Approximation Algorithms for

Temporal Reasoning

Peter van Beek
Department of Computer Science
University of Waterloo
Waterloo, Ontario
CANADA N2L 3G1

Abstract

We consider a representation for temporal
relations between intervals introduced by
James Allen, and its associated computational
or reasoning problem: given possibly indefin-
ite knowledge of the relations between some
intervals, how do we compute the strongest
possible assertions about the relations
between some or all intervals. Determining
exact solutions to this problem has been
shown to be (almost assuredly) intractable.
Allen gives an approximation algorithm based
on constraint propagation. We give new
approximation algorithms, examine their
effectiveness, and determine under what con-
ditions the algorithms are exact.

1. Introduction

Allen (1983) gives an algebra for representing and rea-
soning about temporal relations between events
represented as intervals. Possible application areas of
the algebra include natural language processing (Allen,
1984; Song and Cohen, 1988), planning (Allen and
Koomen, 1983), and a part of a knowledge representa-
tion language (Koubarakis et al., 1989). This algebra
has been cited by others for its simplicity and ease of
implementation with constraint propagation algo-
rithms. The elements of the algebra are sets of the
seven basic relations that can hold between two inter-
vals, and their converses.

relation symbol converse meaning

x before y b b1 XXX YYV|

X meets y m mi XXXYYY

x overlapsy o ol XXX

‘ YyYy F

x during y d di XXX
Yyyyy

X starts y S S XXX
YYYyy

x finishes y f fi XXX
Yyyyy

x equal y eq eq XXX
YYY

e —

Th ere is a natural graphical notation where the ver-
tices represent intervals and the directed edges are
labeled with elements from the algebra representing
the set of possible relations between the two intervals.

Here is an example.
~(B) y@
{1}

{o, s}

When the relationship between two intervals is ambi-
guous or indefinite we label the edge with the set of all
the possible relations. So in our example, interval A
either overlaps or starts interval B (but not both since
the thirteen basic relations are mutually exclusive).
Let {I} be the set of all basic relations, {b, bi, m, mi, o,
oi, d, di, s. si, f, fi, eq}. The set of all possible labels on
edges is 2" the power set of {I}. Any edge for which
we have no direct knowledge of the relationship is
labeled with {l}; hence, the graphs are complete.
Inference is done in this scheme through composition
of relations: given a relation between A and B and
between B and C we can compute a constraint on the
relation between A and C. Doing this for our example
we determine that our knowledge of the relationship
between A and C can be strengthened to {b}. To see
that this is true we show the two possible arrange-
ments of the intervals along an imaginary time line.

B C B | C
l l

A overlaps B in the diagram on the left, A starts B in
the one on the right, and B meets C in both. We see
that in both diagrams A is before C. Hence the result.

1.1. Statement of the Problem

Suppose we are given a set of events, represented as
the intervals they occur over, and knowledge of the
relationships between some of the intervals. The prob-
lem is to make explicit the strongest possible assertions
about the relationships between intervals. We now
make this somewhat more formal. Given is a directed
graph with labels on the edges from the set of ele-
ments of the interval algebra. A consistent singleton
labeling of the graph is a labeling where it is possible

van Beek 1291

to map the intervals to a time line and have the single
relations between intervals hold (as in the example
above). The minimal label corresponding to a label
consists of only the elements of that label capable of
being part of a consistent singleton labeling of the
graph. The problem then is to determine the minimal
labels, removing only those elements from the labels
that could not be part of a consistent singleton label-
Ing. Call this the minimal Ilabeling problem (MLP).
Vilain and Kautz (1986) show that determining an
exact solution to the MLP is NP-hard. This strongly
suggests that no polynomial time algorithm exists.

Supposing that we still wish to solve instances of the
problem, several alternatives present themselves:

« Exponential algorithms: Solve the problem
exactly but devise efficient exponential algorithms.
These may still be practical even though their worst

case is exponential. Valdes-Perez (1987) gives a
dependency-directed backtrack algorithm, but it
only finds one consistent singleton labeling of the
graph or reports unsatisfiability.

« Easy special cases: Interesting special cases of an
NP-Hard problem may be solvable in polynomial

time. This alternative often takes the form of limit-
iIng the expressive power of the representation
language.

« Approximation algorithms: Solve the problem
approximately using an algorithm that is guaranteed
polynomial. That is, design algorithms that do not
behave badly—in terms of the quality of the pro-
duced solution—too often, assuming some proba-
bilistic distribution of the instances of the problem.
Allen's (1983) 0(n®) algorithm is just such an
approximation algorithm.

