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Abstract 

Leyton [1988] developed a set of rules by which 
process-history can be recovered from smooth 
natural shapes such as out l ines of tumors, 
clouds, or islands. In this paper, we extend this 
analysis to deal w i t h shapes w i t h first-order 
discontinuit ies such as corners, creases and 
cusps. A simple extension to the notat ion 
al lows one extra rule to cover most of these 
phenomena. 

In t roduc t ion 

Leyton [1988] developed a set of rules by which 
process-history can be recovered f rom smooth natural 
shapes such as outlines of tumors, clouds, or islands. 
In this paper, we extend this analysis to deal w i th 
shapes w i t h f i rs t -order d iscont inui t ies such as 
corners, creases and cusps. A simple extension to the 
notation al lows one extra rule to cover most of these 
phenomena. ( Such shapes arise also in considering 
processes acting on free l iqu id boundaries, such as 
drops and waves. The present extension was 
motivated by an attempt to apply Leytons analysis to 
the descr ipt ion of the shapes of l iqu id histories 
[Hayes 1985]. ) 

The rules developed in [Leyton 1988] fall into two 
sets, which we w i l l first br ief ly review. The first 
set assigns a symmetry axis to each curvature 
extremum of a curved shape, and interprets these 
symmetry axes as the directions of process activity. 
These rules generalise directly to the present more 
general case. The second set of rules assigns an 
intervening process-history to a pair of shapes known 
to be stages in the development of a single object, and 
we wi l l extend this set. 

The first set of rules are the Symmetry-Curvature 
Duality Theorem and the Interaction Principle. 
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Symmetry-Curvature Dual i ty Theorem: any section of 
smooth curve with one and only one curvature 
extremum has just one symmetry axis, which 
terminates at the extremum itself. 

The axis is constructed by moving a circle along the 
outline of the shape, so that it is always tangential 
to the curve at two points; the axis is the trace of the 
midpoint of the arc between these tangent points. 
( This symmetry construction is a variant of those in 
[Blum 1973] and [Brady 1983] ) 

I n t e r a c t i o n P r i n c i p l e : the symmetry axes of a 
perceptual organisation are interpreted as the 
directions along which processes are most likely to 
act or have acted. 

This interprets boundary curvature extrema as 
resu l t i ng f r o m processes ac t ing a long the 
corresponding axes, eg a protrusion has been pushed 
out along its axis and an indentation has been pushed 
in . 

To classify these extrema-based processes, Leyton 
[1988] considers the curvature function of the outline, 
ie a plot of curvature against distance travelled 
around the outl ine. ( Here we take clockwise as 
positive. ) There are four types of extrema, ie turning 
points on the curvature graph: positive maxima M+ , 
negative min ima m", posit ive min ima m+, and 
negative maxima M- . The interaction pr inciple 
suggests that these shapes are the results of process-
situations described respectively by the words 
protrusion, indentation, squashing and resistance 
( see figure 1 ). 

The second set of rules in [Leyton 1988] uses 
descriptions of curves in the form of strings of the five 
symbols M+ ,M-,m+ ,m~ and 0 ( indicat ing a point of 
zero curvature ). It assigns an intervening history to a 
pair of shapes, by which one can be transformed into 
the other. This consists of a process grammar which 
parses shape descriptions in terms of their possible 
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process histories, and an ordering rule based on the 
fo l lowing: 

Size-is-Time Heur is t ic : In the absence of information 
to the contrary, assume size corresponds to time: ie 
that the larger a boundary feature, the longer it has 
taken to develop. 

This can also be stated as "de-blurr ing recapitulates 
time", since b lur r ing removes detail f rom a shape in 
order of size, start ing w i t h the smallest, and also 
incrementally moves the boundary in the direction of 
decreased curvature var iat ion. This proposal is 
discussed in detail in [Leyton 1989] 

The grammar in [Leyton 1988] has six operations, 
shown in figure 2, which suffice for the description of 
the relationship between any two smooth shapes. 
The operations are expressed as rewr i te rules on 
strings of extrema symbols describing the shapes. 
Two are operations of process continuation, and four 
describe process bifurcation. They fal l into three 
pairs of duals, where the dua l of an operat ion 
corresponds to reversing the ins ide/outs ide of a 
contour. A l l the rules can apply in reverse, since 
processes can recede: we w i l l wr i te ~g to mean the 
reverse of g. 

