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Abstract

We present an Al approach to subjunctive condition-
als based on a possible-worlds version of situation
semantics, arguing that the connection between the
antecedent ¢ and consequent y of a conditional “if ¢
were the case, ¥ would be’ 1s an informational rela-
tion between types of situations of the kind that can
represented in a hierarchy. We present a sound and
complete logic of conditionals based on Stalnaker’s
[1968] logic C2. We discuss methods of evaluating
conditionals concerning object types and their pro-
perties using inheritance hierarchies, and those con-
cerning actions and events using hierarchies of plans.
In the latter case, we specify how to gencrate the
hierarchy of situatuons from a collecuon of plan
schemas. Our theory explains the traditional ‘para-
doxes’ of conditionals (failure of strengthening the
antecedent, failure of transitivity, failure of contrapo-
sition) as arising naturally from the fact that our
hierarchies use defaults and exceptions.

1 Introduction

A subjuncuve conditional 1s a sentence of the form ‘i ¢
were the case, y would be 100’, where ¢ and y are proposi-
uons. Subjunctive conditional statements invite us to con-
sider a hypothetical scenario, one in which ¢ holds, and ask
us whether y holds in that scenario. They are often used
counterfactually, that 1s, when ¢ refers to a specific event
that did not occur. Conditionals form a vital part of our
knowledge, e.g. the justification that the plans of Al actually
work can be seen as the truth of a series of conditionals of
the form ‘if I were to do action A, then condition C would
obtain’, ‘if conditon C' were to obtain, then I could do
action B’, etc. Conditionals thus play an important role in
prediction of the future and our acung 1n the world to influ-
ence the future.

It is a common criticism of certain philosophical
accounts of conditionals, e.g. [Stalnaker, 1968] and [Lewis,
1973], that although these theories provide a rigorous
semantics and a sound and complete conditional logic, a
crucial aspect of the problem of conditionals is being pack-
aged aside and regarded as a purely pragmatic problem out-
side of the domain of logical enquiry. In such possible-

worlds frameworks, this is usually manifest in the so-called
selecuon funcuon, which forms the basis upon which the
semantics of conditionals rests. In these kinds of theories, a
subjunctive conditonal of the form ‘if ¢ were true, y would
be too’ 1s true relative to a world w if y is true in in the
world that the selecuon function picks out for ¢ from w.
Nothing much is said about particular selection functions: a
set of constraints that selection functions must satisfy is
given and related to various axioms of the logics.

The prnnmary aim of this paper 1s to give a formal
account of subjuncuive conditionals whose semantics is
denved from standard sorts of Al knowledge representation
schemes (inheritance hierarchies and collections of planning
schemas). As more of an inspiraton than a formal basis, we
will follow Barwise’s [1985] approach to conditionals based
on situation semantics, [Barwise and Perry, 1983], in which
a subjuncuve conditional of the form ‘if ¢ were the case, y
would be 100’ 1s true relative to some background context B
if there is a constraint ¢ = W that holds relative to B. How-
ever, unlike Barwise, we will take this background context
iself to be represented by a situation type, which is speci-
fied by a set of possible worlds. For us, a constraint ¢ = vy
holds at a situaton type o if in the most general situation
type resulting from ¢ by the addition of information ¢, y
also holds. This treatment of conditionals gives us two
things: (i) a way of implemenung a system that ‘undecr-
stands’ subjunctive conditionals — because this ‘most gen-
eral’ relation is computable, and (i1) a way of formalizing a
logic of conditionals by adapting the Stalnaker-Lewis
methods — because the rule of choosing the most general
subtype of a situation type can be regarded as a specific
selection function. Our theory explains the traditional ‘para-
doxes’ of conditionals (failure of strengthening the
antecedent, failure of transitivity, failure of contraposition)
as arising naturally from the fact that hierarchies utilize
defaults and exceptions. The use of types of situation also
enables us (with Barwise) 10 give a unified account of fac-
tual and counterfactual conditionals.

