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A b s t r a c t 

We describe a decision-theoretic method that an au­
tonomous agent can use to model multiagent situ­
ations and behave rationally based on its model. 
Our approach, which we call the Recursive Modeling 
Method, explicit ly accounts for the recursive nature 
of multiagent reasoning. Our method lets an agent 
recursively model another agent's decisions based 
on probabilistic views of how that agent perceives 
the multiagent si tuat ion, which in turn are derived 
from hypothesizing how that other agent perceives 
the in i t ia l agent's possible decisions, and so on. Fur­
ther, we show how the possibility of multiple inter­
actions can affect the decisions of agents, allowing 
cooperative behavior to emerge as a rational choice 
of selfish agents that otherwise might behave unco-
operatively. 

Introduction 
A central issue in distr ibuted artificial intelligence (DAI ) 
is how to get autonomous intelligent agents, each of 
whom has its own goals and preferences, to model each 
other and coordinate their activities for their mutual 
benefit. This paper describes a recursive method that 
agents can use to model each other in order to estimate 
expected uti l i t ies more completely in multiagent situa­
tions, and thus to make rational and coordinated de­
cisions. Our method works by lett ing agents explicitly 
reason about how the collective actions of agents can af­
fect the uti l i t ies of individual actions. Thus, to choose 
an action that maximizes its individual ut i l i ty, an agent 
should predict the actions of others. The fact that other 
agents are likely to take the same approach gives rise to 
the recursive nesting of models. 

Our Recursive Modeling Method ( R M M ) represents 
this recursion explicit ly to allow an agent to arrive, 
wi th in the bounds of its processing, on the most rational 
decision in the multiagent environment. R M M consid­
ers all of the available information an agent might have 
about others and summarizes the possible uncertainties 
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as a set of probabil i ty distributions. This representa­
tion can reflect the uncertainty as to the other agents' 
intentions, abilities, long-term goals, and sensing capa­
bilities. Furthermore, on a deeper level of the recursion, 
the agents may have information on how other agents 
are likely to view them, how they themselves think they 
are viewed, and so on. 

Our work, thus, extends other work [Rosenschein and 
Breese, 1989] that uses a game theoretic approach to co-
ordinating interactions wi thout communication. That 
work unrealistically assumes that agents have ful l in-
formation about each other's choices, preferences, and 
perceptions. Other research efforts in D A I use similar 
formalisms to our work, but avoid the recursive issues 
that we are studying by allowing agents to communicate 
about their beliefs, goals, and preferences, in order to 
make explicit deals [Werner, 1989; Zlotkin and Rosen­
schein, 1989; Zlotkin and Rosenschein, 1990]. 

Research in cooperation indicates that agents can con­
verge on cooperative strategies during repeated interac­
tions without ever explicit ly communicating [Axelrod, 
1984]. The most well-known example is the Prisoner's 
Dilemma game, where a rational "one-shot" strategy is 
to defect, but where a "Ti t - for-Tat" strategy is best 
for repeated interactions. Following the methodology of 
metagames [Howard, 1966; Reagade, 1987], the goal of 
our work is to develop a formal, algorithmic model that 
captures how cooperative strategies can be derived by 
self-interested, rational agents. 

In the remainder of this paper, we begin by outl ining 
the basic concept of a payoff matr ix from decision and 
game theories, and then we define the R M M and illus­
trate it w i th an example. Subsequently, we show how 
the possibility of mult iple interactions changes the char­
acter of games, and il lustrate this using the Prisoner's 
Dilemma problem. We revisit the earlier example and 
apply the multiple interactions concept wi th in R M M . 
We conclude by summarizing our results and current re­
search directions. 

