
A Methodology for Systematic Veri f icat ion of OPS5-Based AI
Appl icat ions

G.Rav i Prakash1 , E.Subrahmanian2 , and H.N.Mahaba la 1

1Dept. of Computer Science and Engineering
Indian Institute of Technology, Madras - 600036, India

e-mail : ravi@shiva.emet.in
2Engineering Design Research Centre

Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail : sub@edrc.cmu.edu

Abs t rac t

One of the crit ical problems in putt ing AI ap­
plications into use in the real world is the
lack of sufficient formal theories and practical
took that aid the process of reliability assess­
ment. Adhoc testing, which is widely used as
a means of verification, serves limited purpose.
A need for systematic verification by compile-
time analysis exists. In this article, we focus our
attention on OPS5-based AI applications and
present a methodology for verification which is
based on compile-time analysis. The methodol­
ogy is based on the principle of converting the
antecedent and action-parts of productions into
a linear system of inequalities and equalities and
testing them for a feasible solution. The imple­
mented system, called SVEPOA, supports in­
teractive and incremental analysis.

1 I n t r o d u c t i o n
Reliability assessment of artif icial intelligence (AI) appli­
cations is an important problem. One of the bottlenecks
in taking AI applications to the end-user sites is the lack
of sufficient formal theories and practical tools that aid
the process of reliabil i ty assessment. AI applications at­
tempt to automate (to higher degrees) intelligent decision
making activities of humans. The consequences of errors
in AI applications are likely to be more serious or costlier
than those in conventional computer applications. Ad-
hoc testing, which is widely used as means of verification,
serves l imited purpose. I t , however large in volume, can
only reveal the presence of errors but does not ensure
their absence. A need for systematic verification of AI
applications exists.

We present in this paper a methodology for systematic
verification of OPS5-based AI applications. We have fo­
cused our attention on production systems [Newell72] in
general and OPS5-like languages [Forgy81 in particular
for reasons that production system model of reasoning
is one of the earliest and widely used models by the AI
researchers and many interesting prototype applications

[e.g. McDermott82] have been developed using OPS5-
like languages. We present here a methodology that is
based on compile-time analysis. Through compile-time
analysis, we discover certain properties and relations of
productions and illustrate through discussions that the
presence and absence of these properties and relations
reveal errors, if any, in the design of the antecedent and
action-parts of productions.

2 Produc t ion System M o d e l and OPS5
Language
A Production System, Z, can be characterized by three
components : Z = (D, P, C) where,

D is a Fact-base : a set of facts;
P is a Production-base : a set of productions;
C is a Control strategy : a set of search procedures.
Production systems can be classified based on
* the scheme of representation used for the objects,

attributes, relationships, and states in the fact-base;
* the nature of the actions in the productions, i.e.

monotonic (ignorable) or nonmonotonic (revocable or ir­
revocable) actions;

* the techniques used for control strategy (e.g. weak
search methods or heuristic search methods).

Based on this classification, the OPS5 language and
its underlying production system model can be charac­
terized as :

1. OPS5 represents fact-base as a set of instantiated
objects having values to (some of) their attributes;

2. antecedent-parts of productions in OPS5 are ex-
pressed as a conjunction of clauses (positive and negated
clauses) where each clause is represented as a conjunction
of one or more ordinal predicates involving attributes and
const ants /variables;

3. actions in productions of OPS5 are nonmonotonic;
the actions are mainly two types : make to add new
instantiations of objects to the fact-base and remove to
delete existing ones (modify action can be treated as a
combination of make and remove),

4. OPS5 offers MEA and LEX control strategies and
data-driven (forward) reasoning.

This characterization of OPS5 is used in course of dis­
cussions in the rest of this paper.

Prakash, Subrahmanian, and Mahabala 3

3 R e l a t e d Research W o r k
The research work reported earlier in [Nguyen85, Ma-
habala87, Ginsberg88 etc.] on the issue of consistency
checking of production (or rule-based) systems are all
related to monotonic production systems that use propo-
sitional formulae to represent fact-base and productions.
The definitions and the techniques used in the verifica­
tion by the above referenced work are found to be unsuit­
able for verification of OPS5-like production systems for
two principal reasons : one is that the actions in OPS5
are nonmonotonic and the other is that the antecedent-
parts in OPS5 productions can use predicates involving
existential (in positive clauses) and universal (in negated
clauses) quantifiers. Verification of OPS5-based appli­
cations by compile-time analysis requires entirely new
techniques.