1.2. Overview

In this paper we explore the latter two alternatives:
algorithms for computing approximations to the
minimal labels between intervals and some special
cases where approximation algorithms are exact. We
consider two versions of the problem: an all-to-all ver-
sion where we compute the minimal labels between
every pair of intervals, and a one-to-all version where
we determine the minimal labels between one interval
and every other interval. Allen gives an approxima-
tion algorithm for the all-to-all problem based on con-
straint propagation. We present an algorithm for
computing better approximations for the all-to-all ver-
sion of the problem and an algorithm for the one-to-all
version of the problem. For both versions of the prob-
lem we identify easy (polynomial time) special cases
where the algorithms are exact, give the results of
some computational experiments, and propose a test
for predicting when the approximation algorithms are
useful. For the all-to-all problem, identifying easy
cases involves first giving a counter example to a result
in the literature.

An extended version of this paper that includes

proofs is available (van Beek, 1989).

1292 Knowledge Representation

2. The All-to-All Problem

The minimal labeling problem (MLP) is related to the
constraint satisfaction problem (CSP) (Montanari,
1974, Mackworth, 1977). Tsang (1987) and Ladkin
(1988) discuss how an MLP can be viewed as a CSP.
The algorithms and results developed for the CSP can
then also be applied to the MLP. Mackworth (1977)
discusses approximation algorithms for the CSP, called
consistency algorithms, that remove local inconsisten-
cies that could never be part of a global solution.
One, two, and three consistency are generally referred
to as node, arc, and path consistency, respectively.
Freuder (1978, 1982) generalizes this to k-consistency
and defines strong k-consistency as j-consistent for all
J < k. It can be shown that for the interval algebra,
strong Ar-consistency is equivalent to ensuring that, for
every choice of k of the n vertices, every element of
the associated labels is capable of being part of a con-
sistent singleton labeling of the subgraph of k vertices.
Strong n-consistency then ensures the labeling is
minimal.

2.1. The Path Consistency Algorithm

Allen's algorithm is a special case of the path con-
sistency algorithm for constraint satisfaction. Descrip-
tions of the path consistency algorithm can be found in
(Allen, 1983 and Mackworth, 1977).

To use the path consistency algorithm we need to
define the operations of intersection and composition
of two labels. Intersection is just set intersection. Let
C; Dbe the label on the edge between interval i and
interval j. Given that labels on edges can represent a
disjunction of possible relations between two intervals,
Allen defines the composition of two labels as the
pair-wise multiplication of the elements,

Ci .ij <=> {a X bla €Cy b €ij) (21)

where X is defined over the seven basic relations and
their converses and is easily implemented as a table
lookup (see Allen, 1983 for the complete table).

2.2. Improving the Approximation

In general, Allen's algorithm, being an approximation
algorithm, will not always compute the minimal label
between two intervals. In this section we explore
better (and, unfortunately, more expensive) approxi-
mation algorithms. We develop an 0(n*) consistency
algorithm. The labels computed by the algorithm, as
with Allen's algorithm, will always be a superset (not
necessarily proper) of the minimal labels. But the
algorithm computes a better approximation in that
fewer disjuncts remain that could not be part of a con-
sistent singleton labeling of the graph.

Recall the definition of a minimal label: every ele-
ment of the label is capable of being part of a single-
ton labeling of the entire graph that can be con-
sistently mapped to a time line. It can be shown that
for the interval algebra the path consistency algo-
rithm, as an approximation, ensures the labels are
minimal with respect to all subgraphs of size three.

Inputs A matrix C where Cij is the label on edge (i, j).
Output: A path consistency approximation to the minimal
labels for C; 1, j = 1,...,n.

procedure ALL4
begin
Q ~— RELATED PATHS (s, ;)
1<i < j<n
while Q 1s not empty do begin
select and delete a 4-tuple (s,
[& C.’j N Aw . Aklj
if (t » C,;) then begin
C"j - I
C4 +— INVERSE (¢)
@ «— Q@ U RELATED PATHS (1, ;)
end
end
end

k, 1, j)from Q

procedure RELATED PATHS (s, j)

return

((k, i, 7,01 <k<i<n, k, 1, i, jdistinct } U
{§’: j: " kgt

(k, 1,5, 1<k, 1<n, k (i, jdistinct)