First-order Discont inui t ies 

The purpose of this paper is to extend the grammar to 
hand le processes w h i c h create f i r s t - o r d e r 
discontinuities in the curvature function.1 Suppose for 
example that the pro t rus ion process wh ich is 
reshaping the curve in f igure 3 is created by a sharp 
edge pressing against the inside of a f lexible 
container. In i t ia l ly, due to f lexural r ig id i ty in the 
sk in , the ex t remum being created is smooth. 
Continuation, however, w i l l produce a sharp bend in 
the skin ( f ig. 3b ), and as the knife is pushed further 
outward the skin is pulled around the blade, forming 
a cusp ( f ig. 3c ). We w i l l call any such point of 
curvature-discontinuity a kink. 

We observe first that the Symmetry-Curvature 
Dual i ty Theorem extends natural ly to curves w i th 
kinks. Both sharp bends and cusps have axes, formed 
by the same construction, and the theorem stil l holds, 
w i th the axes terminating at the discontinuity. 2 

1 Cont inuous approaches to the format ion of 
discontinuities have been studied by Terzopoulos et al. 
[1988] and Blake and Zisserman [1987 ] 
2One has to slightly generalise "tangent": a tangent at a 
k ink is any l ine through the k ink point whose 
orientation is between those of the halt-tangents on 
either side. 
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( The theorem extends also to include curves w i th 
st ra ight or c i rcu lar -arc segments of constant 
curvature, w i t h the axis terminat ing at the center-
point of the segment, but we do not take advantage of 
this fact here. ) 

Curvature is where q is the rotation angle 
and s is distance along the curve. However, at a kink, 
the tangent rotates through a f inite amount in zero 
distance, so the curvature can be regarded as 
in f in i te 3 . The curvature graph has a single point at 
in f in i ty , which we w i l l indicate by a spike. Thus, 
k ink-format ion on the shape contour corresponds to 
sp ike- format ion on the graph of the curvature 
function. Curvature graphs w i th spikes are a useful 
heuristic tool to help visualise the properties of 
curves w i th kinks. 

A curvature graph w i t h a spike is the l imit ing case 
of one w i t h a narrow peak, in which the peak is 
made narrower whi le the area beneath it remains 
constant, so i ts height goes to i n f i n i t y . This 
corresponds to a part of the boundary containing a 
curvature ex t remum hav ing a certain amount of 
rotation squeezed into a smaller part of the curve, 
w i t h a k ink as the l im i t of this process. If one 
slightly blurs a kinked curve, the k ink w i l l appear 
to be merely a t ight smooth bend, and the spike on 
the curvature graph w i l l be replaced by a peak. 
Notice that this means that k ink formation accords 
w i th the size-is-time heuristic, since the sequence 
from smooth extremum to k ink is both the temporal 
order and the de-blurring order. 

A k ink, l ike a smooth extremum, has a parity: its 
spike may be upwards or downwards in the curvature 
graph ( ie i ts curvature may be posi t ively or 
negatively in f in i te ). This d is t inct ion encodes a 
salient perceptual aspect of the curve, the direction 
of the kink's bend. 

Describing kinks 

Rather than introduce new symbols for kinks, we wi l l 
indicate the d i rect ion of a k ink by attaching a 
subscript to one of the four symbols being used for 
smooth extrema. The suff ix is either + or - , 
depending on the direction of the spike-point of the 
curvature graph: it is the parity of the spike. The 
par i ty of the spike need not match that of the 
superscript, and this f lex ib i l i ty is crucial to the 
expressiveness of the notation, as we wi l l see. 

The change f rom a smooth protrusion to a kink, as in 
our earlier example, is described s imply by the 
attachment of a subscript to the extremum symbol 
denoting the smooth bulge ini t ial ly produced by the 
knife. This transforms the string . . .M + . . . into the 
string ...M+ ... We can characterise this change as 

We follow in the distinguished footsteps of Paul Dirac. 

the introduction into the curvature function of a spike 
which sends the extremum point to inf in i ty in the 
direction of the extremum, so that the same suffix is 
attached to the symbol. 