Es tab l i sh ing Payoffs 
A decision-theoretic approach to multiagent interaction 
requires that an agent view its encounters with other 
agents in terms of possible jo in t actions and their ut i l ­
ities, usually assembled in the form of a payoff matr ix. 
We have developed a system, called the Rational Rea-
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soning System (RRS) [Gmytrasiewicz et al., 1991a] that 
determines plans' uti l it ies [Jackobs and Kiefer, 1973] to 
automatically generate the information for a payoff mar 
t r ix . For brevity, we wi l l not describe the details of RRS, 
beyond saying that it combines decision-theoretic tech­
niques wi th hierarchical planning to generate alterna-
tive decisions (plans of action), and uses time-dependent 
calculations of ut i l i ty to generate the expected payoffs. 
These calculations involve formal notions of agents' pref-
erences and the ways specific tasks in the environment 
impact these preferences. 

The Recursive Mode l i ng M e t h o d 
The Recursive Modeling Method (RMM) seeks to in­
clude all the information an agent might have about 
the other agents and can be viewed essentially as an 
extension of case analysis [Luce and Raiffa, 1957] to 
situations in which other players' payoffs and alterna­
tives are uncertain. This technique attempts to put 
oneself in the shoes of the other player and to guess 
what he wi l l prefer to do. Our approach thus follows, 
and extends to deeper levels of recursion, the main idea 
of a hypergame method [Bennett and Huxham, 1982; 
Vane and Lehner, 1990]. Our principal contribution is 
a complete and rigorous formalism that, unlike similar 
work [Cohen and Levesque, 1990; Rosenschein, 1988], 
directly relates the recursive levels of the agents' knowl­
edge to the util it ies of their actions and thus to the in­
tentions of rational agents [Dennett, 1986]. 

Example Multigent Interaction 
To put our description in concrete terms, consider the 
example scenario of two interacting agents (Figure 1). 
The environment has agents of type A and B. Agents of 
type A can perceive all of the goals in the environment, 
while B agents can only see goals of type G l . Moreover, 
A agents are aware of the two types of agents, A and 
B, while B agents are aware only of their type. Further, 
A agents can perform all of the types of goals, while B 
agents are equipped only for Gl goals. The ut i l i ty of a 
Gl goal is equal to 2 for both types of agents, while the 
ut i l i ty of a G2 goal is 5 for A agents and 0 for B agents. 
The cost of an attempt by either agent to achieve the 
farther goal is 2, and the cost of attempting the closer 
goal is 1. For simplicity, we assume that the agents can 
achieve only one goal. 

Let us focus our attention on R l , which is of type A. 
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Our preliminary investigation of the general conver­
gence properties of R M M suggests that, if the method 
does not yield a unique intentional probabil ity distribu­
tion over the other agents' options (as in the previous 
example), it wil l converge on a finite set of alternative 
distributions, which can then be combined. The finite-
ness of this set is essentially due to the finite knowledge 
base of the agents, and, in particular, to the fact that 
they cannot have explicit ly given knowledge about what 
other agents think about others thinking about others 
thinking ..., to infinite levels. It is, in fact, likely that 
the recursive hierarchy of payoff matrices wil l start be­
coming uniform down from level 4 or 5. That , in turn, 
permits agents to determine the finite set of intentional 
probabil i ty distributions of the others at relatively high 
levels of the hierarchy. 



The assumption of intentionality, as formalized in 
equation (2), can give rise to various probabil i ty distr i­
butions over agents' options, depending on how strongly 
they are assumed to be coupled to the probabilities of 
others' options. In the examples above, we followed the 
most straightforward, and possibly the most risky, path 
of assigning an equal, nonzero probabil ity to the options 
wi th the highest expected payoff, and zero to all of the 
rest. Another cautious extreme would be to assign a 
probabil i ty of zero to all of the dominated options, and 
use the equiprobability assumption for the rest. The in­
fluence of these and other ways of interpreting equation 
(2) are under study. 

M u l t i p l e Interact ions 
As shown in the previous section, selfish, rational agents 
employing R M M may fail to exhibit cooperative behav­
iors in one-time encounters. In this section, we present 
a methodology based on metagame analysis [Howard, 
1966] that, when integrated wi th the R M M , makes 
agents more cooperative when they might interact re­
peatedly. 