4 Sources o f E r r o r s in t h e Des ign o f P r o ­
duc t i ons
The process of designing an AI application using
production system model involves translating domain
knowledge into fact-base declarations and productions.
During this process, often (excluding toy problems)
the knowledge-engineer makes assumptions about what
knowledge is to be stated explicitly (called qualifica­
t ion and ramification problems). As the fact-base and
production-base are enlarged and refined, the knowledge-
engineer needs to maintain the consistency of assump­
tions. Otherwise the production system is prone to con­
tain errors. This is one source of errors. There are other
sources of errors too, like the text-editing mistakes, the
knowledge being often incomplete, etc.

5 V e r i f i c a t i o n by C o m p i l e - t i m e Ana lys i s

We have manually analyzed toy and prototype AI appli­
cation systems developed using OPS5. We have found
that discovering the following relations and properties of
productions by compile-time analysis helps the knowl­
edge engineer to detect errors in the antecedent and
action-parts of productions :

1] conflict relations
2] likely-to-activate relations
3 dead-end productions
4] impossible productions

In this section, we formally define these relations and
properties and discuss their usefulness in the process of
verification. Before we do so, we introduce certain terms
which we use in defining the above listed relations and
properties.

Act iva t ing and Resultant Sets :
The set of all valid fact-base states of a given OPS5-

based AI application is called its state-space. Each pro­
duction in the application system can be viewed as a
state transformational operator (the term 'state' implies
'valid fact-base state'). Every production specifies a set
of conditions (antecedent-part), which when satisfied,
makes the production eligible for execution. The num­
ber of states that can satisfy the antecedent-part of a

4 Architectures and Languages

production is zero or more depending upon the logical
and semantic consistency and specificity of conditions
in the antecedent-part. We introduce here two terms,
Activating-Set and Resultant-Set of a production.

Act ivat ing-Set (A p) of a p r o d u c t i o n , p :

Activating-Set of a production, p, is the set of all states
in the state-space that satisfy the antecedent-part of p.

Resultant-Set (R p) of a p r o d u c t i o n , p :

Resultant-Set of a production, p, is the set of all states
in state-space, each of which results from applying the
actions of production p onto some state s, belonging to
the Activating-Set of p.

Using the definitions for Activating-Set and Resultant-
Set of a production, the relations and properties of a
production as listed earlier in this section are defined
below.

Confl ict Re la t ion :
A conflict relation is said to exist between two distinct

productions p and a iff.

Discussion : Conflict relation exists between two distinct
productions, p and q, (denoted as 'p.conflict.q') iff, the
Activating-Sets Ap and Aq have common elements. In
other words, there exist one or more fact-base states that
can satisfy the antecedent-parts of both p and q. When
solving AI problems using OPS5, the conflict-set (the set
of productions that are satisfied by the current fact-base)
often contains more than one production. So conflict re­
lations between productions is a natural phenomenon in
OPS5-based applications. But, while designing produc­
tions, the knowledge engineer may over or under specify
the conditions in the antecedent-parts (because of qual­
ification problem or incomplete knowledge). This gives
rise to the possibility that the OPS5-based application
system contains certain invalid conflict relations or does
not contain certain valid conflict relations. To illustrate
this point, consider the two productions given in exam­
ple. 1 (these productions are selected from the solution to
the monkey and banana problem given in Appendix-One
of [Brownston85] for easy readability). Consider that the
contents of the fact-base are described by the test data
given in example.2.

Example.1

The fact-base describes that there exists a goal for the
monkey to hold the ladder; the ladder is on the floor at
position 1-1; the monkey is at position 1-1, on the ladder
and holding the blanket. Both the productions of ex­
ample. 1 are satisfied by the fact-base of example.2. So,
a conflict relat ion exists between these two productions.
Though the authors of Appendix-One of [Brownston85]
very clearly state that there are no conflicting produc­
tions to either of these productions, we could find a con­
flict relat ion between them using our systematic compile-
t ime analysis. Similarly, one can find that the produc­
t ion 'Holds::Object:Satisfied' has a conflict relation w i th
the product ion 'Holds::Object-NotCei l :On' (both pro­
ductions f rom Appendix-One of [Brownston85]), which
the authors stated as impossible. What conflict relations
are val id, and what are not, is a domain dependent fea­
ture. It is not possible to determine invalid conflict rela­
tions domain independently for (nonmonotonic) produc­
t ion systems bui l t using OPS5-like languages (this is in
contrast to monotonic production systems using proposi-
t ional formulae, in which it is possible to define and iden­
t i fy confl ict ing productions domain-independently ('if p
then q' and ' i f p then N O T q') through syntactic anal­
ysis). Besides the presence of invalid conflict relations,
the absence of val id conflict relations is also a cause of
major concern to the knowledge engineer debugging a
product ion system. We define a production system to
be in error if it contains invalid conflict relations or does
not contain val id conflict relations. Our contention is
that if there are errors in a toy system (solution to the
monkey and banana problem) of around 24 productions,
the l ikel ihood of errors in any real-world system of 2500
productions or more is much higher. Hence, a systematic
compile-time analysis is much in place.