In earlier work, [Wobcke, 1988b], we used (our version
of) situation semantics as a formalization of ordinary
‘script-based’ inference, treating both what Schank and
Abelson [1977] call ‘script-inference’ (filling in the gaps 1n
a causal chain) and ‘script-activation’ (determining the
relevance of a script), as entailment over classes of situation
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types. This we called plan recognition, following Kautz.
However, that theory was monotonic in that if from input @
it followed some conclusion X, from inputs @ and , % also
followed. This was plainly an oversimplification, and so the
second aim of this paper is to further reconstruct Script-
activation' inferences as conditional reasoning, in which
monotonicity fails. Furthermore, insofar as the theory is
based on standard planning representations, we claim that
our approach to conditionals provides a natural account of
(simple kinds of) planning. The theory presented here serves

also to formalize the intuitions appealed to in our discussion
of inheritance, [Wobcke, 1988c].

2 Conditionals and Hierarchies of Situations

Our theory follows in the same vein as the truth-theoretic
accounts of conditionals developed by Stalnaker [1968] and
Lewis [1973]. But rather than defining truth relative to a
possible world, our underlying semantic framework is a
hierarchy of types of situations. Suppose we know that some
situation s is of type a. We know that s could turn out a
number of ways depending on what further information
about s we could obtain. Intuitively, the situation types that
are recorded in the hierarchy below a represent all the sub-
types of a that s could possibly be an instance of. So with
the standard script-type examples from [Schank and Abel-
son, 1977], we can imagine a situation type 'restaurant’ with
subtypes 'cafeteria' and 'fast-food'. With an inheritance
hierarchy, we can imagine an object type 'bird" with sub-
types 'penguin’ and 'emu’.

A conditional ‘if ¢ were the case, y would be’ concern-
ing a situation s is evaluated with respect to a situaton type
o that we know s to be an instance of, by seeing if ¢ = Yy 1s
a constraint that holds at 6. A constraint ¢ = y holds at ¢ if
however ¢ develops into a most general subtype ¢ of ¢
such that ¢ holds of &', y also holds of &'.

The determination of the base type ¢ with respect to
which a conditional 1s evaluated 1s a pragmatic concern
which we will largely 1gnore. In many cases, there is no
prior context, and so the most general subtype of ¢ that
satisfies ¢ 1s just the most general type in the hierarchy that
satisfies ¢. For example, consider the situation type o con-
sisting of my holding a loaded gun that is pointed at you.
Consider in this context, the conditional

If | were to pull the trigger, you would be injured.

Supposing that all the situation types that are subtypes of a
in which | pull the trigger satisfy your being injured, the
conditional will be true. On the other hand, if it is admitted
that the gun may equally well not fire if | pull the trigger,
the conditional will be false.

We now motivate our analysis by discussing three ideas
which make schemas and hierarchies of situations a useful
basis for a theory of conditionals.

First, a conditional is not considered true in isolation of
other related true conditionals. This argument comes from
Hanson's [1961] discussion of the explanation of everyday
events in relation to causal statements. Hanson claims that
there are as many true causal statements (and so true
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conditionals) as there are explanations, and that these expla-
nations are dependent on the point of view adopted. Thus of
a car crash, it is said that

The car crashed because the driver tried to avoid the
pedestrian.

The car crashed because the brakes failed.

The car crashed because the tyres skidded on a patch of
Ice.

Here, what happened was that in the trying to avoid the
pedestrian, the driver applied the brakes which failed to grip
the icy road. All the conditions and events play some role in
the crash, but each causal statement isolates one of them.
The point is that each causal statement is true. So each of
the corresponding counterfactuals is true:

If the driver hadn't tried to avoid the pedestrian, the car
wouldn't have crashed.

If the brakes hadn't failed,
crashed.

If the tyres hadn't skidded on a patch of ice, the car
wouldn't have crashed.

the car wouldn't have

To handle this phenomenon, we will assume that the set of
causal statements forming the complex explanation is
represented in the one plan schema. All the conditionals will
be true because the situations which are used in evaluating
the conditionals are determined from this one schema.