To introduce our methodology, we temporari ly aban­
don our scenario of Figure 1. Instead, we use the Pris-
oner's Dilemma game, as a well known, and very simple 
example of a game in which repeated interactions lead 
to cooperation. We then revisit the example of Figure 1. 

Repeated Prisoner's Dilemma 

Most realistic problem domains involve a finite num­
ber of agents that periodically interact, so agents that 
have interacted in the past could encounter each other 

repeatedly. A strategy that is rational for one interac­
tion might be counterproductive in repetitive situations 
where agents can consider their prior experiences in de­
ciding on their actions. 

The simplest i l lustration is the Prisoner's Dilemma 
(PD), wi th this payoff matr ix : 

If player I can be sure that he wi l l never play wi th 
player II again, he would note that the payoffs of his 
D move dominate the payoffs of C. That is, no matter 
what player II does, player I is better off w i th D. Since 
the game is symmetric, both players choose to defect 
and a jo in t move D / d , w i th a payoff of 1 to each player, 
results. The paradox of PD is that , if both players were 
irrat ional, they could cooperate and each receive a payoff 
of 3. Thus, in a one-time interaction, a paradoxical, 
noncooperative solution results. 

It has been previously demonstrated that, for repeated 
Prisoner's Dilemma, the one-time strategy is a poor 
choice [Axelrod, 1984; Smith, 1984]. In a population of 
alternative strategies that compete w i th each other over 
multiple generations, Axelrod experimentally discovered 
that a "Ti t - for-Tat" strategy, in which a player is predis­
posed to cooperate but wi l l defect against a player who 
defected in their previous encounter, is the "f i t test" for 
PD. 

We derive this result more rigorously using metagame 
theory [Howard, 1966; Reagade, 1987]. Let us define a 
strategy, or a met amove, of player I as an ini t ia l move 
to be made complemented by a mapping from the set 
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of moves of his opponent {c, d } , to the set of moves 
of player I { C , D } . A strategy wi l l be understood as 
a response of player I to the previous move of player 
I I , fol lowing the specified first move. The strategies of 
player I, S1 through S8, as generated by RRS, are: 

The first strategy, for instance, instructs the player to 
start w i th D and then play D no matter what the op­
ponent d id in their most recent encounter. The sixth 
strategy, which is the "T i t - fo r -Ta t " strategy, calls for an 
opening w i t h C and responding w i t h C to c and w i th D 
to d. 

The strategies of the other player are defined sym­
metrical ly. The payoffs of the players exercising these 
strategies in the PD game played four times can be de­
picted in the meta-PD mat r i x shown in Figure 3. Using 
standard game-theoretic techniques it can be determined 
that strategy S6 ( "T i t - f o r -Ta t " ) , is a dominant, equil ib­
r ium strategy for each of the players in the meta-PD in 
this case. 

The metagame approach can be applied in R M M by 
replacing the original payoff mat r ix by a metamatr ix 
w i th strategies instead of indiv idual moves, and wi th 
payoffs reflecting the accumulation of the outcomes over 
the expected number of interactions. For the case of 
the meta-PD game mat r i x above (and for other meta-
PD games w i t h the expected number of interactions over 
four) , R M M chooses "T i t - fo r -Ta t " strategy as a rat ional 
one. 

Repet i t ion in Example Interact ion 
Unlike the pure metagame approach, however, R M M can 
deal w i t h more realistic situations in which options and 
payoffs of other players are uncertain. Returning to our 
robotic example of a one-time interact ion (Figure 1), re­
call that we introduced a variat ion in which R1 thinks 

that R2 wi l l correctly identify Rl as type A w i t h a prob­
abi l i ty 0.9. Unlike the equiprobable case where Rl de­
cides to pursue G1, this skewed probabil i ty leads it to 
choose G2. As we mentioned, it can also be called an 
uncooperative opt ion, in the sense that it treats R2 as 
i f i t were not there, and that R2 would prefer that Rl 
choose G l , if i t were either type A or B. Of course, Rl 
would then welcome reciprocation by R2's choice of G2, 
if i t happens to be type A. 

