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Abstract

We describe a decision-theoretic method that an au-
tonomous agent can use to model multiagent situ-
ations and behave rationally based on its model.
Our approach, which we call the Recursive Modeling
Method, explicitly accounts for the recursive nature
of multiagent reasoning. Our method lets an agent
recursively model another agent's decisions based
on probabilistic views of how that agent perceives
the multiagent situation, which in turn are derived
from hypothesizing how that other agent perceives
the initial agent's possible decisions, and so on. Fur-
ther, we show how the possibility of multiple inter-
actions can affect the decisions of agents, allowing
cooperative behavior to emerge as a rational choice
of selfish agents that otherwise might behave unco-
operatively.

Introduction

A central issue in distributed artificial intelligence (DAI)
is how to get autonomous intelligent agents, each of
whom has its own goals and preferences, to model each
other and coordinate their activities for their mutual
benefit. This paper describes a recursive method that
agents can use to model each other in order to estimate
expected utilities more completely in multiagent situa-
tions, and thus to make rational and coordinated de-
cisions. Our method works by letting agents explicitly
reason about how the collective actions of agents can af-
fect the utilities of individual actions. Thus, to choose
an action that maximizes its individual utility, an agent
should predict the actions of others. The fact that other
agents are likely to take the same approach gives rise to
the recursive nesting of models.

Our Recursive Modeling Method (RMM) represents
this recursion explicitly to allow an agent to arrive,
within the bounds of its processing, on the most rational
decision in the multiagent environment. RMM consid-
ers all of the available information an agent might have
about others and summarizes the possible uncertainties
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as a set of probability distributions. This representa-
tion can reflect the uncertainty as to the other agents'
Intentions, abilities, long-term goals, and sensing capa-
bilities. Furthermore, on a deeper level of the recursion,
the agents may have information on how other agents
are likely to view them, how they themselves think they
are viewed, and so on.

Our work, thus, extends other work [Rosenschein and
Breese, 1989] that uses a game theoretic approach to co-
ordinating interactions without communication. That
work unrealistically assumes that agents have full in-
formation about each other's choices, preferences, and
perceptions. Other research efforts in DAI use similar
formalisms to our work, but avoid the recursive issues
that we are studying by allowing agents to communicate
about their beliefs, goals, and preferences, in order to
make explicit deals [Werner, 1989; Zlotkin and Rosen-
schein, 1989; Zlotkin and Rosenschein, 1990].

Research in cooperation indicates that agents can con-
verge on cooperative strategies during repeated interac-
tions without ever explicitly communicating [Axelrod,
1984]. The most well-known example is the Prisoner's
Dilemma game, where a rational "one-shot" strategy is
to defect, but where a "Tit-for-Tat" strategy is best
for repeated interactions. Following the methodology of
metagames [Howard, 1966; Reagade, 1987], the goal of
our work is to develop a formal, algorithmic model that
captures how cooperative strategies can be derived by
self-interested, rational agents.

In the remainder of this paper, we begin by outlining
the basic concept of a payoff matrix from decision and
game theories, and then we define the RMM and illus-
trate it with an example. Subsequently, we show how
the possibility of multiple interactions changes the char-
acter of games, and illustrate this using the Prisoner's
Dilemma problem. We revisit the earlier example and
apply the multiple interactions concept within RMM.
We conclude by summarizing our results and current re-
search directions.

Establishing Payoffs

A decision-theoretic approach to multiagent interaction
requires that an agent view its encounters with other
agents in terms of possible joint actions and their util-
ities, usually assembled in the form of a payoff matrix.
We have developed a system, called the Rational Rea-
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Figure 1: Example Scenario of Interacting Agents

soning System (RRS) [Gmytrasiewicz et al., 1991a] that
determines plans' utilities [Jackobs and Kiefer, 1973] to
automatically generate the information for a payoff mar
trix. For brevity, we will not describe the details of RRS,
beyond saying that it combines decision-theoretic tech-
niques with hierarchical planning to generate alterna-
tive decisions (plans of action), and uses time-dependent
calculations of utility to generate the expected payoffs.
These calculations involve formal notions of agents' pref-
erences and the ways specific tasks in the environment
impact these preferences.

