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Abstract

We present an algebraic approach to geomet-
ric reasoning and learning. The purpose of
this research is to avoid the usual difficulties in
symbolic handling of geometric concepts. Our
system GREW is grounded on a reasoning
scheme that integrate the symbolic reasoning
and algebraic reasoning of Wu's method. The
basic principle of this scheme is to describe
mathematical knowledge in terms of symbolic
logic and to execute the subsidiary reasoning
for Wu's method. The validity of our approach
and GRE W is shown by experiments, such as
applying to learning-by-example of computer
vision heuristics or solving locus problems.

1 Introduction

This paper presents a new approach for learning or
reasoning of geometric concepts based on algebraic
constraint-directed methods.

Geometric reasoning is available for many applica-
tions, such as robotics, CAD and computer vision. How-
ever, most previous reasoning systems, which are based
on predicate logic, have difficulties in handling geomet-
ric notions. This is because the usual symbolic approach
fails to grasp the essential characteristics of geometry,
and cannot solve complicated problems, such as those
which require auxiliary lines.

As a result, handling geometric concepts causes great
trouble in many applications of reasoning. For in-
stance, consider the heuristics called skewed symme-
try in computer vision [Kanade81]. This is a fa-
mous geometric constraint which claims that a two-
dimensional skewed symmetry is a projected image of
a genuine three-dimensional symmetry (Fig.1). Because
of transformation-invariant characteristics such as shear
transformation, it is very difficult to represent this con-
straint by usual predicate logic, still more to establish
the reasoning system. In order to solve these difficul-
ties, we select Wu's method as algebraic approach, and

*1 wish to thank members in FAI-WG (Foundation of Arti-
ficial Intelligence) and CLP-WG (Constraint Logic Program-
ming) of ICOT for useful comments and discussion on earlier
drafts of this work.

construct a geometric reasoning system (GREW: Geo-
metric REasoning based on Wu’s method). This system
1s based on the integrated scheme of symbolic reasoning
and algebraic method. We show its validity by experni-
ments, such as learning computer-vision heuristics and
solutions to locus problems.

ﬁ 3D Symmetry

2D Skewed-symmetry

IF 02(31002)‘ b=(b1.bz)

THEN A=(a,,4;.,— G—a) B=(b,,b,,— G— D

THUS Skewed-symnmetry is represented as
< A—B=a— b+ (G~ a)lG— b=0

Fig.1 Skewed symmetry

2 Geometric reasoning based on
algebraic method

2.1 Wu’s Method

In general, the hypotheses of a geometrical theorem can
be represented in triangular forms of algebraic expres-
sions. That is,

triy (uh *c UG, Tyt ’xr-lamr) =0

tri2(uls "t cUd, Xy, 'xr—l) =0

trir(uls e 'udsxl) =0 (1)
Where u,,- - -uq are independent variables and z,,- -
‘Tr-1,Zy dependent. Under these hypotheses, the con-
clusion is represented as follows.

Conc(uy, - -ugy 21, * Tr=-1,2,) =0  (2)
With these preparations, the geometric proof is equiva-
lent to deciding whether the expression (2) is equal to
zero under the equality system of the condition (1). Wu'’s
theorem gives a deterministic procedure for this decision
[Wu78]. That is,

(2) is equal to zero under (1) ;
1.e. the conclusion of the theorem is valid
& HRem, =10

Rem, (called (final) remainder term) is calculated as
follows.
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Remgy = Conc
Rem;,, =( the remainder of Rem;
divided by tri,;;, under z,_;)

The above procedure is called Wu's method [Chou84].
We have constructed an algebraic theorem proving sys-
tem based on Wu's method. This system uses strategies
for the efficient triangulation, such as decomposition of
reducible cases, simplification of expressions, and con-
flict resolution of auxiliary or degenerate conditions. We
have experimented in many examples to confirm that the
efficient process is achieved [Iba90].