We have applied the metagame approach for the re­
peated case of the above interaction using R M M . The 
hierarchy of matrices depicting the accumulated payoffs 
for all of the possible strategies in the above example 
is too large to include here, so we just report our end 
result. The best strategy of R l , as R M M finds, is: ( G l 
(G2 ( G l S)) ( G l (G2)) S). This strategy directs Rl to 
choose G1 ini t ia l ly, rather than the uncooperative choice 
of G2. In the subsequent interactions Rl wi l l reciprocate 
w i th Gl in response to G2, the cooperative alternative 
of R2. R2's uncooperative choices, Gl and S, wi l l cause 
Rl to pursue G2. Rl w i l l never choose S. 

R M M reaches this result as a stable outcome for an 
expected number of interactions over three. For 2 or 3 
interactions, R M M stabilizes and gives equal preference 
to three strategies ( G l ( G l ( G l G2)) (G2 (S)) S), ( G l 
(G2 ( G l S)) ( G l (G2)) S), and ( G l (S ( G l ) ) ( G l (G2)) 
(G2 (S))). For a one t ime interact ion, the result mirrors 
the one obtained previously, direct ing Rl to pursue G2. 

The result of R M M applied to R2 in the above sce­
nario also provides the cooperative strategy for i t , if it 
is of type A. Its behavior for one-time interaction was 
to choose S. For mult ip le interactions, the choice strat­
egy for R2 is a cooperative strategy of start ing wi th G2 
and always responding w i th G2 to R1's G1. Tha t means 
that Rl wi l l not be disappointed when counting on R2 
to pursue G2 and cooperation between the two agents 
wi l l result. 

Conc lus ions a n d F u r t h e r Research 
We have presented a powerful method, called the Re­
cursive Model ing Method, that we believe rat ional, 
autonomous agents should use to interact w i th other 
agents. R M M uses all of the available information the 
agents may have about each other and themselves, mod­
eling the uncertainties as probabi l i ty distr ibut ions. It 
expl ici t ly accounts for the recursive nesting of beliefs 
evident in agents' encounters, in which their decisions 
depend on what they expect others to do. R M M can 
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also easily be extended to account for the possib i l i ty of 
repet i t ive in teract ions. We have shown how th is fact 
influences the agents' wi l l ingness to exh ib i t cooperat ive 
behaviors toward each other . 

There are a number of issues regarding R M M and i ts 
extension to repet i t ive in teract ions t h a t remain to be i n ­
vest igated. They include the choice of the level of the 
elaborat ion of plans t ha t are to be inc luded as opt ions in 
the scheme and i ts cost and benefi t characterist ics. For 
repet i t ive interact ions, the inf luence of previous encoun­
ters on predict ions for the fu tu re has to be addressed 
more rigorously. T h e po ten t ia l computa t iona l burden 
of examin ing al l of the possible strategies, par t i cu la r ly 
as the number of agents grows larger, may become an 
obstacle in app ly ing our me thod , and ways to remedy 
this prob lem tha t involve the concept of "bounded ra­
t i ona l i t y " in the agents are being invest igated. We be­
lieve tha t R M M also offers an excellent too l for s tudy ing 
communica t ion [Gmytras iewicz et al, 1991b]. F inal ly , 
our me thod uses an in ten t iona l approach normat ive ly 
assuming t h a t other agents w i l l do wha t seems to be ra­
t iona l for t h e m . To deal w i t h real ist ic s i tuat ions where 
agents can upda te models of each other th rough obser­
vat ion and p lan recogn i t ion , we w i l l complement R M M 
w i t h an empi r ica l me thod [Gmytras iewicz, 1991]. 
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