Like ly- to-act ivate Rela t ion :
A likely-to-activate relation is said to exist from a pro­

duct ion, p to a product ion, q (q not necessarily different

Discussion : Likely-to-activate relation exists f rom a pro­
duction, p to a product ion, q iff, the Resultant-Set of p,
Rp, and the Activating-Set of q, Aq , have common ele­
ments. In other words, the execution of p can result in
a fact-base state, such that , that fact-base state satis­
fies the antecedent-part of q. This relat ion is denoted by
'p. l ta.q' (l ta as an acronym for l ikely-to-activate). The
process of finding a solution to a problem using produc­
tion system model involves finding a path (the ordered
set of likely-to-activate relations) f rom the in i t ia l fact-
base state to the desired goal fact-base state. One of
the major concerns of a knowledge engineer dur ing the
process of debugging is to find the invalid paths (or in ­
valid likely-to- activate relations) taken by the system.
Since adhoc testing cannot reveal the presence of al l the
invalid likely-to-activate relations, a systematic compile-
time analysis is required. As w i th the conflict relations,
what likely-to-activate relations are valid and what are
not is a domain dependent feature. Besides the pres­
ence of invalid likely-to-activate relations, the absence
of valid likely-to-activate relations also reflect errors. We
define a production system to be in error if it contains in­
valid likely-to-activate relations or does not contain valid
likely-to-activate relations.

Dead-end Product ions :
A production, p, is said to be a dead-end product ion,

iff

action;
Discussion : A production, p is said to be a dead-end pro­
duction iff, p does not have an l ta relat ion to any other
production, q, in the production-base and the action-
part of p does not include an 'ha l t ' action. Whi le testing
OPS5 applications, the knowledge engineer sometimes
comes across a situation in which the execution of a pro­
duction causes the conflict-set to be empty in the next
cycle. Such situations are termed as dead-end situations
and the productions that cause such situations are called
dead-end productions. Since adhoc testing may not re­
veal al l the dead-end situations, a compile-time analysis
is needed.

The above definit ion of dead-end product ion is a weak
definit ion. Productions satisfying the above definit ion
are definitely dead-end productions. A product ion, p,
not satisfying that definit ion can also be dead-end pro­
ductions, if there are one or more states in Rp not be-
longing to Aq, for any other product ion, q.

We can define a production to be a pseudo-dead end
production if its action-part includes an 'ha l t ' action and
it has atleast one l ta relation to another product ion.

Prakash, Subrahmanian, and Mahabala 5

Discussion : A production, p, is said to be an impos­
sible production, iflf 'the Activating-Set of p is empty'
or 'p is not a start production and no other production
in the production-base has an Ita relation w i th p'. The
Activating-Set of any production wi l l be empty when the
set of conditions in the antecedent-part of p are either
logically or semantically inconsistent. Impossible pro­
ductions never get instantiated into the conflict-set and
are difficult to be detected by an adhoc testing method.

6 Computat ional Feasibil ity
The computational feasibility of finding the relations
and the properties (described in Section 5) of a pro­
duction depends on the nature of predicates that can
be used in the antecedent and action-parts of produc­
tions. From a study of the BNF description of the syn­
tax of OPS5 language given in [Brownston 85], we have
the following information. Predicates that can be used
in the antecedent-part are of two types : (X i .R.k) or
(X i .R .X j) where X i, X j are attributes of objects declared
by 'l iteralise' commands; R is one of the ordinal relations;
R G { = , < > , < , < , > , > } ; k is a constant (string,
integer or real depending on X i) .
Predicates that can be used in the action-part are of three
types : (Xi = k) , (Xi = Xy) , or (Xi = exp) where
X, , Xy, and k are the same as above and exp is any
arithmetic expression.

