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A b s t r a c t 
Current numerical constraint propagation systems accept 
as input only problems represented by exact numerical 
values and correspondingly produce only crisp solutions 
as output. In order to remove this limitation we have 
designed and implemented a generalized constraint 
propagation scheme based on interval arithmetic instead 
of conventional arithmetic. By using intervals instead of 
exact values we may express inexact numerical 
constraints in a well-defined way and compute necessary 
condi t ions for consistency in inconsistent 
underconstrained or overconstrained situations. If only 
singleton intervals are used our system produces similar 
results as conventional exact value systems. 

1 Int roduct ion 
The problem 
In this paper two major limitations of current numerical 
constraint propagation systems (Steele, 1980; Kanopasek and 
Jayaraman, 1984; Leler, 1988) are discussed: 
1. The problem of exact input/output. The systems accept as 
input only exact values and correspondingly produce only 
crisp values for output. In many applications, however, data 
may be noisy, uncertain or incomplete and exact values cannot 
be determined for input. In such cases the output should reflect 
the inexactness of the input: more exact input values should 
result in more exact output values. Furthermore, in many 
cases it impossible make the distinction between input and 
output parameters beforehand. If a given parameter value is 
modified by the propagation engine the parameter is 
simultaneously input and output parameter. The type of the 
parameter is determined dynamically. 
2. Reasoning in under- and constrained situations. The 
triggering condition for propagation, i.e. problem solving, is 
that the problem is perfectly (or over-) constrained. If the 
situation is underconstrained, i.e. too few parameter values 
are known, the systems typically halt without external help 
(like relaxation). When more than enough parameters are 
given as input propagation may proceed but usually just finds 
the situation inconsistent. In both cases the propagation 
systems cannot maintain consistency properly in the 
constraint network. 
As a solution to these problems the application of interval 
arithmetic in numerical constraint reasoning instead of 
conventional exact value arithmetic is proposed. By using 
intervals we may express inexact, incomplete, and general 
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numerical problems in a well-defined way and compute 
conditions for consistency in inconsistent situations. 

For example, in current exact value systems the temperature 
conversion between Celsius (C) and Fahrenheit (F) degrees 
F=C*1.8+32 can be represented by the constraint net of 
figure 1.1. If C is known (input) F can be computed (output) 
and wise versa. However, problems in which both C and F are 
partly known cannot be dealt with properly. For instance, we 
may have two measurements C:=[1,5] and F:=[27,35] and 
want to know under what circumstances the measurements are 
coherent. In this kind of problems parameters are regarded 
simultaneously as input and output. The problem is 
underconstrained because C and F are not known exactly. 
However, the situation is also overconstrained because the 
measurements are partly conflicting. As result, exact value 
propagation techniques are inapplicable even for propagating 
the limits of the intervals. By our scheme we are able to 
determine as conditions of consistency: C:=[1,1.666...] and 
F:=[33.8, 35]. 

