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Abstract

Many potential uses of qualitative physics, such
as robot planning and intelligent computer-
aided engineering, require integrating pnysics
with actions taken by agents. Here we
show how to extend qualitative simulation
to include the effects of actions, resulting in
action-augmented  envisionments. The action-
augmented envisionment incorporates both the
effects of an agent's actions and what may
happen in the physical world whether or not
an agent does something. Consequently, it
provides a richer basis for planning and for
reasoning about procedures than any previ-
ous representation. This paper defines action-
augmented envisionments and presents an algo-
rithm for directly computing tnem. The prop-
erties of the algorithm are analyzed along with
its suitability for robot planning and reasoning
about engineering procedures. We describe re-
sults generated by a working implementation
and discuss potential extensions, including in-
cremental algorithms.

1 Introduction

Plans involving the physical world must take into ac-
count the indirect consequences ofactions. A robot mak-
ing tea, for instance, must exploit physical processes such
as liquid flow and boiling to carry out its plan. An in-
telligent CAD tool analyzing the safety of a power plant
must be able to ascertain how the processes in the plant
are affected by the actions of the plant's operators. Yet
little has been done to integrate qualitative physics with

actions. For example, [16] illustrates how some simple
gualitative physics notions might be used in robot plans,
out provides neither a domain-indepenent theory nor al-
gorithms.

Moving qualitative physics into a planner is one ap-
proach. Hogge developed a domain compiler [10] that
takes domain models expressed in Qualitative Process

(QP) theory [5] and prod uces rules and operators for a

temporal planner. Given a goal like "Increase the water
level in this container", the planner can use its knowl-
edge of actions, combined with physics knowledge de-
rived from the domain model, to figure out that it should
place the container under a faucet and turn on the tap,
thus allowing liquid to flow.

So far, tractable compilation has required undesirable

simplifications Additional run-time inference could in
principle overcome this (and other) problems, but ef-
ficiency plummets|[ll]. For example, Hogge's planner
could figure out how to get water into an empty pot and
how to make water in a full pot boil, but without run-
time transitivity rules it could not compose these plans
to boil water starting with an empty pot. Adding those
rules caused it to exceed resource limitations without
finding a solution. While still promising, the difficulty of
reconstructing the entire framework ol qualitative sim-
ulation into rules suitable for efficient planning makes
exploring alternatives worthwhile.

Here we explore the dual approach: Moving actions
into the physics. The next section defines a new repre-
sentation, the action-augmented envisionment (or A€),

which includes the effects of actions in the qualitative
simulation. Section 3 shows how to compute A€s, and
Section 4 examines the correctness and complexity of
the algorithm, including its potential suitability for two
tasks: robot planning and procedure generation in engi-
neered systems. Section 5 describes an implementation
and some examples. Finally, we describe our plans for
future work.

2 Action-Augmented Envisionments

Informally, a qualitative state describes a class of partic-
ular behaviors for a physical system. Consider a pot of
water sitting on a stove. If the stove is switched on, in
one state the water might be heating up, and in another
state it might be boiling. Qualitative states are linked by
transitions which describe now these gross behaviors can
change. The two states above, for instance, are linked
by a transition corresponding to the water reaching its
boiling temperature. Qualitative simulation consists of
computing these states and transitions.

Every qualitative simulation leaves some "background
information” unchanged. We do not, for example, con-
sider what the world would look like if the stove suddenly
vanished. In fact, qualitative simulations focus on just
those changes predictable by the physics used.

The complete set of states and transitions for some
fixed set of background assumptions is the envisionment

for that scenario. (We use the conventions of [8] as
needed to describe envisionments and their aspects.) To
capture the effects of actions, we must allow at least

" For instance, the compiler assumes that if you influence
a quantity in a particular direction it will actually change
that way. Thus the planner could propose that one bail out
a sinking ocean liner with a teaspoon.
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Figure 1: Actions can interact with processes
Heat flow requires a path capable of transmitting heat. These
axioms for HEAT-ALIGNED indicate how changes in location
indirectly affect whether or not heat flow occurs.