The Recursive Modeling Method

The Recursive Modeling Method (RMM) seeks to in-
clude all the information an agent might have about
the other agents and can be viewed essentially as an
extension of case analysis [Luce and Raiffa, 1957] to
situations in which other players' payoffs and alterna-
tives are uncertain. This technique attempts to put
oneself in the shoes of the other player and to guess
what he will prefer to do. Our approach thus follows,
and extends to deeper levels of recursion, the main idea
of a hypergame method [Bennett and Huxham, 1982;
Vane and Lehner, 1990]. Our principal contribution is
a complete and rigorous formalism that, unlike similar
work [Cohen and Levesque, 1990; Rosenschein, 1988],
directly relates the recursive levels of the agents' knowl-
edge to the utilities of their actions and thus to the in-
tentions of rational agents [Dennett, 1980].

Example Multigent Interaction

To put our description in concrete terms, consider the
example scenario of two interacting agents (Figure 1).
The environment has agents of type A and B. Agents of
type A can perceive all of the goals in the environment,
while B agents can only see goals of type GI. Moreover,
A agents are aware of the two types of agents, A and
B, while B agents are aware only of their type. Further,
A agents can perform all of the types of goals, while B
agents are equipped only for Gl goals. The utility of a
Gl goal is equal to 2 for both types of agents, while the
utility of a G2 goal is 5 for A agents and 0 for B agents.
The cost of an attempt by either agent to achieve the
farther goal is 2, and the cost of attempting the closer
goal is 1. For simplicity, we assume that the agents can
achieve only one goal.

Let us focus our attention on RI, which is of type A.

We see R1 as having three options: pursue G1, pursue
G2, or do something (including nothing) else (G1, G2
and S, for short). Using the above information, Rl’s
payofis are computed as the difference between the total
worth of all the performed goals and the cost of achieving
its own goal. For example, if R1 pursues G2 and R2
pursues G1, then the payoff for R1 is the total worth
of the achieved goals minus its own cost: (245) - 2 =
5. These payoffs are assembled in the following payoff
matrix:
R2

Gl G2 S

Gl 1 6 1

R1 G2 5 3 3
S 2 5 0

This matrix represents R1’s utilities for its possible de-
cisions (G1, G2, or S) depending on R2’s decisions (G1,
G2, or S). These utilities are described as the payoffs of
R1 given the joint moves of both agents.

R1 may reasonably assume that R2 is trying to max-
imize its own payofl (see also [Dennett, 1986)), but the
difficulty in predicting R2’s actions is that R1 is uncer-
tain as to R2’s type. R1 thus does not know whether R2
will see, value, or pursue G2. In RMM, these uncertain-
ties are represented 1n terms of probability distributions.
Furthermore, R2’s actions are likely to depend on how
R2 views R1. R1 will thus form alternative models of
itself corresponding to how it thinks R2 might perceive
1t.

We will now proceed to introduce the general form
of RMM that captures the intuitions mentioned above.
We will come back to the example scenario depicted In
Figure 1 and solve it subsequently.

The General Form of RMM

To generalize over an arbitrary number of agents, let us
assume that R1 is dealing with (N-1) other agents, R2,
..., RN. The utility of the m-th element of R1’s set of

alternative actions can be evaluated as:
R1 _ R1 R1 R1
Up = Z“'Z{pR:!—k“*pRN-lum,k,...,l} (1)
k I

where pﬁ}_ . Tepresents the probability R1 assigns to Ri’s
choosing to act on the k-th element of Ri’s set of op-
tions, which we will refer to as an intentional probabil-
ity. uﬁl’k'_”’, 1s R1’s payoff (utility) as an element of the
N-dimensional game matrix.