The second argument for a hierarchy of schemas is that
this allows the representation of default assumptions and
exceptions. The use of defaults is realized in the theory of
conditionals by the failure of strengthening the antecedent
For example, the first conditional is true, the second false:

If | had recharged the battery, the car would have
started.

If | had recharged the battery and left it disconnected,
the car would have started.

We interpret this as follows. In the first example, there is an
implicit assumption that the battery is connected. This
assumption is denied in the antecedent of the second condi-
tional, and the informational (and causal) chain between
antecedent and consequent is broken. We assume that there
IS a planning schema consisting of 'recharge(battery) —>
connect(battery) —> starts(car)'. Thus the most general situa-
tion which satisfies *recharge(battery)’ also satisfies
'starts(car)’, but the most general situation that also satisfies
'~ connect(battery)' will not satisfy 'starts(car)’. This is an
example of a default assumption, but defaults may also
appear in the consequent of a conditional, e.g. with the fami-
liar
If that thing were a bird, it would be able to fly.

This conditional is true, although it allows exceptions. With
the standard network, the most general 'bird" situation satis-
fies 'flies', but some of its subtypes (penguins) do not. This

Kind of example will be used to explain the failure of contra-
position (see section 4).

Third, conditionals often come in pairs, e.qg.

If | had recharged the battery, the car would have
started.



If | hadn't recharged the battery, the car wouldn't have
started.

To handle such pairs (and some of the examples above), we
must further interpret what a plan actually says about when
one of its actions fails to happen. In doing so, we follow
Mackie [1965], who argues that each cause of some event is
a necessary component of a collection of actions and/or con-
ditions which together are sufficient for the occurrence of
the event. Now in the context of a specific plan, we can
consider each link A —> B to mean that in that plan, A is a
necessary component of a collection of actions (all those A
such that A -> B) which together are sufficient for B's exe-
cutability. Thus when A does not happen, B cannot (hence
the truth of the conditional). We will build in to the theory
(see section 4) a way of generating from the one schema, a
hierarchy of situations that accounts for such pairs.

3 The Logic SC
3.1 Situated Conditionals: Syntax

The axiomatization of our logic SC, for situated condi-
tionals, derives from the S4-based version of Stalnaker’s
[1968] logic C2. We use the binary operator > 10 denote the
subjunctive conditional; ‘¢ > ¢’ can be read as ‘if ¢ were
the case, y would be too’. Each conditional 1s evaluated
with respect to a context c. More concretely, a formula
c: ¢ > vy 1s true if y holds in the most general situation type
that 1s a subtype of ¢ that sausfies ¢. We need only consider
a single most general situation type because when there
would otherwise be a collection of ¢’ that were most general
subtypes of ¢, we will assume that the disjunction of the o
1s more general than each of the ¢’ and hence is the situation
type sausfying ¢ with respect to which vy is tested.

Syntactically, SC differs from C2 in two respects. First,
the paruality of truth assignments in situations means that
the law of conditional excluded middle:

c:(0>y) V(> ~y)
1s not valid. Second, disjunction distribution, i.e.

c:o0>(WwVy) >0>yVo>y)
fails, due to the fact that situauons can satisfy disjunctive
properties without satisfying either property in the disjunc-
tion. However, the above formula is valid when y is a
literal:

Definition. A literal 1s a formula of the form (¢, ~O (b
00, ~0¢, ¢ > yor ~(¢ > vy), where ¢ and y are proposi-
tions.