2.2 Algebraic constraint-directed method for
geometric reasoning

We realized geometric reasoning based on the algebraic,
method. In this section, we explain the constraint-
directed principle with Wu's method.

Consider the case that the final
method is not zero;

Rem, = 0 (3)

This expression is factorized into irreducibles as follows,

remainder of Wu's

Environment Models

Rem, = feif5? ... fi*
If we make a new set of hypotheses such as;
trig,---tre,. U fi(3 =1,---k) (4)
and retry Wu's method under this new hypotheses, then
the new remainder generally equals to zero. Thus each
fj is regarded as new algebraic constraints for validating
the conclusion under the old hypotheses. These fj's are
derived heuristics or candidates of geometrical descrip-
tions. Therefore we apply Wu's method to geometric
reasoning with the following fundamental principle;

CASE |I: Conclusion is given beforehand.
In this case, each derived fj works like a candidate
of newly-found heuristics that validates the original
conclusion under the hypotheses tri.

CASE Il: Conclusion is not given.
In this case we apply Wu's method by choosing one
trii as Conc.The independent variables u;, regulate
the resultant remainder description. That is, the
final remainder Rem, is represented on the basis
of independent variables. Therefore it is necessary
to choose appropriate independent variables for fi-

i
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Examples

h,=—aby gb~ ab gh +ab, ga +ab ga,
Mm=—ac g&—ac, go+tac, gh+ac, gh
hy=aa; gc;taa gc,—aoy go, —aa, ga

ho™~ga, gh+ga gh+l
h=gb go+gh got)

Conc=ga, g, + gay g0, + 1

b.

Wedge(3
h'=—ab, g —ab gb +aby ga +ab, ga,
bW =—ac, go —aq go tac; ghtac gh

Generahzation of
UNLESS-part

Heuristics001
IF abG
THEN ab+{(Ga)(GbhH=0
UNLESS subsidianes

N\

hy=aa,” gc,'+aa,’ gc, —oa, ga —aa, pa,
h. =ga, gb +ga gh +1

Conc =gb, gc; +gb ga +1

Generalizations of
IF-part and THEN-part

Detect Analogies

@ Wu 's Procedure

Rem= —amy1aby ghy(ac, gy —ac; ghXgh? +ght +1)
(aby acy ghy?+abacy gh ghy +aby ac, g gby +
+ab, ac, gh?+ab, ac; +aby ac )

Subsidiary =aa?® aly® (aa, ab— a0y ab P

&b (ac, gb;—ac; ghP

Rem= —aa,tabyl acy(ady acy —aby ac\)*(gae® +ga? +1)
(s, aby gm?+aa, aby ga, go,+acy ab ga, g+
+aa, ab, go,!+taa aby+aa, ab)

Subsidiary ™ aa; Yaly b acy(aa, ac; — as ac))

(ab, acy—ab: ac (ab, go,—ab, ga\)?

Fig.2 Acquisition of geometric heuristics
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nal expressions, and fj is regarded as the geometric
representation on the basis of -

We call the above principle as the constraint-directed
reasoning, which is justified alge-geometrically as fol-
lows. The final remainder (3) forms a subset of alge-
braic variety of hypotheses and the conclusion. Thus
the desired geometric information is represented, though
partially, as algebraic constraints of remainder terms.

To illustrate this algebraic constraint-directed ap-
proach, we show its application to learning-by-example
of geometric heuristics in computer vision. We alge-
geometrically represent heuristics or relations in com-
puter vision as follows.

|F conditioni (constraints on variables)
THEN conclusion f(x;. <+ x) =0
UNLESS condition»

Conclusion f corresponds to the part of expressions

that may occur in the final remainder term of Wu's
method. Condition; describes constraints on variables
in /. Learning of heuristics is realized by deriving
condition; and conclusion part from common terms in
the final remainder of Wu's method. This strategy is
based on the above claim in CASE |I.