Figure 1.1 A constraint net for temperature conversion. 
The idea of propagating simultaneous alternative values is 
called tolerance propagation (TP). TP can be applied in 
discrete logical domains, too, resulting in a generalization of 
clausal and multiple valued logics, tolerance logics (Hyvonen, 
1988). A detailed presentation of the general TP scheme can be 
found in (Hyvonen, 1989). 
Related work 
Current inexact reasoning systems typically deal with crisp 
numerical values. In Bayesian systems (Pearl, 1988), for 
example, probabilities are exact numbers; inexactness is due 
to the user's interpretation of the values. However, in 
(Quinlan, 1983) a mechanism is developed for propagating 
probability intervals in an inference network. To this category 
of systems fall also systems based on Dempster-Shafer theory 
(Shafer, 1976). In these systems parameters refer to sets of 
alternative values and inexactness is embedded - in a sense -
- explicitly in the semantics of the systems. However, the 
mechanisms discussed are devised for probabilistic or 
uncertain reasoning only. We will develop a general approach 
for reasoning with numerical intervals that makes no 
commitment to a particular application domain of numerical 
reasoning like probabilistic or uncertain inference. 
The problem of underconstrained situations can be approached 
in two major ways. Firstly, we can try to avoid 
underconstrained situations in the first place. Elias (1986), 
for example, has developed a technique to help the user in 
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selecting correct input parameter set for computing desired 
output parameters. For dealing with underconstrained problem 
formulations several techniques has been developed (Leler, 
1988) like using defaults or heuristically determined values, 
applying relaxation (Newton-Raphson method and others) 
(Kanopasek, Jayaraman, 1984), or exploiting redundant 
views and algebraic transformations (Gosling, 1983). In these 
proposals underconstrained situations are made perfectly 
constrained by some strategy external to propagation. 
Furthermore, exact value arithmetic is used and inexact, 
possibly inconsistent, problem formulations (init ial 
situations) or solutions (situations after propagation) cannot 
be represented. In our system problems and solutions can be 
represented in inexact terms and conditions for consistency be 
determined in inconsistent situations. 

2 Interval Constraints 
In this chapter basic notions of (rational) interval arithmetic 
(IA) (Moore, 1966) are presented and representation of 
interval constraints in our system is discussed. 
Rat ional in terval ar i thmet ic 
The interval X is a continuum (set) of real numbers 
represented as a number pair: 
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than x is represented as x+ and x-, respectively. By this way 
open intervals can be approximately represented. For 
example: 

[1+,2-]=[1.00...1. 1.99...9]=(1,2) 
Meaning of "slightly" depends on the accuracy we want or can 
use in computations. For example, if two numbers x and y are 
considered equal iff |x-y|<d (absolute criterion), then we can 
use conventions x+=x+d, x-=x-d. For "infinitely" large and 
small numbers symbols will be used, 
respectively. In practical systems, an infinitely large/small 
number will have some finite value. 
In our experimental system an IA equation is represented in 
prefix notation. For example, the third order equation 
constraint PX3+QX=-R is represented as: 

(ADD= (TEXP3 X) (MULT Q X) (OPP R)) ( 2 .2 ) 
Equations are parsed into sets of primitive constraints. For 
example, (2.2) is transformed into a set of A3=B (TEXPT3), 
A*B=C (MULT), -A (OPP), and A+B-C (ADD) primitives: 

((TEXP3 X G1 )(MULT Q X G2) (OPP R G3) (2 .3 ) 
(ADD G1 G2 G3)) 

The last argument represents the value of the function; if it is 
missing a dummy parameter (G/) is generated. Problems (to 
be called propositions) are represented by substituting each 
parameter an interval value. The value assignment defines the 
situation of the proposition. For example, the problem of 
solving the equation pair 

(2 .4 ) 

3 Conditions of Consistency 
In this chapter a technique for computing the conditions of 
consistency of an interval proposition is developed. 
Admiss ib i l i ty and consistency 
Let C(Pi ,...,Pn), Pi'=Xj, i=1...n be a proposition of a a single 
constraint C. The proposition is admissible iff 

is satisfied 

Admissibility means that there is a way of selecting exact 
values consistently for the parameters within the tolerances. 
We say that a parameter PJ:=XJ, i=1...n, is consistent in the 
proposition iff: 

For example, in the proposition 
A-fB-C (3 .1 ) 
Ar-11,2], B:=[3,4], C:-[4,6] 

C is consistent. If C:=[4,6.1], then C is inconsistent because 
values 6<c<6.1 cannot be obtained by any pair of exact values 
for A and B. 
A single contraint proposition is consistent iff its every 
parameter is consistent. Consistency of a proposition means 
that if we select any exact value for any parameter within its 
tolerance, it is possible to assign exact values to the other 
parameters within their tolerances in such a way that the 
constraint is satisfied. For example, (3.1) is consistent. 
With constraint nets, i.e. sets of constraints, we will use two 
notions of consistency: A proposition is locally consistent if its 
every constraint is consistent independently from each other, 