The following scheme defines the axioms of the system
SC:

(P1) all the PC axioms written with formulae c: ¢,

(P2) c: ¢, for all ¢ and all PC axioms ¢,
P3)c:(dovy) o (c:9—c:vy), for all PC formulae
¢ and v,

Pd)c.:~0—>~c:0,

MDc:00¢6 > ¢,

M2)c:00->vy) »>0O¢—-0vy),

M3)c:0O¢->0049,

(M4) c: 00> y) = (00— 0y),

MS)c:06> 00,

M6)c: 00> ~0O~0,

M7)c:~00>0~00,

(MB) c: ~06¢ — O~ ¢, ¢ a conjunction of literals,

MO c:dpoc:00,

M10)c: 0(dVvy) 200V OV), ¢aliteral,

Mll)c:dVy—c:0Vc:vy, daliteral,

MI12)c: ~0(0 & ~900),

Cc:00& O@@-o ) 2@ >v),

C)c:(@>y—>x) > ©@>y—0>7%),

Cc:(@>~y) 5o ~(0>Y),

(CAHc:@>Y) & (W>0) 2 @>x>VY>X),

(C5)c:0(0& y) > (0>0v),

(CE) c: (0> ) 500> V),

CNc:0@>y) >0 & 0v),

C8c:(0>y) 2> (v>2))),

ChHc:vo>(Cc:yec:d>vy),

ClO) c: 0>y VY =>@>y Vo>, vliteral.
The inference rules in SC are modus ponens, necessitation
and conditionalization, 1.e.,

(MP) From o and o — B infer B.
(N)IfSCFc: ¢, inferc: O0¢.
(CO)IfSClc:vy,inferc: 00 = (¢ > vy).

Note that ¢ can be defined in terms of the > operator,
using the theorem c: 0 ¢ & (¢ > ¢). However, [ cannot be
defincd 1n terms of >, as it can in Stalnaker’s system,
because Stalnaker’s deﬁnition depends on the fact that
worlds assign truth values to every proposituon. Specifically,
he uses the fact that when ~¢ fails to hold at any world
accessible to a given world, ¢ must hold at all worlds acces-
sible to the given world. This property does not hold when
situations are used in place of worlds.

3.2 Situated Conditionals: Semantics

The semantics of the logic SC is based on a hierarchy of
situation types. A situated conditional c: ® >y is true ify
holds in the most general situation type which satisfies @
that is a subtype of the type [c]. We follow Stalnaker [1968]
in using a selection function, which for each situation type
and antecedent of a conditional, picks out a situation type
with respect to which the consequent of the conditional is
tested. Our logic SC is complete with respect to models
which satisfy certain conditions on this selection function. It
IS Important to note that the restrictions we place on selec-
tion functions do not guarantee that the most general sub-
type of the base type is selected. But for any model with
selection function meeting our requirements, there is a
corresponding model with selection defined according to the
'most general subtype' rule, which satisfies exactly the same
set of propositions. Thus the logic SC can be regarded as the
logic of situated conditionals.

Definition. A selection function fis a partial function defin-
ing for a situation type a and proposition @, a subtype of a
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which meets the following conditions:

(1) if ¢ holds at some subtype of o, then f (o, ¢) is
defined,

(ii) ¢ holds at f (o, ¢),

(i1i) if ¢ holds at o, then f (0, ¢) =0,

(iv) if y holds at f (o, ¢) and ¢ holds at f (o, ), then
f(o,9) =f(o,V),

(v) if y holds at any subtype of ¢ that satisfies ¢, then
Owy holds at f (G, ¢).

Condition (i) is obviously a reasonable requirement.
Conditions (i1), (iii) and (iv) are Stalnaker’s conditions on
selection functions which guarantee that the selected sub-
type should in fact satisfy ¢ and that the current situation
type should be given the highest prionity when it comes to
making the selection. Condition (iv) imphes that if y holds
at f (o, ¢),then f (0,0 & V) = f (0, ¢). Condition (v) cap-
tures part of the idea that f (o, ¢) is defined as the most
general subtype of o that satisfies ¢. This requirement 1is
equivalent to the condition (v'), which imphes (but is not
imphied by) condition (v).

(v") if ¢ holds at a subtype &' of s, then G’ is a subtype of
(o, 9).

SC provides the logic of situated conditionals in the
sense that no additional propositions hold of the restricted
class of models where selection functions are defined to
respect (v') and not just (v). Call these latter models the
proper models.