Similar versions can be given of the other three 
types of process. The dual , a sharp indentat ion, 
transforms m-intom_-. Notice that the other two 
smooth extrema m+ and M- are produced by processes 
( respectively, squashing and internal resistance ) 
acting in the opposite direction to the convexity of 
the curve at that po in t , so that the result of 
"sharpening" the process is a k ink whose curvature 
graph has a spike of opposite par i ty f rom its 
neighborhood. Thus, the kinks formed here are 
cusps. These are also a dual pair, consisting of the 
transformations 

We wi l l summarise these four transformations as 
the rule K of kink-introduction. K ink- in t roduct ion 
corresponds intui t ively to the application of a sharp 
distorting process. In terms of the curvature function, 
it can be s imply described as the addi t ion of a 
positive spike to a maximum or a negative spike to a 
minimum 

C u s p - F o r m a t i o n 

Now let us consider the transformation f rom a sharp 
bend to a cusp ( f igure 3 ). Here, the boundary 
curvature on either side of the corner-point changes 
parity. The change in the curvature function can be 
described as "pul l ing" the function down unti l it goes 
below the x-axis. While cusps can be formed in 
several ways, the common feature is that the x-axis 
of the curvature graph is made to separate a smooth 
neighborhood of the point f rom the point itself.4 

Thus, cusp-formation in the shape contour corresponds 
to zero separation in the curvature function. 

Cusp-formation at M~ and m+ 

The k ink rule K introduces a zero separation 
immediately at "blunt" extrema. Consider, for 
example, a kink created at M" . Zero separation in 
this case means that the spike neighborhood is 
negative, but the spike is posit ive. The shape 
contour is therefore locally concave, but has a convex 
kink, ie a cusp, l ike the prof i le of a lower leg 
distorted by a broken shin bone . Notice that the 
process creating such a kink is along the axis of the 

4Some skew corners, such as the end of a cats claw, have 
a curvature graph in which the spikepoint separates 
regions on opposite sides of the x-axis. The notation 
developed in this paper cannot easily handle such 
asymmetric phenomena, or cases where the curve is 
kinked elsewhere than at extrema of curvature. Work on 
these wi l l be reported in later papers. 
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curvature m i n i m u m , in the same direct ion as the 
internal resistance process hypothesised by the 
interaction principle ( see figure 1 ). 

Cusp-formation at M* and m -

The other two cases do not form cusps so directly, but 
our main result is that the the rules of the or iginal 
grammar suffice to describe al l the remain ing 
transformations. 

The central complexity in describing cusp formation 
is that the spike-neighborhood is only part of the 
entire curvature graph and therefore pu l l i ng i t 
through the x-axis has consequences in the rest of the 
graph, and we want the grammat ica l rules to 
accurately reflect the corresponding changes in 
contour shape. We il lustrate this by considering an 
example ( f igure 3 ) invo lv ing the int roduct ion of 

concavities on either side of the k ink as it changes 
f rom a simple bend to a cusp under the inexorable 
progression of the sharp protruding process. 

Looking at this change more closely, we can see that 
the k ink is a place of max imum curvature, a peak in 
the curvature function ( figure 3b). 

As the k i nk becomes sharper, the curvature 
immediately to the sides of the kink-point decreases. 
At some stage, it w i l l be less than the curvature of 
the m+ extrema at the sides of the shape. But these 
were the o ld m in ima of curvature, so that the 
curvature adjacent to the k ink is now the m in imum 
( figure 3c ). One can think of the process as the two 
m+ points of m in imum curvature s l id ing along the 
contour towards the k ink and eventual ly being 
absorbed by it. 

Consider now what has happened to the 
corresponding curvature functions. In the transition 
from b to c, the first maximum has moved downwards, 
a l lowing the two minima to unite. If we ignore the 
spike, this is exactly the reversed operation ~Bm+ of 
the original grammar: m+ M* m* -> m+. If we had a 
smooth contour, this merging of minima would have 
resulted in a simple m in imum ( as ~Bm+ describes ) 
since the axes of the minima wou ld then also have 
merged. Not ice that here, however, the min ima 
have part ial ly opposed axes, which means that the 
processes wh ich are associated w i t h them have 
components directed towards each another, and the 
rule instead transforms M+ into m*. We w i l l call 
this a pinching. 

Finally, as the distortion continues, the curvature at 
either side of the k ink continues to fal l un t i l i t 
becomes zero, at wh ich point fur ther d is tor t ion 
produces a cusp (figure 2d). The corresponding event 
in the curvature funct ion is the lower ing of the 
m i n i m u m through the x-axis. But this in turn is 
s imply an example of the operat ion C m + of the 
original grammar: m+ -> 0 m~ 0. In the case of a 
smooth contour, this shape change is caused by a 
squashing process directed perpendicularly inwards 
along the symmetry axis of the local extremum. 
Here, the oppositely-directed components of the 
processes which are associated w i t h the minima of 
the pinching serve exactly this role ( f igure 4 ). 
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The contour on each side of the k ink behaves locally 
just as a smooth contour acting under the influence of 
local processes wou ld act according to the original 
process rules. We see then that in this case, the 
formation of a cusp can be described by the use of rules 
f rom the original grammar in contexts which preserve 
their underly ing process-oriented intuitions. 