We will use same function symbols for both interval and exact 
value operations. Which operation is in question can be 
determined by the arguments. When possible, capital letters 
will be used in interval functions. 
For computational purposes, definitions relating the limits of 
argument intervals to the limits of the value interval can be 
derived: 

IA differs from exact value arithmetic with respect to some 
basic algebraic laws. Distributive law does not hold in interval 
arithmetic. However, for any intervals I,J, and K the 
subdistributivity law holds. For example: 

for every set of interval numbers X-| Xn for which the IA 
operations in F are defined. 
Representation of constraints 
In this paper we consider closed intervals. For notational 
convenience, a slightly larger and slightly smaller number 

An important property of interval arithmetic is inclusion 
monotonicity stating that 

and This applies also more 
generally (Moore, 1966, theorem 3.1): If F(Xi X n ) is a 
rational expression in the interval parameters Xi, . . . ,Xn , i.e. a 
finite combination of X-|,...,Xn and a finite set of constant 
intervals with IA operations, then 



and globally consistent if its every constraint is consistent 
simultaneously. 
Solut ion funct ions 

In IA, arithmetic functions are used in one direction for 
computing the combined interval from the arguments. For 
example, if A=[1,2] and B=[3,4] we know that A+B=[4,6]. 
However, interval functions constrain values in other 
"directions", too. Symmetrically, the value condition of each 
parameter PI :=XJ in a constraint can be represented by the 
solution function Xj=Fj(X1 . . .X i - 1 , Xj+i1 l...,Xn). For example, 
the solution functions for the interval addition constraint 
A+B=C are: 

A=F(B,C)=C-B, B=F(A,C)=C-A, C=F(A,B)=A+B 
In conventional arithmetic the relationships expressed by the 
solution functions hold simultaneously if one of them holds 
(excluding undefined exceptional cases, like division by zero). 
For example, a=c-b, b=c-a, and c=a+b in situation {a:=1, 
b:=2, c:=3}. IA is different in this respect. For example, in 
si tuat ion (3.1) we get C=A + B = [4,6], but A=C-

and 
It can be shown (Hyvonen, 1989) that: 

Theorem 3 .1 . A constraint proposition C(P1 Pn ) , 
PJ:=XJ, i=1...n, is consistent iff its every solution function 
Fj, i=1...n, satisfies: 

It is assumed here that each Fj is sound and complete, i.e. it 
produces exactly the actual interval of values for Pj. It is easy 
to see that the rational IA functions of (Moore, 1966) (2.1), 
for example, satisfy this condition. Hence, for instance, (3.1) 

and In our system we 
can also define solution functions for more complex 
constraints, like exponential, logarithmic, trigonometric, and 
hyperbolic constraints. 
Hierarchical problem space 

A situation S={X-| :^[...],...,Xn:=[...]} is called more general 
than S'={Xi ' :=[.. . ] , . . . ,Xn ' :=[.. . ]}, i.e. iff 
i=1...n. The situations of a constraint net form mathematically 
a hierarchical lattice defined by the relation. Based on this 
observation the tolerance constraint satisfaction problem 
(TCSB) can be stated as: Determine the least general common 
consistent situation (solution) of the given proposition. 
Intuitively, the task is to find the most constrained interval 
values still containing exactly the same exact value solutions 
as the original proposition. This formulation generalizes the 
conventional Boolean constraint satisfaction problem (BCSB) 
formulation (Macworth, 1987) (with its extensions to 
continuous domains) in which the situation space defined by 
the value assignments is non-hierarchical. A BCSB (in 
continuous domains) can be represented as a TCSB in which 
singleton tolerances (e.g. [3.14, 3.14]) are used as values for 
known parameters and value is used for unknowns. 