Process Heat-Flow(?sxrc,?dst,?path)
Individuals: ?src, Quantity(heat(?sxc))
?dst, Quantity(heat(?dst))
?path, Heat-Path(?path,?sxc,?dst)
Preconditions: Heat-Aligned(?path)
Quantity Conditions: A[T(?sxc)] > A[T(7dst)]
Relations: Quantity(flow-rate)
flow-rate = T(?sxrc) — T(?dst)
I+ (heat(?dst) ,A[flow-xate])
I—-(heat(?7sxc) ,A[flow-rate])])

Influences:

V ?¢,?s Contained-Stuff (?c)
A Location(Container(7?c))=0n(7s)
=> Simple-Heat-Path(HPath(7?s,?c),?s,?c)

V ?c Contained-Stuff(?c) = Heat-Aligned(?c)

Knob(Stove)=0N = Heat-Aligned(Stove)

V ?x,?y,?path Simple-Heat-Path(?path,?x,?y)
A Heat-Aligned(?x) A BHeat-Aligned(?y)
= Heat-Aligned(?path)

some of the background assumptions to vary. For exam-
ple, switching the stove on will initiate a heat flow, and
taking the pot off the stove will break thermal contact
and tnus end the heat flow. This extension requires the
gualitative physics to be sensitive to changes in back-
ground assumptions. We use Qualitative Process theory
because it provides two mechanisms for explicitly rep-
resenting such dependencies. First, views and processes
are quantified, in that they explicitly define the kinds of
objects they apply to. In Figure 1, for example, heat
flow can occur between two objects with thermal prop-
erties connected by a heat path. Second, explicit pre-
conditions and consequences not involving dynamics are
allowed (e.g., the stove's burner can be modeled as a
heat path which operates only when Knob(Stove)=0K).

Let V be the set of background assumptions for a sce-
nario, with ’P,g P the fixed assumptions of V. In pre-
vious qualitative physics systems P = Py. Introducing

actions means there will be a subset P, the manipulable
assumptions of P, corresponding to those aspects which
can be changed directly or indirectly by an action. Now
we can begin to characterize the action-augmented envi-
sionment AS for a scenario. Let P, be the set of consis-

tent combinations of Pm. If we denote the envisionment
under a set of background assumptions P/ as 8(’P,-), then

States (AE) = |J px States(E(p U Py)). The dynam-

ical state transitions from each state &; € States(AE)

are simply the union of all transitions from the compo-
nent envisionments. To complete the definition of A€
we must extend the set of transitions to include all oc-
currences of actions.

We define transitions due to actions by analogy with
dynamical state transitions. In QP theory state tran-
sitions are represented as instances of limit hypotheses
concerning changes in ordinal information. For instance,
the hypothesis that the temperature of the water in the
pot might reach its boiling temperature would be appli-
cable to any situation where the water is being heated,
regardless of the heat source involved. Similarly, we call
an action hypothesis the conjecture that a particular ac-
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tion occurs. For example, the conjecture that the action
Move-to(Potl,On(Stove)) is executed is an action hy-
pothesis. This hypothesis is applicable to a variety of
states, namely whenever Potl is not On(Stove). The
rest of this section defines the constraints which deter-
mine valid action hypotheses and the transitions they
cause.

We make two restrictions for simplicity. First, at most
one action can be taken at a time (single action assump-

tion). Since the vocabulary of operators could include

compound operations, this assumption loses no general-
ity. Second, actions do not coincide with dynamical state

transitions (separation assumption). This assumption
forbids actions occuring in instantaneous states, which
are both unlikely and hard to manage. In essense, it re-
quires that actions occur quickly relative to dynamical
cnanges. This may restrict the expressibility of AEs. Of-
ten this assumption is reasonable; for instance, a kettle's
water doesn't cool appreciably while moving from a stove
to a nearby teapot. When actions do take appreciable
time, such as slowly opening a valve in a heating sys-
tem, the action could be modeled as a sequence of short
actions or reified as a continuous change in the physics
triggered by an initial brief action.