Lemma. For any SC model M, there is a proper model M’
equivalent to M in the sense that exactly the same proposi-
tions holding of M hold in M",

An SC interpretation consists of a set of situations
together with a reflexive, transitive accessibility relation on
that set. The interpretation of a context constant symbol ¢ is
a situation type, written [c]. A formula c: ¢ where ¢ 1s an
atomic proposituon (i.e. contains no modal or conditonal
operators) is true just if ¢ holds i1n the situation type [c].
These simple situation types must satisfy a consistent and
deductively closed set of atomic PC formulae - to guarantee
this, [c] 1s taken to be a non-empty set of PC interpretations
(worlds). Thus for atomic propositions, this truth condition
1S equivalent to van Fraassen’s [1966] supervaluations. A
formula c: O ¢ 1s true if ¢ holds in all subtypes of [c], and a
formula c: 0 ¢ 1s true if ¢ holds in at least one subtype of
[c]. Aformulac: ¢ > yistrue if yholdsin f ([c], ¢).

More formally, let / be an SC interpretation. Then we
define the truth conditions for formulae in / in two stages,
first for the atomic SC formulae, then for the complex SC
formulae. The truth conditions are defined for formulae in
conjunctive normal form. Let [c] be the set of worlds that is
the interpretation of ¢ and consider the hierarchy of situation
types /I, rooted at [c]. Then, for the atomic SC formulae

c:o:

I.E ¢ if [c] E ¢, for all atomic propositions ¢,
I.F ~¢ if I, ¥ ¢, for ¢ non-atomic,
1464 Speech and Natural Language

I.EoVy I, Edorl. FE vy, for ¢ or ynon-atomic
I.Fo& v 1ifl.E¢and/, F vy, for ¢ or ¥ non-atomic,
I.FO¢ if all subtypes of [c] in I, satisfy ¢,
I.E0¢ 1f some subtype of [c] In I, satisfies ¢,
I.E¢>vy if f([c], ¢) is defined and satisfies .

The truth conditions for complex SC formulae are as fol-
lows:

ITEc:¢ if I, F ¢,
IFE ~c:¢ ifI. ¥~ ¢,
IEc:oVc:y flI. Edorl, Fy,
IEc:0& c:y ifI.Fdand/, F .

Proposition. SC is a sound and complete inference system.

Proof. (Sketch) The proof uses the standard Henkin method
of constructing a model for any consistent sentence from a
maximal consistent set of SC sentences. However, there are
some peculiarities of our particular proof stemming from the
supervaluation semantics used for atomic propositions.

As 1n [Stalnaker and Thomason, 1970], we construct a
model for a consistent set of sentences I' from a maximal
consistent set I containing I'. However, where in their
proof any maximal consistent set containing I" will do, we
require some further properties of this set. Given a set of SC
formulae X, define X, to be the set of ¢ such that c: ¢ € Z.
Then we require I, (which will not in general be maximal
consistent, although it will be consistent since I is) to
satisfy (1) deductive closure, (i1) definiteness, and (ii1) coher-
ence, where the latter two of these are defined as follows.

Definition. A set X, (as defined above) is definite if when-
ever X, contains ¢ V y where ¢ is a modal or conditional
literal, either X, contains ¢ or . contains y (or both).

Definition. A set Z_ (as defined above) 1s coherent if when-
ever X, contains ¢, X, contains y iff X, contains ¢ > .

It 1s clear from (M11) and (C9) that these propertics are
required ((M9) is covered by (C9)). Then once 1t has been
established that every consistent set of sentences I' can be
extended to a maximal consistent set I such that I, is
deductively closed, definite and coherent, the model drops
out.

The full proof may be found in [Wobcke, 1988a]. o

4 Evaluating Subjunctive Conditionals

The theory of conditionals presupposes that the knowledge
represented in a hierarchy of plan schemas and in an inheri-
tance hierarchy can be used to construct a hierarchy of situa-
tion types. In the case of the inheritance network, the hierar-
chy just is the network. In the case of planning knowledge,
the construction is derived from a hierarchy of planning
schemas that is augmented to handle negated action descrip-
tions. We define/ (a, ®) for any situation type a and propo-
sition @, when a corresponds to a plan, to be the most gen-
eral subtype of a that satisfies ©.