A proposition may have none, one or infinitely many 
(sub)solutions. Generating all consistent subsolutions for a 
proposition is in the general case impossible without some 
kind of external heuristic preferences for selecting between 
the solutions. In our scheme such heuristics are not needed. 
The problem of finding a consistent solution that generalizes 
every consistent solution of the original proposition can be 
accomplished by purely mathematical means and without 
producing infinitely many individual subsolutions. 

Tolerance propagat ion procedure 
By theorem 3.1 a constraint is satisfied iff its solution 
functions are satisfied This provides a practical 

The procedure converges - at least asymptotically - towards a 
unique solution, if there exists one, or towards an 
inadmissible situation. The computational complexity of 
procedure 3.1 depends on the topology of the constraint net, 
constraints, initial values, the strategy used for updating the 
Agenda, and the accuracy demanded. 
Consider as example the constraint equation 

X 3 - 9X = -4 (3 .2 ) 
as an instance of (2.2). From situation the 
procedure 3.1 converges towards solution X:=[0.46.., 2.75..]. 
The actual positive roots of the equation are x:=0.46, and 
x:=2.75. By tolerance propagation we could constrain the 
tolerance of X as far as this was possible without losing any 
exact value solutions of the original proposition. If we consider 
subintervals X:=[0.46, 1.6] and X:=[1.6, 2.75] separately 
the procedure converges towards the two positive roots. 
Proposit ion decomposi t ion 
However, if initial value is used in (3.2) 
problems arise because the solution function Q=G2/X of 
multiplication constraint (MULT Q X G2) (2.3) is not defined 
if Oe X. Our solution is to divide the problematic situation into 
an equivalent set S of less general (sub)situations for which 
procedure 3.1 can be applied. It is demanded that the division S 
is compiete and sound. In such a division, each exact value 
solution of the original situation is a solution of one situation 
in S and each exact value solution of the situations in S is a 
solution of the original situation (i.e. exact value solutions are 
neither lost nor introduced). Similar decomposition strategy 
is used in situations in which a solution function produces 
multiple interval values (like in square or sinus constraints). 
In both cases multiple solutions may result. For example, if 

in (3.2) the negative root X:=[-3.20... -3.20..] 
is obtained, too. 
We have used following criteria for situation decomposition: 
Definability. Given a constraint C defined by solution functions 
Fj, each Fj must be defined within the argument intervals. 

Monotonicity. For each (exact value) solution function fj only 
one of the following situations holds within the argument 
intervals: 
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means for computing the conditions of consistency for 
propositions. The procedure for doing this is represented 
below. The idea is to cautiously constrain tolerance values by 
the solution functions until each solution function of each 
constraint is satisfied or inadmissibility is found. In the 
procedure we have assumed that within the intervals of the 
original proposition situation the solution functions are 
defined, sound, and complete. 



In the continuous case monotonicity assumption means that the 
partial derivatives of the solution functions with respect to 
each argument parameter 

do not change sign within the corresponding interval 

The reason for making this assumption is that the interval 
value [min.max] of the corresponding interval function Fj can 
now be determined easily without deeper functional analysis 
by: 

Here each is either min(Xj) or 
max(Xj) . 

As an example, consider the general logarithmic/exponential 
relationship defined by the solution functions: 

By the definability assumption we get limitations b>0, b#1, 
x>0, y#0. By considering the derivatives of the solution 
functions one additional division point, x=1, is found: 

Altogether, the assumptions mean that parameter values must 
be considered separately within following limits: Y: {[-i,0-], 
[0+,+i]}. X: {[0+.1-], [ 1 , + i]}, B: {[0 + .1-], [1+, + i]}. In 
the worst case each argument interval contains a division point 
and 8 cases must be computed separately. If the original 
intervals do not contain division points, exactly one solution 
(or none, if the proposition is inadmissible) emerges. For 
example, to satisfy Y=B log(X) in {B:=[0.5,3], X:=[2,7], 
Y:=[-100,89]}, cases B:=[0.5,1-] and B:=[1 + ,3] must be 
considered separately with both positive and negative Y-values 
(four different subsituations). 
Due to the monotonicity assumption the solution functions are 
defined easily as: 