Fig.2 shows the learning process of Kanade's heuris-
tics, in which the skewed-symmetry heuristic (Fig.l) is
learned from exemplar bricks and wedges. In this case,
hypotheses and the conclusion consist of six expressions
with bricks, and five with wedges. These expressions are
after [Swain86]. For instance, h1, « * hg represent a brick
as a whole (Fig.3). Here, h4,....h3 correspond to Mack-
worth constraints or parallel-line heuristics [Kanade81].

More precisely, h; shows that the vector (GB — GA) is
vertical with the vector ab, and this is equivalent to the
fact that upper and lower lines of face B (projected to
parallel segments in two-dimensions) are also parallel in
three-dimensions. And hy,........ he mean that faces A,B,C
are vertical with each other in three-dimensions because
the normal vector of face A is {ga\ga,l) and so on
(Fig.l). The whole system ofhq,........ he together gives
a complete description of two-dimensional visibility and
three-dimensional model of bricks and their relations.

The remainder resulting from Wu's method is shown
as Rem in Fig.2. Though omitted in the figure, learning
examples are actually taken from six types of bricks and
five types of wedges. The reasoning process is executed
such as pattern-matching, eliminating trivial cases (aay),
and storing analogous patterns of terms (ab2ac2gb,2-\—)
and (aa2ab,ga22 + ¢++)» The matching of (acy </&2-°2<7&:i)
and (ablac2 — al)2dC\) failed because the dimensions of
gb, ab, ac are different (gb is gradient, and ab, ac are
metric). After necessary generalizations, the following
representation is obtained as a heuristic.

IF a, g,é . two-dimensional vectors
THEN (a@,b) + (G,d) * (G,b) =0
UNLESS auxiliary conditions of @,b,G

Where G is a x,y coordinate of three-dimensional gradi-
ent of the parallelogram formed by vector a and b. (a,b)
means an inner product of vectors. UNLESS part rep-
resents a subsidiary premise which makes this heuristic
applicable [Swain86]. Through the use of this UNLESS

knowledge, we have established the appropriate mainte-
nance and modification of constraint-directed models for
robotics [Iba88|.

The above representation is equivalent to the one in
[Kanade81], which shows the validity of our approach.
In the same way, other kinds of geometric heuristics in
computer vision can be learned from examples; for exam-
ple, parallel-line heuristics and Mackworth constraints

[Iba90).

b Surface A
GA
a
a(aa,.aﬂz)
surface-gradient
GB GC=ga , g¢ 2
surface B
Suria c Surface C

Fig.3 Line drawing of brick
3 Geometric reasoning system: GREW

Algebraic method elaborately solves reasoning problems
with auxiliary lines or ad-hoc heuristics. However, at
the same time, this approach is accompanied by compu-
tational problems such as the selection of independent
variables or the derivation of geometric information from
algebraic expressions. These kinds of problems are dif-
ficult to solve only within algebraic domains of polyno-
mials (called syntax of expressions). Rather, reasoning
with symbolic descriptions (called semantics of expres-
sions) is required.

In order to realize an effective handling of geomet-
ric notions, we have constructed an integrated reason-
ing scheme; integration both of symbolic reasoning and
algebraic reasoning of Wu's method (Fig.4). The ba-
sic principle of this scheme is to describe mathematical
knowledge in terms of symbolic logic and to execute sub-
sidiary reasoning for Wu's method. Thus, our system
establishes appropriate handling of geometric semantics.

Symbolic Reasoning Aigebraic Reasoning

Problem Descnptions
of Symbolic Representations |

Algebraic Expressions

{(hyp, |
(Desc, ) Phase !
| Phase Il
gs o s:m

Extracted Information
DEPENDENT

INDEPENDENT
SYMMETRIC
DESCRIPTIVE

J

Mathematical Knowledge

r
i l '
applied-rules:

{Rule, )

e ———— Oy

Remanders

(Rem )

! !Phasc IT1

Phase IV
Result of
Symbolic Representations Result of |
Algebraic Expressions
{New-Desc, }
(Result | )

Fig.4 Symbolic and algebraic reasoning
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Our system GREW consists of four fundamental
phases as follows.