As an example of how the theory works for our favourite
iInheritance hierarchy, suppose birds have short legs and can
fly, penguins have short legs but can't fly, and emus have



long legs and also can't fly. Then the following are all true:

f that bird were a penguin, it wouldn't be able to fly.
fthat bird were an emu, it wouldn't be able to fly.

f that bird couldn't fly, it would be a penguin or an
emul.

If that bird couldn't fly, it might or might not have long
legs.

but
If that bird couldn't fly, it would have long legs.

Is false (i.e. allowing for penguins). The most general sub-
type of bird that satisfies '~ flies* satisfies the disjunction
'has(long-legs) V ~has(long-legs)\ but satisfies neither dis-
junct.

We can now illustrate why contraposition for condition-
als fails. Consider 'if that bird had short legs, it would be
able to fly'. This conditional is true in the above network
because birds by default have short legs, and they can fly.
But for the contrapositive to be true, we would need the
most general subtype of bird that satisfies '~ flies' to satisfy
the property of not having short legs. In the above hierarchy,
birds that can't fly are either emus or penguins, one of
which has long legs, the other of which doesn't, so the con-
trapositive isn't true.

Now we consider the case of plan schema hierarchies.
The straightforward definition of a hierarchy of plans in
which one plan is a subtype of another if the latter could be
elaborated into the former is inadequate because it fails to
handle conditionals whose antecedents are the negations of
actions, for example,

If | had recharged the battery, the car would have
started.
If | hadn't recharged the battery, the car wouldn't have
started.

From the discussion in section 2, each link A —> B in a plan
means that A is a necessary component of a collection of
actions (all those A such that A —> B) which together are suf-
ficient for B to be executable. Therefore when an action A
does not happen, all those actions in the plan which depend
on A's being done will also fail to eventuate. We now make
this idea precise.

We associate with each schema a collection of failure
schemas, which say what happens when some action(s) in
the schema fail. To do this, we start with the schemas
ordered according to the simple definition proposed above.
Now starting from the most general situation types and
working down to the most specific ones, we define the
failure schemas associated with each schema. First, there are
no failure schemas for the primitive actions. So consider a
schema with a minimal number of actions (perhaps just two
actions and one link). Consider the partially ordered actions
In the schema in reverse order. Take an action A in the plan
connected to a collection of following actions B; and sup-
pose the failure schemas for all the B; have already been
constructed. Now construct further failure schemas for A by
replacing A by ~A in all those failure schemas that contain
any one of the negated B;s. This gives a collection of

failure schemas for all the simplest schemas. Now for any
more specific schema, repeat the process but not using the
(reverse of) the partial order on the actions contained in that
schema, but using instead the more restrictive partial order
obtained by coalescing the partial orders on the actions in
the more general schemas from which the specific schema
was derived.

A simple example will make this procedure clear. Con-
sider two schemas A -> B and C ->D. We will get failure
schemas ~A -> ~B and ~C -> ~D (the '-V Is a plan
link, not an implication). Now suppose the two simple sche-
mas are combined into a schema A -> C -> B ->Z). When
C doesn't occur, we don't want to say that B doesn',
because B's occurrence depends only on that of A. We do,
however, want to say that D fails to occur. Constructing the
faillure schemas by reference to the original schemas yields
these results.

We can now state formally the definitions of the hierar-
chy of plan plan descriptions, assuming a given hierarchy of
plan schemas. First, the definition without taking into
account negated actions, then the modified definition:

Definition. (Type Hierarchy of Plans) A plan P ;is a sab-
fypeofaplan Py, written P4y <P, if

(1) either P; or P, is primitive, P, has P, as an ancestor
In the given hierarchy,

or (otherwise)
(i) the set of role variables of P ; contains the set of role
variables of P,
(1) corresponding role types in P ; are subtypes of those
In P, using an inheritance hierarchy,
(ilia) the expansion of P ; contains a subtype of P,, or
(llib) each action in the expansion of P ; is a subtype of
an action in the expansion of P..