Monotonicity assumption is a sufficient condition for 
computing function value limits from argument limits. It is 
not a necessary condition because a function may have absolute 
maximum and minimum points at interval limits but be 
nonmonotonic in between. We apply monotonicity assumption 
due to its simplicity and generality although it in some cases 
may entail unnecessarily many substitutions to be considered 
separately. 

4 Interval constraint reasoning 
In this chapter some properties of the TP scheme are 
discussed. 
Reasoning in under/overconstrained s i tuat ions 
in current propagation systems (Leler, 1988) a solution 
function cannot be computed before its arguments are known 
For example, for the addition constraint x=y+z two out of 
three parameters must be known. If less than enough 
parameters are known the situation underconstrained and the 
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system keeps on waiting until enough values are provided from 
the outside. In many situations such values may never come 
and local propagation halts. We call this problem the problem 
of underconstrained situations, PUS. On the other hand, if 
more than necessary parameters are known the situation is 
overconstrained. Such situations are usually inconsistent and 
conditions for consistency cannot be determined in a well-
defined way. Instead, ad hoc heuristics are used for forcing the 
situation consistent. We call this the problem of 
overconstrained situations, POS. 
In our scheme both PUS and POS (partly) can be solved. PUS 
cannot occur because all parameters always have a value. 
Situations are actually always "overconstrained" in the above 
sense. However, the POS does not occur in our scheme as 
severely as in the exact value case: Conditions for consistency 
can be determined for inconsistent situations. Only if the 
situation is inadmissible POS is encountered. 
Consider as an example of the PUS the circular equations 

(4 .1 ) 

constraining y to be the average of x and z. By local 
propagation alone we cannot determine either y or t from the 
situation {x:=1, z>11 t:=unknown, y:=unknown} because both 
addition constraints are locally underconstrained. However, at 
the global level the problem is perfectly constrained (two 
independent equations with two unknowns) with result 
{y>6,t:=5}. In the TP scheme the PUS is solved without 
introducing special techniques, like relaxation. The problem 
can be represented by the following interval value assignment: 

The difference with the exact value case is that our procedure 
does not halt but actually verifies consistency. The tighter the 
initial intervals Y and T are the better estimates we get. For 
example, 
Local and global consistency condit ions 
The IA rules of (Moore, 1965) (2.1) often produce larger 
intervals than one would intuitively expect. There seems to a 
kind of mismatch between algebraic and arithmetic equalities. 
For example, consider equations: 

Our algebraic intuition suggests that the values of A and B 
should be always equal because their syntactic expressions are 
equivalent due to the distributivity law. However, in IA the 
distributivity law is substituted by the subdistributivity law 

leading to conclusion The mismatch 
is due to the fact that IA rules treat the multiple instances of 
parameters as if they were totally different parameters with 
equal values. The rules are local and fail to notice that the 
instances refer globally to the same parameter with identical 
simultaneous exact value interpretation. The rules are too 
"cautious", i.e. produce too large intervals as result, but they 
never rule out correct exact value interpretations. 
The problem of multiple parameter instances can be 
encountered (1) locally within a single constraint when 
defining the solution functions and (2) globally in cyclic 
constraint nets. 