What makes the situation recursive is the fact that R1
may attempt to determine the intentional probabilities
pR!_. by guessing how the game looks from Ri’s point
of view. Rl models agent Ri using probability distri-

butions pf!, pfll and pff},, which we will call model-

ing probabilities. pj! summarizes R1’s knowledge about
Ri’s preferences (the goals it will value). p%! summarizes
R1’s knowledge about Ri’s abilities, given its preferences.
pi. summarizes R1’s knowledge about how Ri sees the
world (content of Ri’s world model), given its abilities.
In every case of Ri having various preferences, abilities
and world models, R1 can assume that Ri is rational
(assumption of intentionality, see also [Dennett, 1986;

Rosenschein, 1988]) and consider the probability that
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the k-th element of Ri’s set of options is of the highest
utility to Ri. R1 can then use the modeling probabilities
to compute pg}_k as the following probabilistic mixture:

d_Pi 2oAi owi {Pgal P Py X
Prob(Mazy:(up™) = uy ™)} (2)

Rl _
PRi-x —

where uf,l'm 18 the utility R1 estimates that Ri will as-
sign to its option k’, and i8 computed as

R1,Ri _ R1,Ri _R1,Ri R1,Ri
up —'z---Z{Pm—r""PRN-:“J:',:-,..'.,.} (3)
r |

The uf,l’ff, 1s how R1 sees Ri’s payoffs in the N-

dimensional game matrix. The probabilities R1 thinks

Ri assigns to agent Rn acting on its o-th option pg,l;f :,

R1,Ri.Rn

Rv—-w and

can in turn be expressed in terms of p
R1,Ri,Rn

o' w.. andsoon.

Solving the Example Interaction

Given the payoff matrix computed before, R1 can com-
pute the expected utilities of each of its alternatives
based on equation (1) as follows:

R R1 R1
“G} = Pra-G1 + 6PpR2-G2 + Pﬁ%-—s

R R R R
Uge = 5pm_c1 +3Pr2—G2+3PR2-s (4)
udl = 2pR-c1 +5PR-c2

where pRl_, denotes the probability that R1 assigns to
R2’s intending to act on its k-th option. R1 can stop
the computation without recursion, in which case it as-
sumes an equiprobable intentional probability distribu-
tion pRz = (PR2-61 PR3-G2 PR2-s) = (1/3,1/3,1/3)
(following the entropy maximization principle [Neapoli-
tan, 1990?). Based on this distribution with zero levels of
recursion, R1 would choose G2, which we can summarize
as:

Decision 0: R1° — G2.

Alternatively, R1 could determine the values of pf2_,
using equations (2) and (3). Plunging deeper into the
recursion, R1 has to look at the game from R2’s point

of view. R2 can be either type A or B, and the corre-
sponding payoff matrices are:

R1
Gl G2 S
Gl O o 0
R2(A) G2 6 4 4
S 2 o 0
R1
Gl S
R2(B) GI 0 O
S 2 0
The utilities of R2’s options, if it is of type A, are:
ug)'’© = 5ppylan
g = 6Pmic +4Pmia+4Pmls  (5)
us' = 29m7G + PR an
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If R2 is of type B, the utilities are:

R1L,R2 _ |
f€3! =
R1,R2 _ R1,R2
Ug = 2Pmia (6)

where pﬁi’_ﬁf 1s the probability that R1 thinks R2 1s as-

signing to R1’s acting on the n-th of its alternatives. If
R1’s analysis of the situation were to stop at this point,
R1 would assume an equiprobability distribution over
its own options, as seen by R2, and conclude that R2
will pursue G2 if it 1s A, and S if it is B. Let us as-
sume that R1 does not know whether R2 1s A or B and
thus assigns the probability pﬁ;( A) = 0.5 to the possibil-

ity that R2 is of type A. Here, the probabihity pﬁ( A)

encapsulates all of the modeling probabilities regard-
ing R2’s preferences, abihities and world model. R1 can
now use equation (2) to estimate the intentional prob-
ability distribution over R2’s options G1, G2 and S, as
pRl = 0.5(0,1,0) + 0.5(0,0,1) = (0,.5,.5). In this case,
R’i would estimate the expected utility of 1its own choices
from equation (4) as:

ull = 3.5
ug; = 3 (7)
u?l = 2.5.