Definition. (Type Hierarchy of Plan Schemas - Modified
for Failure Schemas) A plan schema P ; is a subtype of a
plan schema P,, written P; <P,, if P<P, under the
above definition with an added clause stating that if action A
IS a subtype of an action B, then negated action ~A is a
subtype of the action B and of the negated action ~B.

So now, intuitively, a schema P; is a subtype of a schema
P, if P, contains a collection of actions that are subtypes of
counterparts in P, and all the counterparts of actions
negated in P, are negated in P ;.

Define a simple plan to be a (possibly partial) instantia-
tion of a single plan schema. The hierarchy of situations
used for our theory of conditionals is a hierarchy of plan
descriptions (c.f. [Wobcke, 1988b]), consisting of disjunc-
tions of those formulae that completely describe the simple
plans. First, define a complete description of a simple plan
to be a conjunction of atomic formulae such that the con-
juncts are in one-one correspondence with the actions in the
plan. These conjunctions can be identified with the simple
plans themselves. We take as the situation types in the
hierarchy the disjunctions of such complete descriptions
(except that with regard to failure schemas, we allow only
disjunctions of complete descriptions of completely instan-
tiated failure schemas). In the hierarchy of plan descriptions,

Wobcke 1465



the disjunction of two plan descriptions D; and D , is placed
directly above D ; and D,, and if D; V D, is a disjunctive
description of simple plans, we define f(D ;s V D,, ®) to be
f(D1 ®) V/I(D,,P).

We can now explain why conditionals with negated
antecedents ® where (® > y is a constraint, always seem to
be uncategorically true. Our explanation turns on the use of
such conditional statements. The use of the conditional is
often counterfactual, in which case it is presupposed that the
antecedent actually occurred. So for example, the earlier
conditional is being evaluated with respect to a situation
which includes the battery being recharged. Now in such a
context, the recharging is a necessary condition on the car's
starting, and by our definition of the hierarchy of complete
plan descriptions, the conditional will be true at such a situa-
tion (by reference to an appropriate failure schema). Con-
versely, suppose | didn't recharge the battery: | didn't this
morning, for example, and the car started as usual. If today |
say 'if | hadn't recharged the battery, the car wouldn't have
started’, then | am saying something false. But in doing so, |
am violating the precondition on the use of the conditional.

Note that as a result of our definitions, it is not a restric-
tion on our theory that conditionals must always look for-
wards in time. For example, the following two statements
are both true:

If he had struck the match, it would have lit.
If the match had lit, he must have struck it

But this does not force us to accept contraposition for condi-
tionals. Suppose there are two ways to light a cigarette,
using a match and using a lighter. Then the following are
true:

fhe had used a match, the cigarette would have lit.
f he had used a lighter, the cigarette would have lit.
fthe cigarette had lit, he could have used a match.

fthe cigarette had lit, he could have used a lighter.

but the contrapositives of the first two statements (the third
and fourth with 'must’ replacing 'could’) are both false.

5 Conclusion

In this paper, we presented an Al theory of conditionals that
emphasizes the judgement of conditional statements using
knowledge of informational relations represented in a hierar-
chy of situations. This Al approach contrasts with that of
Ginsberg [1986], who does not have a truth-theoretic
account of conditionals. Our theory explains the standard
'paradoxes' of conditionals in a natural way as arising from
the properties of hierarchies of situations. We have formal-
ized our theory using a conditional logic SC based on a ver-
sion of situation semantics. We have implemented (in Pro-
log) a system that evaluates atomic SC formulae by con-
structing most general subtypes of situation types - in the
case of planning schemas, this system is essentially carrying
out a subtask of planning. We have not considered ways of
efficiently implementing a system that is capable of dealing
with arbitrary SC formulae. In future work, we intend
extending our formalism to include an account of
knowledge and belief.
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