Phase |. Translation of symbolic representations into al-
gebraic representations

Input expressions Desci for GREW are represented
by symbols. In Phase |, these descriptions are trans-
lated into algebraic representations hypi. We realized
the translation of about 20 geometric notions in two- or
three-dimensional Euclidean space into algebraic repre-
sentations. This translation is, in general, reversible. In
Phase |V, the inverse translation is used to derive geo-
metric descriptions in the symbolic form.

In Phase I, in addition to the above mechanical trans-
lation, the following important information is derived for
the subsequent reasoning. This corresponds to the geo-
metrical semantics in algebraic expressions.

(1) DESCRIPTIVE
The information as to which variables exist in the origi-
nal problem description. This is used in Phase |V.

(2) INDEPENDENT
This maintains important information of dependent vari-
ables used in the triangular derivation (Phase Il). In lo-
cus problems (Fig.5,6), variables in the FIND statement
are independent because they are designated to lie In
the desired locus. On the other hand, added variables
are generally candidates for dependents.

(3) DEPENDENTS
This represents a set of dependent variables, which can
be derived from problem descriptions by judging whether
to lie on the same figure or geometric relations. It is
difficult, in general, to determine INDEPENDENT and
DEPENDENTS completely. Thus some sorts of heuris-
tics are essential. These two kinds of information are
used for the triangular derivation in Phase |I.

(4) SYMMETRIC
The information as to the symmetry of descriptions.
Symmetries are ubiquitous in geometric problems and
enable an effective reasoning, as shown later.

(5) FORALL
The information as to the variable definition range for
universally valid equations is maintained. This informa-
tion is used in Phase |I1I.

Fig.7 shows a part of the reasoning process of GRE W
for the two-circle problem. This problem is described as
follows (Fig.5).

Find the locus of the mid-point P of all seg-
ments QT"s, where the end points Q and T lie
on 0; and 0, respectively (0; and O, are two
circles outside each other and the radii are rq
and r,, respectively).

Descy,- - -Descss and hypq,...... hyps are the results of
Phase |. NIL means to be undecided slots in the original
descriptions. In this case it is unnecessary to describe
the center or radius of circles beforehand. These slots
are appropriately filled by new symbols in Phase |. The
FIND statement means that the point P is on the de-
sired locus.

Phase ||: Constraint-derivation based on Wu's method
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This phase is the core of our reasoning system
GREW, which deduces algebraic constraints with Wu's
method. Here the triangular form is derived with the
following principles of selecting dependents; that is, se-
lecting as many variables that belong to the same set In
DEPENDENTS as possible, and avoiding the selection
of variables in INDEPENDENT and FORALL. These
principles work as heuristics for Phase 1V.

Phase |||: Algebraic reasoning based on mathematical
knowledge

The reasoning is executed on the final remainder
terms. Mathematical knowledge is maintained for this
execution as follows.

(1) Manipulations of algebraic expressions
Simplify the final remainder terms by factorizing or
transforming. This is effective when focused variables
are given beforehand, such as locus problems. In locus
problems those variables are designated by FIND state-
ments (Fig.7,8).

(2) Reasoning as to universally valid equations
In order to derive the condition for making the final re-
mainder term zero, the reasoning about universally valid
equations is executed with FORALL descriptions.

Eg. At+ Bs=0 (forallt,s) <> A=B=0
Ary + Bz? + Cy?* + D = 0 (for all z,y)
< A=B=C=D=0
(3) Reasoning as to trigonometric functions

Reasoning about trigonometric functions are essential for
describing circles.

Eg.Acos(t) + Bsin(t)+ C =0 (0 <t < 2m)
= A% 4+ B* > C*
(4) Solving inequalities
Try to solve simple inequalities.

