro, S.
(Ed.): Encyclopedia of Artificial Intelligence. New York, John
Wiley & Sons.

Moore, R. E. 1966. Interval Arithmetic. Englewood Cliffs, New
Jersey, Prentice-Hall.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Palo Alto,
California, Morgan Kaufmann, 552 pp.
Quinlan, R. 1983. Inferno: A Cautious Approach to Uncertain
Inference. The Computer Journal, Vol. 26, No. 3, August, pp.
2 5 5 - 2 6 9 .
Shafer, G. 1976. A Mathematical Theory of Evidence.
Princeton, New Jersey, Princeton University Press.
Steele G. L. 1980. The Definition and Implementation of a
Computer Programming Language Based on Constraints.
Doctoral Dissertat ion, Cambridge, Massachusetts,
Massachusetts Institute of Technology, Department of
Electrical Engineering and Computer Science.