We see that R1 will opt for G1 at this first stage of the
recursion. Let us summarize this as:

Decision 1: R1! — G1.

We now go on to the next step of the recursion and
consider how R1 would see itself through R2’s eyes, and
how that would influence R1’s decision.

If R21s A, it will form two possible views of the game
from R1’s perspective, corresponding to R1 being A or
B, respectively:

R2
Gl G2 S
Gt 1 6 1
R1(A) G2 5 3 3
S 2 5 0
R2
Gl S
RI(B) GI 1 1
S 2 0

At this point, using an equiprobability distribution
over R2’s options, R1 would think that R2 would con-
clude that R1 will pursue G2 if it 1s A, and equally likely
Gl or Sif it 1s B. Assuming that R2 would treat R1’s

being A or B as equiprobable (pﬁiiﬁg = 0.5), the result-
ing intentional distribution over Rl’s options G1, G2
and S, would be pﬁi’m = 0.5(0,1,0) 4+ 0.5(.5,0,.5) =

(.25,.5,.25). The expected payoffs of R2, as seen by R1,
can then be computed from equation (5) as:

R1,R2

UG," = OSPringa = 2.5
R1,R2 R1,R2 R1,R2 Rl ,R2

Uso = 6pri_c1 +4PRr1 Go +4PR s =45 (8)
R1,R2 Rl .R2 R1,R2

ug = 2Ppi-G1 tOPR1-G2 =



If R2 18 B, its view of R1 would consist of a single

view, since 1t could only see R1 as type B. R1’s payoff
matrix 1in this case 1s:

R2

Gl S

R1(B) Gl 1 1
S 2 0

In this case, using an equiprobability distribution over
R2’s choices does not give R2 a clue about R1’s choice.
It will use the equiprobability distribution over R1’s op-
tions in equation (6) and compute as follows:

= o
R1,R2 R1,R2
Yo =2Ppmi—c1 = 1 (9)

Thus, R1 will find that R2 will choose G2, if it 1s A,
and S, if it 1s B, to give pﬁ{, = (0, .5,.5). Using equation
(4) again, the expected utilities of R1 are:

ugi = 3.5
ugy = 3 (10)
u?l = 2.5

Thus, at the second stage of the recursion, R1’s conclu-
sion as to i1ts best option 1is:

Decision 2: R1%? — G1.

Let us have a look at the conclusions R1 would reach
at the stages of the recursion considered so far:

Decision 0: R1° — G2.
Decision 1: R1! — G1.
Decision 2: R1? — G1.

Thus, if R1 were to treat R2 as a complete unknown,
as in the zeroth stage, 1t would decide for G2. Going
deeper and considering how R2 may view the situation,
R1’s best option changes to G1. Going even deeper and
seeing himself being analyzed by R2, R1’s best option re-
mains G1, despite R1 being aware that, if R2 were A, it
would incorrectly think that, if R1 were A, R1 would pur-
sue G2! This has a stabilizing effect on the deeper levels
of recursion, and G1 remains R1’s best option (assuming
that R1 treats the modeling probabilities of the agents’
types on deeper levels of the recursion as equiprobable
as well).

The payoff matrices of both players considered in the
above example can be depicted as in Figure 2. The re-
cursion can, in principle, be continued indefinitely, but
usually, for a given problem, going below certain level
does not contribute anything new to the analysis. This
level 1s the one at which the game starts looking the
same from the perspective of the either player. Consider

probabilities pﬁ;( A) and pﬁ;iﬁ";ﬁ " in Figure 2. If they

are equal (R1 sees R2 in the same way as R1 thinks R2
thinks it is being seen by R1), no new information would
be contributed beyond the 4-th level of the recursion (as-

. R2 .
suming that pgiif‘; and pghi";'n L2 are in turn equal,

and so on).