Figure 1 Three and Four Consistency Algorithm

Another way to view the action of the path con-
sistency algorithm together with the definition of com-
position of labels (equation 2.1) is that entry Cj;, the
label on the edge (t, j), gets updated to be the set of
elements of the old label that can be part of a con-
sistent singleton labeling of the triangle (i, k, j). That
IS, we ensure that the labels are minimal with respect
to all triangles (or 3-cliques) and composition is defined
over labels on edges that share a vertex. The simple
idea for improving the approximation is then to ensure
that the labels are minimal with respect to all sub-
graphs of four vertices (or 4-cliques) and define compo-
sition over labels of triangles that share an edge.

Dy " Dy &
{(a X d) M (b X 6) Iae Cik? cC Ckh €& Cu,
b€(a X)N Cy,d€E(c Xe)N Cyy }

(2.2)

The modified path consistency algorithm is given in
Figure 1. The algorithm with the new definition of
composition (equation 2.2) ensures that C;; becomes
the set of elements of the old label that can be part of
a consistent singleton labeling of the subgraph of four
vertices. |If a label on an edge changes it may in turn
constrain other labels so procedure RELATED PATHS
returns all structures of four vertices in which the edge
participates, taking into account symmetries to
prevent redundant computation.

Theorem 1. The algorithm of Figure 1, achieves
three and four consistency and requires O(n") time.

The idea for developing the initial better approxima-
tion algorithm can be generalized to develop succes-
sively more expensive algorithms that compute pro-
gressively better approximations. But higher orders of
consistency quickly become impractical for all but the
smallest problems.

2.3. Easy (Polynomial Time) Special Cases

In this section we explore how far we must restrict the
expressive power of the representation language to
guarantee that we can compute exact solutions in
polynomial time. ValdeVPerez (1987) shows that
graphs that are not labeled with disjunctions can be
solved exactly in 0(n®) time using Allen's algorithm.

Vilain and Kautz (1986) claim something stronger.
They define a time point algebra for representing and
reasoning about the possible relations between points,
as opposed to intervals. Let PA”™ denote Vilain and
Kautz's point algebra. PA" is the algebraic structure
with underlying set {<, <, =, >, >, #, ¢} and binary
operators intersection and composition. Note that <,
for example, is an abbreviation of {<, =} and ? means
there is no constraint between two points, {<, =, >}
Intersection is then set intersection. Composition is
defined as in the interval algebra (equation 2.1) except
that multiplication is now given by,

AN
o3 v

V
VIV

Vilain and Kautz show that a subset of the interval
algebra can be translated into this time point algebra.
Let SP* be the set of labels in the interval algebra
that can be translated into relations between the end-
points of the intervals using the underlying set of PA#.

Vilain and Kautz assert (Theorem 4, p. 380) that
the path consistency algorithm (Allen's algorithm) is
exact for computing the minimal labels between points.
The consequences for the interval algebra are the fol-
lowing. |If their claim is true we can solve the subset
SP# of the interval algebra exactly by first translating
into the point algebra. However, their claim is false.
Here we present a counter-example demonstrating that
the path consistency algorithm is not exact for Vilain
and Kautz's point algebra. The counter-example also
shows that path consistency is not exact for SP* Iif,
instead of first translating into the point algebra, we
use the interval algebra representation directly. Below
is the interval algebra representation of the example
with labels chosen from SP~

1293

vanBeek

L, = {d, dj, o, 01, m, {, fi}
L, = {eq, b, di, o, s, si, f1}
L= {b,d, o, f, N1}

L,= {b,d, o, s}

where

The translation into the point representation is the fol-
lowing (where A- and A" represent the start and end
points of interval A, respectively)

A~ AY| B~ B*|Y ¢ c¢*| D~ D?
Al = < | = <| < <[<
AT > = ? | = 9| > ¢
—1 T t f
B™| = < | = < | # <| # s
BYf > ¢ > = | > ? > >
c| > == <|= <|°? =~
Ctl > ¢ > ¢ > = > >
D-| » < | % <|? <]| = <
DY > ¢ #* < | # < | > =

Applying a path consistency algorithm results in no
changes; the relations between points are all con-
sidered to be minimal. However, the relation A- < B
Is not minimal, thus demonstrating that the algorithm
IS not exact for the point algebra. The minimal rela-
tion is A- < B". This change is also reflected in the
original interval algebra representation: the minimal
label between vertex A and vertex B is {d, di, o, oi, f,
fi}, with the meets relation having been dropped
because it could not participate in any consistent sin-
gleton labeling of the graph. Interestingly, Allen's
algorithm is also not exact when applied to the inter-
val algebra representation of this example, whereas the
algorithm we proposed in the previous section com-
putes the minimal labeling. To reiterate, the counter-
example shows that the path consistency algorithm is
not exact for SP* and PA* We have been informed
that Ladkin (1989) shows that for PA* path con-
sistency does guarantee that, if the minimal labels on
edges is the empty set, this will be detected.