Consider an action hypothesis AH as a partial function

whose domain and range are Pk. Let P, = Ax(Pm,)-
Suppose S;, S, are qualitative states such that P4 holds
for S\. The following restrictions must be satisfied for
S2 to be a possible outcome o A9 curing at S\: (1)

Consistency: Py, holds in S2 (2) wContinuity: When
possible, no violations of continuity occur between S7
and S,. (3) Closeness: No state also considered to be a
possible result of.A9 occuring at S7 has more in common
with S7 than S2 does.

The consistency restriction is obvious. The continu-
Ity and closeness restrictions express the desiderata that
only the direct and indirect consequences ofan action are
causally connected to it: nothing else should change as
a result. Continuity expresses the constraint that, when
possible, continuous parameters change smoothly. Un-
fortunately, continuity cannot always be satisfied. Sup-
pose the pressure Iin a boiler is rising dangerously, and
a safety valve is opened to bleed off excess steam. Intu-
itively, the discontinous action of popping the valve can
result in the pressure instantly falling, a discontinuous

change®. The definition of closeness depends on the de-
tails of the physics. The next section defines a measure
of closeness for QP theory.

3 An algorithm for constructing A€fs

The formulation of AEs is based on sets of assumptions,
so it is useful to describe the algorithm using the termi-
nology of assumption-based truth maintenance [2]. The

Qualitative Process Engine (QPE) [7] uses an ATMS to

efficiently generate envisionments for QP theory, and we
base our algorithm on it. States are defined by particu-
lar sets of assumptions S4 = Q,UP,, where @, is drawn
from the set of possible ordinal assumptions and P s
drawn from V. The set of possible ordinal assumptions
and V are computed automatically during the instanti-
ation of the QP model for the structural description of
a scenario. @, initially consists of choices for the rela-

A more detailed model could capture the time it takes
for the flow rate out to rise and thus preserve continuity, but
always requiring such detail is inappropriate.



Figure 2: Operators for the kitchen domain

defOperator Move-To(?from,?thing,?to)
Individuals: 7from, Place(?from)

?thing, Mobile(?thing)

?to, Place(7thing)

A 7from # 7Tto
Location(?thing) = 7from
- Clear(?from)
Clear(?to)
Location(?thing) = ?to
=~ Clear(?to)
Clear(?from)

Delete-Lint:

Add-List:

defOperator Flip(?switch,?from,?to)
Individuals: 7switch, Switch(?from)
?from, Has-Setting(?switch,?from)
?to, Has-Setting(?switch,?to)
A ?from # 7to
7?switch = 7?from
7switch = 7to

Delete-List:
Add-List:

tionship for each pair of numbers mentioned in quan-
tity conditions of view and process instances and other
primitives of the QP language (e.g., correspondences
and explicit-functions). As ambiguities and newly-
discovered |limit points are uncovered during simulation,
Qs is augmented to include choices for them as well. P,
consists of choices for the preconditions of view and pro-
cess instances, as well as any choice sets explicitly defined

by the domain model (e.g., declaring that any movable
object has a Location which can range over the set of
places in the scenario).

The temporal scoping of facts is implicit in their
ATMS label, i.e., Location(Potl) = On(Stovel) holds
in a state exactly when it is implied by the assump-
tions defining that state. This compact representation
of states greatly simplifies algorithms. Actions are repre-
sented by STRIPS operators (e.g., Figure 2), since they
easily satisfy the single action and separation assump-
tions. We require that all facts mentioned in the add
and delete lists of operator instances be assumptions in