Assumpt ions :
We make an assumption that the arithmetic expres­

sions that can appear in the predicates of action-part are
linear arithmetic expressions (that is, they do not involve
non-linear expressions like (X i , *X i) or (X i ,*X j*Xk*) etc.).
This assumption is fairly reasonable for two reasons : [i]
many AI applications involve mostly symbolic reasoning
rather than evaluating non-linear arithmetic expressions;
[ii] through this assumption, the divide and conquer prin­
ciple is used and the systems that involve predicates with
only linear expressions are given an effective procedure
for compile-time analysis. We also assume that for each
attr ibute of every object declared by the literalise com­
mand, the range of values the attr ibute can take are fi­
nite. This assumption is realistic for many real world
problems. We also like to note here that

* boolean constants, " t rue" and "false" can be encoded
as integers 1 and 0 respectively;

* symbolic constants can be sorted in lexicographic
order and mapped onto the natural numbers; and

* boolean/symbolic variables can be treated as integer
variables.
Based on the above assumptions, the problem of finding
the relations and the properties of productions reduces
to the problem of finding whether there exists a feasi­
ble solution to a system of linear inequalities and equali­
ties w i th integer variables. This is a known and solvable
problem. We use the algorithm given in [Biswas87] that
exploits the simplicity of the predicates. [Biswas87] of-
fers a polynomial-time algorithm to find the feasibility
if all the inequalities and equalities are 'simple' (please
refer to [Biswas87] for the definition of 'simple' inequali-
ties and equalities). We have observed in analysing pro-

to type applications that most often the antecedent and
action-parts of productions contain 'simple' inequalities
and equalities.

7 Implementa t ion of S V E P O A

We have implemented our methodology in common LISP
on MicroVaxII workstation. This program, called SVE­
POA (stands for Systematic VErif ication Program for
0PS5-based Applications) has the following two main
features :

1] Interactive Analysis Facility
[2] Incremental Analysis Facility

In teract ive Analys is Fac i l i ty : We observe that
knowledge engineers often t ry to structure and segment
an OPS5-based application and hence it may not be re­
quired to compare roductions in one segment w i th pro­
ductions in other segments exhaustively. The Interac­
tive Facility offers the knowledge engineer a method of
choosing which properties (or relations) to discover in (or
across) what segments of productions.

Incrementa l Analysis Fac i l i ty : When SVEPOA
is init ial ly run, it stores the set of relations and properties
discovered. In the subsequent analysis, SVEPOA uses
and updates the set of relations and properties pertaining
to an application.

The main subprograms of SVEPOA are find-
conflict-relation, find-Ita-relation, find-if-dead-end, find-
if-impossible and find-feasibility. The functions of SVE­
POA and its subprograms are described in the following
procedures. A trace of the procedures for an example is
given in Appendix-A.

procedure S V E P O A ;
1. Ascertain the objects, their attributes and the

range(s) of values for each attr ibute;
2. Sort the symbolic constants in lexicographic order

and map them onto the natural numbers;
3. Ascertain the production(s) and the property or

relation to be discovered; call the appropriate subproce-
dure;

4. Repeat step 3 unt i l no more analysis is required;

subprocedure find-conflict-relation(p,q);
1. Find Cc, the conjunction of the antecedent-parts of

p (Cp) and q (Cq); i.e Cc = (Cp) (Cq);
2. Call subprocedure find-feasibility (Cc) to find out

if there exists a feasible solution to Cc;
3. If Cc has a feasible solution then (p.conflict.q) is

true else not;

subprocedure find-lta-relation(p,q);
Let Cp, Dp and Cq be the antecedent-part of p, action-

part of p and antecedent-part of q respectively;
1. Convert each modify action in Dp into an equivalent

combination of remove and make actions;
2. For each remove action, r, in Dp, delete the clause

referenced by r from Cp;
3. For each make action, m, in Dp, add a clause con­

taining the ' = ' predicates of m to Cp;
4. Cc = (Cp) (Cq);

5. Cal l subprocedure find-feasibility(Cc);
6. If Cc has a feasible solution then (p.lta.q) is true

eke not ;

subprocedure find-if-dead-end(p);
1. F ind if the action-part of p (Dp) contains an 'halt'

action;
2. If 'hal t ' action is not included in Dp then find

out if there is atleast one other production, q, such that
(p.lta.q) is t rue;