Non-Converging Example Interaction

The fact that the stages of the recursion start looking
very simular from stage to stage does not mean that a
unique probability distribution over the other agents’ op-
tions can be reached in every case. A variation of the
example interaction illustrates this. Imagine that Rl,
being A and quite sure that it looks like A, estimates
the probability of R2’s (if it is A) correctly identifying

R1 as A as being high, say pg;iﬁg = 0.9. The resulting

intentional distribution over R1’s options G1, G2 and S,
as seen by R2 if it is A, would be pfii"™? = (.05,.9, .05).
The calculations in equations (8) and (9) then result in
S being the best option of R2, if it 1s of either type

(pﬁ;‘z = (0,0,1)). This, in turn, would result in the fol-
lowing expected utilities for R1:

Ry
Uy =

u}(g——-B

u?l = 0

R1, in this case, would thus arrive at
Decision 2: R1? — G2.

Were R1 to consider the next level, it would come up
with the probability distribution over R2’s options pf. =

(0,.5,.5) and
Decision 3: R1° — G1.

This instability continues at the deeper levels of recur-
sion with RMM unable to decide whether R2 makes its
choices according to probability distribution (0, .5, .5)
or (0, 0, 1). Our approach to resolving this situation i1s
to apply the principle of indifference to the probability
distributions over R2’s choices. In the above case, the
distributions (0, .5, .5) and (0, 0, 1) are merged with
0.5 weighting factor each, resulting in pRl = (0, .25, .75).
The calculation of the expected utilities of R1’s options
using this merged distribution over R2’s options results
in G2 being R1’s best option, which we regard as a so-
lution 1n this case. Let us note, that R1’s decision to
pursue G2 can also be called an uncooperative option,
in a sense that it treats R2 as if 1t were not there, and
that R2 would prefer that R1 choose G1, if it were either
type A or B. We will come back to this point in the next
section.

Our preliminary investigation of the general conver-
gence properties of RMM suggests that, if the method
does not yield a unique intentional probability distribu-
tion over the other agents' options (as in the previous
example), it will converge on a finite set of alternative
distributions, which can then be combined. The finite-
ness of this set is essentially due to the finite knowledge
base of the agents, and, in particular, to the fact that
they cannot have explicitly given knowledge about what
other agents think about others thinking about others
thinking ..., to infinite levels. It is, in fact, likely that
the recursive hierarchy of payoff matrices will start be-
coming uniform down from level 4 or 5. That, in turn,
permits agents to determine the finite set of intentional
probability distributions of the others at relatively high
levels of the hierarchy.

Gmytrasiewicz, Durfee, and Wehe 65



G1G2S
Gl 16 1
Rl G2 5§ 3 3
S 250
R
Pras 2
R]
R1 G1G2S
G1S Gl 050
r2 G100 G2 6 4 4
S 20 S 250
R1R2 n a2
/ M
R2 R2 R2
GIGIIIS G1S - GIG2S
R1 Gl11 1161
S 20 RIS 20 Rl G2 5§33
S 250
RILE2R]
/ Pra P::.:;m
Rl Rl R1 R1
G100 Gl 00 G1 00
RZ's 20 R2 5 20 R2 5 20 R2 G264 4

Figure 2: Example of the Recursive Hierarchy

The assumption of intentionality, as formalized in
equation (2), can give rise to various probability distri-
butions over agents' options, depending on how strongly
they are assumed to be coupled to the probabilities of
others' options. In the examples above, we followed the
most straightforward, and possibly the most risky, path
of assigning an equal, nonzero probability to the options
with the highest expected payoff, and zero to all of the
rest. Another cautious extreme would be to assign a
probability of zero to all of the dominated options, and
use the equiprobability assumption for the rest. The in-
fluence of these and other ways of interpreting equation
(2) are under study.

Multiple Interactions

As shown in the previous section, selfish, rational agents
employing RMM may fail to exhibit cooperative behav-
lors in one-time encounters. In this section, we present
a methodology based on metagame analysis [Howard,
1966] that, when integrated with the RMM, makes
agents more cooperative when they might interact re-
peatedly.