As an example of (1) consider the square constraint X2=Y. If 
interval multiplication (2.1) is used for defining the solution 
function Y=X2 we get, for example, from X=[-2,3] value 
Y=[-2,3]*[-2,3]«[-6,9], although the actual interval is 
Y=[0,9]. In such cases, special functions must be used that 
take into account of the global constraints. In the above case, 
for instance, we use the interval function: 



The problem (2) means that in a cyclic network a locally 
consistent solution produced by our procedure (3.1) is not 
necessarily globally consistent, although it always has the 
global solution as a subsolution, if there exists one. 
(Intuitively, we get a solution that is not the best one with the 
tightest conditions). For example, in example (4.1) we could 
not find the global solution {T=[5,5], Y:=[6,6]} by TP. The 
problem can be approached by transforming the equation set 
algebraically into acyclic form. Gosling (1983) describes a 
technique for performing such transformations by eliminating 
critical parameters in the cycles. As result the constraint net 
is transformed to a single higher level constraint - to be 
called universal relation. Gosling's technique can be 
generalized for the interval case. However, instead of applying 
it to PUS - as Gosling did - we apply its generalized version to 
solving the problem of finding the globally consistent solution 
by the local propagation procedure (3.1). In our scheme, the 
universal constraint corresponding to a set of equations S with 
parameters Xj is defined (as any constraint) by a set of 
(universal) solution functions Fuj. In general, there may be 
several algebraic solutions Fug for Xj. In order to respect 
them all the intersection of the FU values must be used as 
the universal solution function: 

For example, by eliminating T from the equations (4.1) we get 
universal AVE-constraint with solution functions X=2Y-Z, 
Y=(X+Z)/2, and Z=2Y-X. (In this simple case only one partial 
function FUI,J can be derived for each parameter.) By the 
AVE-constraint we always get the global conditions for 
consistency for X, Y, and Z. In our example (4.1), procedure 
3.1 finds the solution with {T:=[5,5], Y:=[6,6]}. 

Algebraic transformations can be applied to making interval 
reasoning more efficient, too. They also give us a tool for 
defining more abstract constraints. A major problem with the 
approach is that in some cases the solution functions may be 
difficult to obtain or cannot be determined at all by algebraic 
means. Another problem is that transformations are 
computationally costly. In problematic situations local 
tolerance propagation can always be applied and benefits of 
algebraic and constraint based arithmetic reasoning can be 
combined. For example, the non-linear equations (2.4) are 
hard to manipulate algebraically. However, by procedure 3.1 
we obtain X:=[-1.61... 0-], Y:=[.4, 2.73..] as local conditions 
of consistency without using any global techniques. By dividing 
these intervals further and propagating values, the exact 
solution x:=.385.., y:=1.247.. is easily found with enough 
precision in a few iterations. 

In terval re laxat ion 
Tolerance propagation can be used instead of exact value 
relaxation in under/overconstrained situations. On the other 
hand, relaxation techniques can combined with interval 
reasoning. For example, interval reasoning can be applied to 
solving the problem of determining the rough magnitude of the 
initial guess values in exact value relaxation. (After finding a 
local interval solution exact value relaxation can be applied 
for the global solution.) A major benefit of the TP approach is 
completeness: Tolerance propagation does not "lose" solutions. 
For example, with exact value relaxation techniques, like 
Newton-Raphson method, we cannot always determine whether 
there exists a root within an interval. Consider as example the 
problem of finding the roots of a fourth order equation 
X4 + 2X 3 + 3X2+4X+5=0, By procedure 3.1 we 
first get the (locally consistent) solution X:=[-2.34.., -.02]. 
We know that if the original equation has roots they must be 
within this interval. By considering, for example, the 
intervals X:=[-2.34.., -1.67] and X:=[-1.67 -.02] 

inadmissibility is found in both cases immediately. After this 
we can be sure that (within the accuracy used) the original 
equation has no real roots. With TP we can consider infinite 
numbers of exact value solution candidates simultaneously. By 
reasoning with more general structures (intervals) we can 
obtain more general results. 

5 Example of Application 
In this chapter we apply our scheme as example to a 
mathematically simple but yet non-trivial design problem. 
The goal is to illustrate the practical applicability of the TP 
scheme. 