Given a domain model, which specifies the particular
physical theory to be used, and a scenario, specified by
P;, QPE expands the scenario by applying the abstrac-
tions of the domain model. This creates instances of
views, processes, and derived objects (such as "water in

the pot"). It is easy to extend this process to include
operator instantiation, and to automatically accumulate
Pm. Since QPE can search variations in V, as well as
Qs, States(AE) is computed via the standard envision-
ing procedure. Furthermore, since we have the operator
instances we can create the set of Ax’s. All that remains
is (1) to ascertain when these A%’s might occur and (2)

to determine their effect in each case.
Call the assumptions corresponding to the delete list

and add list of an operator instance Ag‘ and A3, re-

spectively. To determine if an operator instance Oi can
apply to a situation ST,

1. Unless Individual$(Oi) are implied by S1, fail.

2. Let P= ( Ppm,- A.‘,") + A3,. If P, is inconsistent,
fail.

To determine the effects of an action hypothesis we

must determine if P's can be extended into a consis-
tent situation &9 € States(AE)a. Since we already have
States (AE), finding the results of Oi on S71 can be viewed
as a filtering problem. The set of predicted outcomes C
can be computed by the following algorithm:

1. Let C; = {S; € States(AE) | P, C S;}

2. Let C; be the subset of C; whose members do not
violate continuity, when viewed with respect to ;.
If C; 1s empty, Co+— C;.

3. Let C = {Sj € Co | 73S, € C3 8t.(|SkNS; | >
| S50 8 ()}

The first step provides initial candidates by enforc-
Ing consistency, and the second uses the same continuity

pruning used by limit analysis in QPE (see [7] for de-
tails). The final step provides a precise definition for

closeness - literally, the number of assumptions shared
with the previous situation. For each Sj € C, the

set Transitions(AE) is extended to include a transition
from Si to §j, justified by Oi.

Typically an action results in a unique next state,
but not always. One reason is the ambiguity of qual-
itative representations. Consider again the boiler with
relief valve. Once the relief valve is blown there will
be ambiguous influences on the pressure - the flow out
through the relief valve will act to decrease it, while the
generation of more steam will act to increase it. Con-
sequently, the pressure could continue to increase, de-
crease, or remain constant. Unless extra knowledge can
disambiguate them, each is a legitimate potential conse-
quence of that action. Other consequences of an action
can be underspecified as well. Consider throwing a pair
ofdice onto a table. We know that each die will stop with
a particular face up, but we cannot predict in advance
which face it will be.

4 Analysis

Our analysis addresses four questions: (1) Is the algo-
rithm reasonable? (2) What is the complexity of ex-
plicitly generating AE? (3) Under what circumstances
would explicit generation make sense? (4) Could AS be
generated incrementally?

4.1 s the algorithm reasonable?

Proving correctness assumes the existence of a formal
standard, and there isn't one for this task. Instead, we
show that the algorithm is consistent with two intuitions
about causality and action: (1) no extraneous changes
occur, and (2) only the minimal necessary changes are
predicted.

An extraneous change involves change in some part
of the situation that cannot be affected by the action.
For instance, if | start my car, then in the absence of
any mechanism to the contrary, the stove in my kitchen
remains off. In QP theory this lack of connection is
expressed through p-components: Two individuals iIn

distinct p-components cannot affect each other®. Sup-
pose an action affects only individuals in p-components
d1....,0, and not ¢;. Now consider the subset of Py,

’Indirect consequences of actions generally cause S, —

?m: # S] — Pm; o
P-components and how they relate to the frame problem

are detailed in [5].
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relevant to ¢.-. Any combination from that subset is
consistent with the change. Because the p-components
are distinct, combinations relevant to g; cannot interact
with the subsets relevantto @4,..., @,. However, any re-
sult state where gi changes will have fewer assumptions
In common with the previous state than a result state
where @, does not change, and hence will be filtered out
by the closeness criterion.