To introduce our methodology, we temporarily aban-
don our scenario of Figure 1. Instead, we use the Pris-
oner's Dilemma game, as a well known, and very simple
example of a game in which repeated interactions lead
to cooperation. We then revisit the example of Figure 1.

Repeated Prisoner's Dilemma

Most realistic problem domains involve a finite num-
ber of agents that periodically interact, so agents that
have interacted in the past could encounter each other
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repeatedly. A strategy that is rational for one interac-
tion might be counterproductive in repetitive situations
where agents can consider their prior experiences in de-
ciding on their actions.

The simplest illustration is the Prisoner's Dilemma
(PD), with this payoff matrix:

I1
C d
I C 3\3 0\5
D 5\0 1\l

If player | can be sure that he will never play with
player |l again, he would note that the payoffs of his
D move dominate the payoffs of C. That is, no matter
what player |l does, player | is better off with D. Since
the game is symmetric, both players choose to defect
and ajoint move D/d, with a payoff of 1 to each player,
results. The paradox of PD is that, if both players were
irrational, they could cooperate and each receive a payoff
of 3. Thus, in a one-time interaction, a paradoxical,
noncooperative solution results.

It has been previously demonstrated that, for repeated
Prisoner's Dilemma, the one-time strategy is a poor
choice [Axelrod, 1984; Smith, 1984]. In a population of
alternative strategies that compete with each other over
multiple generations, Axelrod experimentally discovered
that a "Tit-for-Tat" strategy, in which a player is predis-
posed to cooperate but will defect against a player who
defected in their previous encounter, is the "fittest" for
PD.

We derive this result more rigorously using metagame
theory [Howard, 1966; Reagade, 1987]. Let us define a
strategy, or a met amove, of player | as an initial move
to be made complemented by a mapping from the set



S1 S2 S3

I1
S5 S6 ST S8

S1 4\4 4\4 16\1 16\1 8\3 8\3 20\0 20\0
S2 A4 44 12\7 9\9 7\7 10\10 14\9 9\9
S3 1\16 7\12 10\10 4\14 5\15 11\11 14\9 8\13
I S4 1\16 9\9 14\4 8\8 6\11 9\9 20\0 20\0
S5 3\8 7\7T 15\5 11\6 6\6 10\5 18\3 14\4
S6 3\8 10\10 11\11 9\9 5\10 12\12 12\12 9\9
S7 0\20 9\14 9\14 0\20 3\18 12\12 12\12 3\18
S8 0\20 9\9 13\8 0\20 4\14 9\9 18\3 8\S8

Figure 3: Metagame Matrix for Prisoner’s Dilemma

of moves of his opponent {c, d}, to the set of moves
of player | {C, D}. A strategy will be understood as
a response of player | to the previous move of player
|1, following the specified first move. The strategies of
player |, S1 through S8, as generated by RRS, are:

S1: (D (D (c d)) C)
S2: (D (C (c)) (D (d)))
S3: (D (C (c d)) D)
S4: (D (D (c)) (C (d)))
S5: (C (D (c d)) C)
S6: (C (C (c)) (D (d)))
S7: (C (C (c d)) D)
S8: (C (D (c)) (C (d)))

The first strategy, for instance, instructs the player to
start with D and then play D no matter what the op-
ponent did in their most recent encounter. The sixth
strategy, which is the "Tit-for-Tat" strategy, calls for an
opening with C and responding with C to ¢ and with D
to d.

The strategies of the other player are defined sym-
metrically. The payoffs of the players exercising these
strategies in the PD game played four times can be de-
picted in the meta-PD matrix shown in Figure 3. Using
standard game-theoretic techniques it can be determined
that strategy S6 ("Tit-for-Tat"), is a dominant, equilib-
rium strategy for each of the players in the meta-PD in
this case.