Define a new point algebra, PA, with the same
binary operators and underlying set as PA* with the
exception that * is excluded from the underlying set.
Let SP be the set of labels in the interval algebra that
can be translated into relations between the endpoints
of the intervals using the underlying set of PA. Path
consistency is exact for SP and for PA. The following
lemma on the intersection of convex sets is useful in
the proof of exactness.

Let F be a finite family
in R" such that every
Then all the

Lemma 1 (Kelly's theorem).
of at least n-hl convex sets
n+1 sets in F have a point in common.
sets Iin F have a point In common.

Theorem 2. The path consistency algorithm Is exact
if all labels are chosen from SP. It is also exact for
PA, the point algebra that excludes the " relation.

1294 Knowledge Representation

Theorem 2 is proved by showing by induction that if
all labels are from SP or PA and there is path con-
sistency then the graph is strongly Ar-consistent for all
k < n. Hence the labels are exact. The Iinductive
step relies on the fact that the relations between ver-
tices (the labels) form convex sets allowing the applica-
tion of Lemma 1. The proof is constructive and gives
an algorithm for finding consistent singleton labelings.

In the remainder of this section we show that the
four consistency algorithm developed in section 2.2 is
exact for SP* and PA* (recall PA* includes #, PA
doesn't). If 5* is permitted in the language of the
point algebra, the relations no longer form convex sets
and path consistency is no longer sufficient. Here is
the smallest counter-example to the exactness of path
consistency for PA* and, up to isomorphism, is the
only counter-example of four vertices.

The graph But this is not the

IS path consistent.
minimal labeling since not every element is capable of

being part of a consistent singleton labeling. To see
this, choose the singleton labeling for the triangle (A,
B, C) such that A= B = C. We now have D < A, B
< D, and D »# C. Using standard interval notation
and substitution of equals, D must be in the three
intervals (—00, a], [a, +00), and (—00, a) U (a, +00). It
IS easily seen that these intervals are pair-wise con-
sistent but together are inconsistent. |If the graph was
also made four consistent, say by applying algorithm
A114 (Figure 1), the label between A and B would be >
and this counter-example could not occur.

The counter-example then is unique for n = 4 and
cannot occur if the graph is three and four consistent.
But can we find a counter-example for n > 47 The
answer is, no. It can be shown (see the longer version
of the paper) that any larger counter-example must
have a subgraph of 4 vertices isomorphic to the exam-
ple above. But this is ruled out by four consistency.

Theorem 3. Hie three and four consistency algo-
rithm of Figure 1 is exact |if all labels are chosen
from SP* It is also exact for PA* the time point
algebra that Includes the 5" relation.

We characterized the subsets of the interval algebra
for which the path consistency algorithm and the
four-consistency algorithm are exact. Unfortunately
these subsets are small. We must quite severely res-
trict our representation language to guarantee efficient
and exact solutions.

3. The One-to-All Problem

The algorithms given in the previous section compute
approximations to the minimal labels between every
interval and every other interval (the all-to-all version
of the problem). |If we are only interested in the rela-
tionships between one interval and every other interval
or between two particular intervals then, in computing
the relationships between all intervals, we may be
doing too much work. In this section we present an
efficient algorithm for the one-to-all version of the
problem and show that the algorithm is exact for a
useful subset of the interval and point algebras.

3.1. A One-to-All Approximation Algorithm

Our solution to the one-to-all version of the problem is
an adaptation of Dijkstra's (1959) algorithm for com-
puting the shortest path from a single source vertex to
every other vertex. His algorithm, which can be
categorized as a label-setting algorithm, produces poor
quality solutions when applied to the interval algebra.
In the algorithm of Figure 2, we allow a label to
change after it has been tentatively fixed and perhaps
further constrain other labels. This change turns the
algorithm into a label-correcting algorithm where no
labels are considered final until the procedure halts.
This change to Dijkstra's algorithm also appears in
Edmonds and Karp (1972) in the context of finding
shortest paths where negative arc lengths are allowed.
Johnson (1973) showed that, if the labels are integers,
this change makes the algorithm exponential in the

worgt case. In this context, though, the algorithm is
0(n<).