Defining the minimal consequences of change is dif-
ficult, as the literature on counterfactuals indicates.
There are two natural definitions for this representation:
maximal shared assumptions and maximal shared conse-
quences. Since the set of consequences is generally larger
than the set of assumptions, it might be tempting to
use it as the basis of closeness instead. However, doing
so would violate our intuitions of causality. Consider a
large pan of water that rests on two burners, one on and
one off. Now turn off the operating burner. Maximiz-
iIng shared assumptions leads to the conclusion that no
heat is flowing from the stove, and the water will be-
gin to cool. Maximizing shared consequences can lead
to the conclusion that the other burner becomes on, ex-
changing one heat flow for another but keeping all the
properties ofthe water intact. Yet this interpretation vi-
olates our notion of agency, where the cooling water does
not. Any particular choice of actions encodes what we
think are important, primary facts about the world. In
causal terms, facts derived from those changed directly
by an action have a secondary status. To satisfy this
iIntuition we must maximize shared assumptions and let
the consequences fall where they may.

4.2 Complexity

Here we summarize the complexity analysis in [9].
Since the standard envisioning process can compute
States (LAE), we ask (1) how costly is the additional step
of generating .Axs and their associated transitions and

(2) how costly is it to generate States(.AE) relative to a
standard envisionment € (i.e., where P, is empty)? If
| States(AE) | = n, then determining the effects of ac-
tions is O(n?) Unfortunately, n can be exponentially
larger than States(€(Py)); for example, if Py, consists of
pairs of independent propositions p and —p, the number

of states could increase by 2|’Pm I"l. In other words,
the temporal inheritance algorithm itself is cheap, but
generating the states in the first place is expensive.

4.3 When would explicit generation make
sense”?

Explicitly generating a problem space is generally fool-
hardy and typically impossible, but that is just what
envisioning does. The degree of interaction between
the operator vocabulary and the rest of the domain
model determines how close worst-case performance is
approached. Ifthe operators are irrelevant to the domain

model, then | States(AE) | = | P | x| States(€) |. But

generally interactions exist and thus only a small subset
of the cross product may be consistent. A domain with
complex dynamical behavior and only a few actions, all
tightly coupled, would be the best case.

Reasoning about procedures for engineered systems
appears to be just such a task. Consider a power plant
(either stationary or onboard a ship). Its dynamical
state can be complex, and a badly-timed action can re-
sult in disaster. But the kinds ofactions an operator can
take are often limited to flipping switches and opening
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or closing valves. Since an A€ compactly represents the
result of executing all possible plans, it could be useful
In generating operating procedures and safety analyses.
To deal with realistic systems will require the same de-
composition strategies as traditional engineering. For
instance, operating procedures are often generated by
combining procedures for subsystems (i.e., a step in turn-
iIng on a circulation system is aligning one leg ofit, which
itself is a procedure involving several steps). This sug-
gests computing AEs for subsystems independently and

combining them, using the techniques of [4] to represent
system boundaries.

4.4 Incremental generation

Typical "robot planning” domains are the worst kind of
task for explicit A€ generation, since Py, includes each
possible location for every moving object, and thus could
be huge. Incremental algorithms would be better, and
appear both possible and feasible. The A€ isjust a prob-
lem space, wnose operators are the actions wnich can be
taken plus the set of limit hypotheses. Incremental tem-
poral inheritance algorithms for QP theory exist [6], and
could easily be extended to Axs. The entire panoply
of Al search strategies could then potentially be used to
generate plans. However, the fact that some transitions
will occur whether or not the agent desires them changes
the nature of the problem somewhat. One way to view
planning in the A€ problem space is as playing a game
with Nature. The agent controls actions, ana Nature
controls dynamics. This view is not exact, of course,

since Nature is not generally held to have goals® and the
"players” in this game don't take strict turns. Neverthe-
less, the metaphor is suggestive. For example, there is
a "horizon effect" in this problem space which consists
of dynamical chances undoing a state achieved by the
agent. To assure tnat the intended effect of the action
IS maintained, qualitative simulation can be used to see

If either (a) no relevant dynamical transitions occur or
(b) they take sufficiently long that the next action can
be performed before they occur.

5 An implementation

We have implemented the algorithm described in Section
3, and have successfully tested it on over a half dozen ex-
amples at this writing. They include several engineering

fluid systems, a kitchen scenario®, and throwing dice.
This section highlights some results from these exam-
ples.