The difference between a sharp bend and a cusp is 
encoded by the difference between the curvature and 
spike parities of a doubly labelled symbol: 

The use of the rule Cm+ has introduced such a parity 
difference into the string, f rom which the creation of 
a cusp can be inferred. Thus cusp-formation at either 
maxima or min ima of curvature requires no new 
operation besides kink-formation K . 

Other k inks 

The four other combinatorial possibilities of adding a 
k ink subscript to a symbol denot ing a curvature 
extremum can be derived f rom K together w i th the 
b i furcat ion rules of the or ig inal grammar. For 
example, the rule K w i l l not directly produce the 
k ink m+ f r om the convex m i n i m u m m+. The 
squashing process hypothesised by the interaction 
principle is acting inwards in this case, but a sharp 
outward protrusion is necessary to produce the 
positive kink. This can be derived however by first 
in t roduc ing a process in the required ou tward 
direct ion: 

and then proceeding as in our earlier example, by 
applying K to the new protrusion 

and then reversing the bifurcation: 

Not ice that the reverse-bi furcat ion wh ich is 
applicable is exactly the one needed to undo the 
effects of our first rule application and restore the 
overall shape of the contour. In this case, therefore, 
the whole sequence has a natural interpretation as a 
squashing being pushed back by a sharp protrusion 
process, forming a k ink in the contour which remains 
in place even when the protrusion process yields back 
to the restored force of the squashing ( figure 5). 

Similar uses of appropriate bifurcations w i l l 
produce M * , m+ and M- . An example of the dual 
formation of Ml f rom M~ wou ld be a sharp concave 
crease caused by the impact of a small hard object on 
a concave section of smooth metal bodywork which 
rebounds f rom the impact, restoring its overall 
shape. Here the ru le K in t roduces plast ic 
deformation to the rules of the original grammar. 

Curvature Components 

In a string of symbols representing a curve, the 
superscripts and subscripts both encode perceptually 
significant aspects of the shape, but do so essentially 
independently. Consider for example the k ink-
formation stage in our example. Since the relevant 
extremum of the init ial smooth curve is M* , the 
kink-formation rule must convert it to M + . N o w , 
although the M and the upper + in this symbol are 
each a memory of the init ial smooth extremum, they 
nevertheless have perceptual significance in the 
second shape. They represent the fact that the 
curvature is st i l l a local posi t ive max imum in 
approaching the discontinuity along the contour. We 
w i l l call the upper + in the symbol M + , and 
similarly for the other k inky symbols, the curvature 
parity. 

In the transition 

the second string can be regarded as the same sequence 
as the first, w i th a suffix added at the appropriate 
point to indicate the position of the kink. In fact, the 
second string encodes the same curvature content as 
the first, since curvature is defined only at smooth 
points. Thus we can think of the second str ing as 
having two independent components: the sequence 
M*m+M*, which encodes the the smooth curvature 

Hayes and Leyton 1271 



content, and the lower subscript + which encodes the 
spike. The first component is the curvature component 
of the string. 

The key point is that successive shape transitions, 
as in the cusp format ion, can be regarded purely as 
manipulations of the curvature component, using the 
operations of the or ig inal grammar, in wh ich the 
continued presence of the subscript keeps track of the 
presence and position of the spike. Thus, all the rules 
of the original grammar can be applied freely to the 
curvature components of strings w i t h subscripts, and 
correspond na tu ra l l y to symmetr ica l curvature 
transformations on the smooth port ions of angular 
curves. 

As a more complex example, consider the bay in the 
top left shape of f igure 6. We wish to consider cusp-
formation at the left indentation m~ in the bay. 
Reading along the contour f rom left to r ight , the 
shape of the bay is described by 

wi th the curvature function shown. App ly ing K to 
the first m- gives 

as shown. App ly ing the rule C M - to the middle 
extremum, we obtain 

N o w the suffixed m is f lanked by 0, and so the 
reversed rule ~Cm- can be applied, g iv ing 

and the parity difference shows that a cusp has been 
formed. 
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