Theorem 4. The
requires 0(n°) time.

one-to-all algorithm of Figure 2

3.2. Easy (Polynomial Time) Special Cases

Here we explore how far we must restrict the expres-
sive power of the representation language to guarantee
that our one-to-all approximation algorithm of Figure
2 (Oned) is exact. Note that the all-to-all algorithms
compute approximations to all the minimal labels, but
even the labels we are not interested in help us by
further constraining the labels we are interested in.
One3 does not do this; it uses less information to com-
pute its approximations. Hence, in general its approxi-
mations are poorer than those of the all-to-all algo-
rithms. Surprisingly though, One3 is exact for the
same subset of the interval algebra for which the path
consistency (Allen's algorithm) is exact.

Theorem 5. The label-correcting algorithm of Fig-
ure 2 is exact for SP and PA, provided the minimal
label on an edge is not the empty set or null relation.

The proof of the theorem uses the property that com-
position distributes over intersection. This property is
true for SP and PA only if we can guarantee that the
intersection of two labels will never result in the empty
set. It is easy to show that the theorem is false if the
empty set is the minimal label on an edge.

Input: A source vertex s and a matrix C where element Cj,
is the label on edge (i, j)
Output: An approximation to
Csj, j = 1, . ,Nn

the minimal labels for

procedure ONE3
begin
L—V-{s}
while L is not empty do begin
select a vertex v from L
LeL~-{v}
for each ¢ 1In V do begin
l —Cy N Cy - Cy
if { » C,; then begin

C,t 4"—1
L~—LU({t}
end
end
end

end

Figure 2 A One-to-All Algorithm

4. Experimental Results

In this section we present the results of some computa-
tional experiments comparing the quality of the solu-
tions produced by Allen's and our approximation algo-
rithms. The experiments give a partial answer to the
question: with what degree of confidence can we rely
on the less expensive approximate solutions? We also
present a simple test for predicting when the approxi-
mation algorithms will and will not produce good qual-
ity approximations.

For each problem of size n we randomly generated
a consistent singleton labeling and then added uncer-
tainty in the form of additional disjuncts on the possi-
ble relationships between two intervals. We then
applied the three approximation algorithms, chose a
particular edge, determined the minimal or exact label
on that edge using an exact backtracking algorithm,
and recorded whether the less expensive approximate
solutions differed from the exact solution. Table 1
summarizes the results for two distributions and three
algorithms: One3 (Figure 2), A113 (the path consistency
algorithm), and A114 (Figure 1). Distribution one was
chosen to roughly approximate instances that may
arise in a planning application (as estimated from a
block-stacking example in Allen and Koomen, 1983).
Fortunately, for this class of problems the results sug-
gest that for a reassuringly large percentage of the
time we can use the path consistency algorithm with
near impunity: the outcome is the same as that of
using an exact algorithm. With a different distribu-
tion, however, up to two-thirds of the labels on aver-
age were not minimal.

Let SP be the subset of the interval algebra dis-
cussed earlier that can be solved exactly using the
path consistency algorithm. Computational evidence
shows a strong correlation between the percentage of
the total labels that are from SP and how well the
One3, A113, and A114 algorithms approximate the exact
solution. Recall that Theorem 2 (Theorem 5) states

van Beek 1295

Table 1

Average percentage differences between the approxi-
mation algorithms and an exact algorithm for various
problem sizes. Distribution 1: About 75% of the time the
uncertainty added is {1} and the remaining time consists of
from O to 3 of the basic relations. Distribution 2: All labels
are equally likely to be added as uncertainty. 150 tests were
performed for each problem size, n

Distribution 1

Distribution 2
n One3 All3 All4 | One3 All3 All4

20 6.0 0.0 00 727 660 367
30 10.7 00 00 88.7 413 93
40 18.0 1.3 0.7 95.3 12.0 3.3
50 12.7 00 00 90.7 40 2.0
60 18.0 07 00 84.0 00 00

that A113 (One3d) is exact when all the labels are from
SP so we cannot improve on that. But, as the percen-
tage of the total labels that are from SP nears zero, an
increasing number of the labels (on average) assigned
by the approximation algorithms are not minimal.
Thus we have an effective test for predicting whether
it would be useful to apply a more expensive algo-
rithm.