The kitchen scenario indicates that the worst-case
analysis need not be relevant to problems of interest.
The system generated 244 situations, with 1054 transi-
tions between them (78 due to dynamics, the rest due
to actions). For this problem, | States(£(Py)) | = 25,

and Pm includes 12 binary choice sets and one three-way
choice (i.e., the location ofthe pot). Thus the worst case

analysis predicts | States{(AE) | = 25x2'?x 3 = 307, 200,

which is far more than 244. Since robot planning sce-
narios such as this are potentially the worst cases, these
numbers seem reassuring.

Although Murphy's Law is tantamount to assuming that
Nature is playing to win, i.e., to thwart the agent's goals if
possible.

°The figures here provide a sample of the domain model,
see [9] for detalils.



Figure 3: A sample plan from the .A£

Here is a sample plan for boiling water generated by graph
scarch on the kitchen AE.

MOVE-TO(ON(COUNTER1) ,POT,UNDER(FAUCET1)).

. FLIP(KNOB(FAUCET1) ,0FF,0N).

Wait until A{AMOUNT-OF-IN(WATER,LIQUID,POT)]
= ZERO —|/ >.

FLIP (KNOB(FAUCET1) ,0N,OFF).

MOVE-TO (UNDER(FAUCET1) ,POT,ON(STOVE1l)).

. FLIP(KNOB(STOVE1) ,0FF,ON).

Wait until A[TBOIL(WATER,POT)]

> A[TEMPERATURE (C-S(WATER,LIQUID,POT))] ’y =,

Wait until A[AMOUNT-OFP-IN(WATER,GAS,POT)]
= ZERO — >.

9. FLIP(KNOB(STOVE1) ,0N,OFF).

10. MOVE-TO(ON(STOVE1) ,POT,ON(COUNTER1)).

~NO Np LW N

A simple graph-search planner was built to find plans
given a start state, goal, and AE. The kitchen AE, for ex-

ample, does indeed contain many correct plans for boil-
ing water starting with an empty pot (see figure 3), thus
solving a problem Hogge's planner could not. Many of
the plans are suboptimal (e.g., turning the stove and
faucet off and on without moving the pot), and addi-
tional knowledge about efficiency and safety is needed
to prune them.

To ensure that extraneous actions did not occur, two
iIndependent two-tank fluid systems were considered in
the same scenario. As expected, the predicted effect
of every action preserved assumptions concerning p-
components not affected by that action. The dice exam-
ple was developed to explore partially specified actions.
The model allows a die to be on a table or in a hand,
with PICKUP moving the die from the table to the hand
and TOSS putting it back. The FACE-UP of a die is either
1,...,6 (when on the table) or ROLLING, when in the

hand. As expected, the algorithm generates six possible
outcomes for each toss, each corresponding to a different
value of FACE-UP. This example illustrates that the con-
straint satisfaction techniques used in QPE can be used
for some reasoning about actions even in the absense of
continuous parameters.

To explore reasoning about engineering procedures, a
simple verifier was built which uses Afs to determine if
a procedure can be successfully executed with the de-
sired effects. It was tested with the simplified shipboard

fuel oil service pump system (drawn from STEAMER [12])

depicted in Figure 4. The verifier confirmed that the
starting and stopping procedures depicted can, if exe-
cuted, lead to the desired results.

6 Discussion

This paper describes a method for integrating quali-
tative physics with models of action. It defines the
action-augmented envisionment, which compactly repre-
sents all predicted changes due to a physics and possible
actions within a scenario. The representation is domain-
independent, in that it can be used for any problem that
can be modeled using Qualitative Process theory. An
algorithm for explicitly generating AEs was presented
and analyzed, and results from an implementation were
summarized.

We believe this idea is an important step towards us-
iIng qualitative physics in planning. Such understanding

Figure 4: Verifying engineering procedures with AE€s
This shipboard system (drawn from STEAMER) pumps fuel oil
from a storage sump to the burner in the boiler’s furnace. It
has been slightly simplified by ignoring gauges and a safety
bypass valve.