3. If 'ha l t ' action is included in Dp then find out
whether p is a pseudo-dead-end production; this is done
by finding out if there is atleast one other production, q,
such that (p.lta.q) is t rue;

subprocedure find-if-impossible(p);
1. F ind out whether (A p or not by testing if

the antecedent-part of p (Cp) has a feasible solution;
2 . I f (A p t h e n f i n d out whether ((A p S ini-)

or not; Sini is expressed as a conjunction of input
predicates describing the possible in i t ia l values of the at­
tr ibutes of the objects; the attr ibutes not appearing in
S t n i) can take any value f rom their ranges;

3. If ((A p S t n i) then find out if there is
atleast one other product ion such that (q.lta.p) is true;

subprocedure find-feasibility (Cc);
1. Conver the conditions in the clauses of Cc into the

form (object, at t r ibute R constant) or (object, attr ibute R
variable) where R is the ordinal relation;

2. Each dist inct object.attr ibute is treated as a vari­
able while using Biswas algori thm; A l l symbolic con­
stants are replaced by the corresponding natural num­
bers;

3. App ly DeMorgan's law onto each negated clause in
Cc; for example, a negated clause of the form

-((phys-object.on = < o l >) (phys-object.weight =
heavy))

is converted to :
((phys-object.on < > < o l >) (phys-object.weight < >

heavy))
4. Each ' < > ' condit ion in Cc is expressed as a dis­

junct ion of '<' , ' > ' relations;
5. Cc is converted into an equivalent disjunctive nor­

mal form expression; each disjunct, t, and the range
of values of the unresolved variables (variables equated
to constants are resolved variables) are passed onto the
Biswas algor i thm to find if t has a feasible solution;

8 Conclusions

Since adhoc testing cannot reveal all errors, a compile-
t ime analysis to systematically verify AI applications is
very much needed. We presented here a methodology
that analyzes OPS5-based applications at compile-time
and detects certain relations and properties of produc­
tions. Discovering the presence and absence of these rela­
tions and properties helps the knowledge engineer to find
errors in the antecedent and action-parts of productions.
Our methodology and the tool have the advantages as
well as the disadvantages of a domain-independent anal­
ysis. Being domain-independent, our tool does not re­

quire formal specifications of the application. Asking for
formal specifications of AI applications is often not only
difficult but also l imits the applicabil i ty of a tool to some
specific classes of problems. Our tool , being domain-
independent, can be used for analyzing any OPS5-based
AI application. However, it has the l imi ta t ion of being
able to only point out possible errors but not definite
errors. Abo, we don't claim that the analysis done by
our tool is complete. There may be other relations and
properties of productions, detecting which w i l l be useful
during verification.

A c k n o w l e d g m e n t s : We express our sincere thanks
to Richard Christie, Petter Stoa, Prof.S.N.Talukdar and
Prof.C.R.Muthukrishnan for the useful discussions w i th
them.

Appendix-A
We show the trace of the important steps of SVEPOA to
find the conflict relation between productions of Exam­
ple. 1 of Section 5.

Prakash, Subrahmanian, a n d Mahaba la 7

References :

[Biswas87] : Biswas,S. and Rajaraman,V. , 'An Algo-
r i thm to Decide Feasibility of Linear Integer Constraints
Occurring in Decision Tables', IEEE Tran, on Software
Engg., vol SE-13:1340-1347, Dec,1987

[Brownston85] : Brownston,L., Farrell,R., Kant,E.,
Martin,N., 'Programming Expert Systems in OPS5',
Addison-Wesley Pub., 1985

[Forgy81] : Forgy,C.L., 'OPS5 User's Manual', Carnegie-
Mellon D niv., CMU-CS-81-135, July 1981

[Ginsberg88] : Ginsberg,A., 'Knowledge-Base Reduction
: A new Approach to Checking Knowledge Bases for In­
consistency Redundancy', Proc. of A A A I Conf.,:585-
589, August, 1988, St Paul, Minnasota, USA

[Mahabala87] : Mahabala,H.N., Ravi Prakash,G., et al,
'Expert System for Selection of D r i l l : A Case Study for
use of Metaknowledge and Consistency Checks', Proc. of

the II Int. conf. on Appln. of AI in Engg.', Boston, pp
371-386, 1987

[McDermott82] : McDermott,J., ' R l : A Rule-based
Configurer of Computer Systems', AI Journal, vol.19,
Sept., 1982

[Newell72]: Newell,A. and Simon,H.A., 'Human Problem
Solving', Prentice-Hall Inc., 1972

[Nguyen85] : Nguyen, T. et. a l , 'Checking Expert Sys­
tem Knowledge Base for Consistency and Completeness',
Proc. of IJCAI-85 : 375-378, 1985