5. Conclusions

We considered a popular representation for temporal
relationships between intervals introduced by James
Allen and its associated computational or reasoning
problem of, given possibly indefinite knowledge of the
relations between some intervals, computing the
strongest possible assertion about the relations
between some or all intervals. Allen gives an approxi-
mation algorithm based on constraint propagation.
We presented an algorithm for computing Dbetter
approximations for the all-to-all version of the problem
and a test for predicting when this more expensive
algorithm is useful. We presented an algorithm for the
one-to-all version of the problem and a test for
predicting when this less expensive algorithm is useful.
We gave a counter example to a result in the literature
and identified easy (polynomial time) special cases of
both versions of the problem.

Acknowledgements

| thank Robin Cohen, Bruce Spencer, Fei Song,
Fahiem Bacchus, Andre Trudel, and Paul van Arragon
for help, advice, and encouragement. Financial sup-
port was gratefully received from the Natural Sciences
and Engineering Research Council of Canada, |ITRC,
and the University of Waterloo.

References

Allen, J. F. 1983. Maintaining Knowledge about
Temporal Intervals. Comm. ACM 26, 832-843.

Allen, J. F. 1984. Towards a General Theory of
Action and Time. Artificial Intelligence 23, 123-
154.

1296 Knowledge Representation

Allen, J. F., and J. A. Koomen.
a Temporal World Model.

1983. Planning Using
Proceedings of the

Eighth International Joint Conference on Afifi-
cial Intelligence (IJCAI), Karlsruhe, W. Germany,
7(41-747.

Dijkstra, E. W. 1959. A Note on Two Problems in
Connexion with Graphs. Numerische = Mathematik
1, 269-271.

Edmonds, J., and R. M. Karp. 1972. Theoretical

Improvements in Algorithmic Efficiency for Network
Flow Problems. J. ACM 19, 248-264.

Freuder, E. C. 1978. Synthesizing Constraint Expres-
sions. Comm. ACM 21, 958-966.

Freuder, E. C. 1982. A Sufficient Condition for
Backtrack-Free Search. J. ACM 29, 24-32.

Johnson, D. B. 1973. A Note on Dijkstra's Shortest
Path Algorithm. J. ACM 20, 385-388.

Koubarakis, M., J. Mylopoulos, M. Stanley, and A.
Borgida. 1989. Telos: Features and Formalization.
Forthcoming Technical Report, Computer Systems
Research Institute, University of Toronto, Feb.

Ladkin, P. B. 1988. Satisfying First-Order Con-
straints About Time Intervals. Proceedings of the
Seventh National Conference on Artificial Intelli-

gence (AAAl), Saint Paul, Minn., 512-517.

Ladkin, P. B. 1989. Unpublished manuscript.
Institute, Palo Alto, Calif.

Mackworth, A. K. 1977.
Relations. Artificial

Montanari, U. 1974. Networks of Constraints: Funda-
mental Properties and Applications to Picture Pro-

Kestrel

Consistency in Networks of
Intelligence 8, 99-118.

cessing. Inform. Sci. 7, 95-132.

Song, F., and R. Cohen. 1988. The Interpretation of
Temporal Relations in Narrative. Proceedings of
the Seventh National Conference on Artificial
Intelligence (AAAl), Saint Paul, Minn., 745-750.

Tsang, E. P. K. 1987. The Consistent Labeling Prob-
lem in Temporal Reasoning. Proceedings of the
Sixth National Conference on Artificial Intelli-

gence (AAAl), Seattle, Wash., 251-255.

Valdes-Perez, R. E. 1987. The Satisfiability of Tem-
poral Constraint Networks. Proceedings of the
Sixth National Conference on Artificial Intelli-
gence (AAAl), Seattle, Wash., 256-260.

van Beek, P. 1989.
Temporal Reasoning.

Approximation Algorithms for
Department of Computer Sci-

ence Technical Report CS-89-12, University of
Waterloo.
Vilain, M., and H. Kautz. 1986. Constraint Propaga-

tion Algorithms for Temporal Reasoning. Proceed-
ings of the Fifth National Conference on Artifi-
cial Intelligence (AAAl), Philadelphia, Pa., 377-382.