Discharge Suction
X -
FOSPump
Selector High/Low

Start High
Stop Low
Starting the pump:

1. FLIP(KNOB(SUCTION-LINE) ,CLOSED,OPEN).
2. FLIP(KNOB(DISCHARGE-LINE),CLOSED,DPEN).
3. FLIP(SELECTOR(FOSPUMP),STOP,START).
4. FLIP(HIGH-LOW(FOSPUMP),LOW,HIGH).
5. Wait until A[MAX-SPEED(FOSPUMP) ]

> A[SPEED(FOSPUMP)] — =.
6. FLIP(HIGH-LOW(FOSPUMP) ,HIGH,LOW).

Stopping the pump:

1. FLIP(SELECTOR(FOSPUMP) ,START,STOP).

2. Wait until A[SPEED(FOSPUMP)] > ZERO — =.
3. FLIP(KNOB(SUCTION-LINE) ,OPEN,CLOSED).

4. FLIP(KNOB(DISCHARGE-LINE) ,OPEN,CLOSED).

could lead to important new applications, such as in-
creased automation of procedure generation and safety
analyses. For example, an important problem in training
operators of complex systems is teaching them what the
operating procedures are, and motivating these proce-
dures in terms of the underlying principles of the plant.
The ability to check a student's proposed procedure, for
instance, could extend the ability of intelligent tutoring
systems for this problem. Another problem is developin
monitoring systems that can track system behavior an
generate a running explanation of what is happening,

to aid in fault management and operative diagnosis [14,

15, 1]. This algorithm is already being used to gener-
ate experimental knowledge-bases for measurement in-
terpretation [3], so the explanations of system behavior
can include the actions of operators. We suspect that for
some engineering applications, the cost of explicit gener-
ation of ASs may be offset by the increased confidence
in the quality of the answer, particularly as we discover

how to build multi-grain domain models [4]. However,
iIncremental algorithms are clearly possible and may be
the most practical for many applications.

Even if ASs turn out to be infeasible to compute ex-
plicitly for all but the simplest systems, we expect the
AS representation to be a useful theoretical foundation
for understanding plans and procedures involving the
physical world. Consider the notion of safety. Suppose
a domain model characterizes particular conditions or
processes as undesirable or dangerous (e.g., the pressure
iIn a boiler reaching its maximum rating or the level of
water in it reaching the bottom). We can call a state
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"unsafe" if one of these conditions holds in that state.
An AE generated with this model will contain all the

potential perils inherent in the scenario. Any operating

(or maintenance) procedure forces the system through
some subset of the envisionment, depending on the ini-
tial conditions and interleaving ofactions and dynamics.
Let the dynamic closure of a state be those states which
can be reached from it via a sequence of limit hypothe-
ses. A procedure which forces the system into an unsafe
state is clearly unsafe. |If the states traversed are all
safe, and none of their dynamic closures contain unsafe
states, then the procedure could be called safe, in the
sense that arbitrary delays between executing the ac-
tions in their correct sequence cannot lead to narm. If
the dynamic closure contains unsafe states, then the pro-
cedure could be considered risky, and extra constraints
iImposed to ensure that transitions to undesirable states
are avoided. The consequences of operator error can be
examined by perturbing the procedure to see if it leads
to unsafe states.

Currently we are exploring several extensions. (1) We
are formalizing plan evaluation constraints, including ef-
ficiency and safety, for guiding the graph search through
AS and formulating incremental generation. (2) We are
Investigating more detailed duration representations to
reduce ambiguity. One possibility is to use partial quan-
titative information, as in Kuipers and Berleant's recent

work [13]. (3) Winslett [17] has independently developed
a possible models approach for general reasoning about
actions which can be viewed as a generalization of the
AS technique. The algorithms described here, especially
iIncremental versions, might thus be adaptable to more
general problems involving reasoning about actions.
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