The metagame approach can be applied in RMM by
replacing the original payoff matrix by a metamatrix
with strategies instead of individual moves, and with
payoffs reflecting the accumulation of the outcomes over
the expected number of interactions. For the case of
the meta-PD game matrix above (and for other meta-
PD games with the expected number of interactions over
four), RMM chooses "Tit-for-Tat" strategy as a rational
one.

Repetition in Example Interaction

Unlike the pure metagame approach, however, RMM can
deal with more realistic situations in which options and
payoffs of other players are uncertain. Returning to our
robotic example of a one-time interaction (Figure 1), re-
call that we introduced a variation in which R1 thinks

that R2 will correctly identify Rl as type A with a prob-
ability 0.9. Unlike the equiprobable case where RI de-
cides to pursue G1, this skewed probability leads it to
choose G2. As we mentioned, it can also be called an
uncooperative option, in the sense that it treats R2 as
if it were not there, and that R2 would prefer that RI
choose G, if it were either type A or B. Of course, RI
would then welcome reciprocation by R2's choice of G2,
If it happens to be type A.

We have applied the metagame approach for the re-
peated case of the above interaction using RMM. The
hierarchy of matrices depicting the accumulated payoffs
for all of the possible strategies in the above example
Is too large to include here, so we just report our end
result. The best strategy of RlI, as RMM finds, is: (Gl
(G2 (Gl §)) (GI (G2)) S). This strategy directs RI to
choose G1 initially, rather than the uncooperative choice
of G2. In the subsequent interactions RI will reciprocate
with Gl in response to G2, the cooperative alternative
of R2. R2's uncooperative choices, Gl and S, will cause
RI to pursue G2. RI will never choose S.

RMM reaches this result as a stable outcome for an
expected number of interactions over three. For 2 or 3
interactions, RMM stabilizes and gives equal preference
to three strategies (GI (GI (Gl G2)) (G2 (S)) S), (Gl
(G2 (GI 5)) (Gl (G2)) S), and (GI (S (GI)) (Gl (G2))
(G2 (S))). For a one time interaction, the result mirrors
the one obtained previously, directing Rl to pursue G2.

The result of RMM applied to R2 in the above sce-
nario also provides the cooperative strategy for it, if it
is of type A. Its behavior for one-time interaction was
to choose S. For multiple interactions, the choice strat-
egy for R2 is a cooperative strategy of starting with G2
and always responding with G2 to R1's G1. That means
that RI will not be disappointed when counting on R2
to pursue G2 and cooperation between the two agents
will result.

Conclusions and Further Research

We have presented a powerful method, called the Re-
cursive Modeling Method, that we Dbelieve rational,
autonomous agents should use to interact with other
agents. RMM uses all of the available information the
agents may have about each other and themselves, mod-
eling the uncertainties as probability distributions. It
explicitly accounts for the recursive nesting of beliefs
evident in agents' encounters, in which their decisions
depend on what they expect others to do. RMM can
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also easily be extended to account for the possibility of
repetitive interactions. We have shown how this fact
influences the agents' willingness to exhibit cooperative
behaviors toward each other.

There are a number of issues regarding RMM and its
extension to repetitive interactions that remain to be in-
vestigated. They include the choice of the level of the
elaboration of plans that are to be included as options in
the scheme and its cost and benefit characteristics. For
repetitive interactions, the influence of previous encoun-
ters on predictions for the future has to be addressed
more rigorously. The potential computational burden
of examining all of the possible strategies, particularly
as the number of agents grows larger, may become an
obstacle in applying our method, and ways to remedy
this problem that involve the concept of "bounded ra-
tionality” in the agents are being investigated. We be-
lieve that RM M also offers an excellent tool for studying
communication [Gmytrasiewicz et al, 1991b]. Finally,
our method uses an intentional approach normatively
assuming that other agents will do what seems to be ra-
tional for them. To deal with realistic situations where
agents can update models of each other through obser-
vation and plan recognition, we will complement RMM
with an empirical method [Gmytrasiewicz, 1991].
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