Our problem is to allocate the working time of r researchers 
in p projects. The working time XY of each researcher X in 
project Y is constrained as follows: (1) Each researcher X has 
an individual total capacity of X hours. (2) Each project Y 
needs resources of Y hours. This basic problem is quite 
common in many organizations. Problems of similar structure 
are met in various design tasks. However, satisfactory tools 
for solving it have not been developed. 
In the problem, the mathematical relations between the 
parameters are simple additions. For example, the arithmetic 
constraints for three researchers A, B, and C and three 
projects P1, P2, and P3 are: 

Figure 5.1. A simple constraint network 
By current spread sheets or exact value propagation systems 
arithmetic computations cannot be performed unless the 
problem is perfectly constrained by the user (enough and 
right parameter values are known). This not usually possible, 
especially in the beginning of the allocation design process 
when most allocations are unknown and are to settled more or 
less simultaneously. Furthermore, some parameter values 
cannot perhaps be represented by exact numbers. It is also 
quite hard to see what are the input parameter combinations 
from which a set of desired output parameter could be 
computed. A change in any parameter value may affect any 
other parameter's value. 

With exact value techniques we end up in a tedious iteration or 
relaxation where some set of values (typically XY's) are 
guessed, others (A, B, C and P1,P2,P3) are computed, and 
results evaluated (with respect to the problem constraints) 
until a satisfying assignment of parameter values emerges. The 
solution - if found - is always exact and cannot reflect 
inexactness of input data. By our scheme the user can initially 
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set the intervals for the parameters as wide or as strict as he 
wants. In any inconsistent (but admissible) design state 
suggested by the user the system can derive a consistent 
solution for the problem. Problem solving proceeds not by 
iteration but by stepwise refining the constraints for the 
problem until a satisfying solution of acceptable precision 
emerges. Consultation mode is mixed initiative: The user 
proposes a refinement to the problem formulation or a 
solution and the system determines additional interval 
constraints derivable. 

For example, the intervals of the parameters may initially be 

If the user increases the lower limit of project P2 up to 160, 
i.e. P2:=[160,480], the system can infer {P1 :=[0,320], 
P2:=[0,320], TOTAL:=[160,480]}. If we accept this and 
constrain the problem further by saying that A should not 
work in project P1 less that 120 hours, i.e. A1 :=[120,160], 
then the system can infer seven necessary modifications for 
the other parameters: {P1 :=[120,320], P2:=[1 60,360], 
P3:= [0 ,2 0 0 ] , T O T A L : = [ 2 8 0 , 4 8 0 ] A P 2 : = [0 ,4 0 ] , 
AP3:=[0,40], A:=[120,160]}. In this case only one limit of 
one parameter was changed in a quite simple constraint model. 
In the general case we may modify both lower and higher 
limits of several parameters simultaneously. Furthermore, 
more complex arithmetical relationships than addition can be 
applied. 

If the problem in some phase of designing is found to be 
inadmissible the system can easily propose one potential way 
of making the system consistent again, i.e. a suggestion is made 
for making some interval larger than it was in the original 
problem formulation. 

6 Conclusions 
In this paper we have generalized numerical exact value 
propagation into interval propagation. Semantically, the main 
difference between exact value and tolerance propagation is: In 
TP, the propositions/solutions constitute a hierarchy (lattice) 
defined by the partial generality relation between their 
situations. Tolerance satisfaction means determination of the 
least general common consistent situation that generalizes each 
exact value solution of the problem. Major contributions of 
this view are: We can represent inexact and general problems 
in terms of intervals, perform computations at a more 
abstract level by interval functions, perform numerical 
reasoning in underconstrained situations and with inconsistent 
data, and represent inexact and generalized solutions. The 
consistency maintenance scheme can be used to support several 
intelligent functions, like stepwise refinement strategy in 
problem solving and mixed initiative consultation mode. 
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