(5) Manipulations on vectors or matrices
Components of vectors or matrices are manipulated in
connection with 1ts geometric representation.

Eg. Vectors a = (a,, a,), b= (by, be) are given;

i is vertical with b <= a by + azxby, =0
2 | a1 by — azby |= the area of the parallelogram

formed by @ and b

(6) Reasoning by pattern matching between expres-
sions

Reasoning is executed based on symmetry or analogy of
derived algebraic expressions. Geometric semantics are
essential for this. We illustrated the learning experiment
in this reasoning (Fig.2).

Phase |V : Inverse translation into symbolic representa-
tions

Translate algebraic expressions into symbolic repre-
sentations inversely. The basic strategy is to make
pattern-matching with the template of deduced alge-
braic expressions in Phase |. DESCRIPTIVE informa-
tion is used so as to derive symbolic expressions as gen-
eral as possible (the least number of variables newly in-
troduced).



4 Experimental Results

We have confirmed the validity of GREW and our al-
gebraic constraint-directed reasoning scheme by many
experiments such as locus problems (Fig.5,6) and con-
struction problems [Iba90]

Fig.7 shows a part of the reasoning process of GRE W
for the two-circle problem. The constraint-directed
reasoning is executed based on inequality relations of
trigonometry and quadratic inequalities (type (1)(3)(4)
in Phase IIl). New — Decs is finally derived and shows
that the point P is in the range which is outside a circle
(the center is a mid-point of centers of circle 0; and cir-

cle 02, and the radius is Ir';r’l), and which is inside a
circle (the center is the same, and the radius isgr‘;r’)).

As another example, Fig.8 shows the solution to 3D
skew-line problem . This problem is described as follows.

Two lines XX' and YY' are given. These lines
are not in the same two-dimensional plane, and
are vertical with each other. Find a locus of the
mid point M of all segments KL's, where the
end points K and L are on lines XX' and YY'
respectively, and the distance of KL is constant
P (Fig-6)-

In phase I, new variables are generated for directional
vectors of lines, and algebraic expressions are derived
with these parameter variables. The reasoning as to uni-
versally valid equations i1s executed 1n Phase III, and the
algebraic constraints are derived as follows.

(1)ay(zy — 1) + ao(zo —y0) =0

(2)y2 —z2 =0

(3)4(a—y2)* +4(B— 1)’ +4(v—20)* = p° = 0
Because of the symmetrical relation (SYMMETRIC in
Phase I), the following equation is added.

(D4(a—z2)2 + 4B -n)* +4(v~yo)* —p* =0
In Phase III, from (1) and (2), 1t 1s deduced that two
vectors (ag,a;, as) and (xg — Yo, T1 — ¥1, T2 — Y2 ) are ver-
tical with each other. It i1s also deduced that (bg, b,, b2)
is vertical with (z¢ — yo,2; — ¥1,T2 — ¥2), because
(bg, b1,be2) and (ag,a;,az) are vertical with each other

(hyp.Fig.8(a)). _

(ao,a1,a2) L (zo = yo, 21 — y1, T2 — ¥2)

(bo, bl,bz) 1 (330 = Yo, T1 — Y1,T2 — yz) (#)
Thus points of the locus are the intersection of two
spheres (each center is (zg, 2, z2) and (yo, ¥1, y2) respec-
tively, and radius is £, where (o, z,r2) and (o, 41, ¥2)
satisfy (#)). Furthermore, in checking sufficient condi-
tions for the locus, 1t is also deduced that this intersec-
tion lies on the same plane, which is omitted here. As
a result, New — Desc descriptions are derived in Phase
IV, where !- means a vector subtraction operator.

5 Future research

Our reasoning scheme has an advantage in handling of
geometric notions, and we mean to make applications of
this method to more practical domains; such as path-
planning problems or environment model managements
of intelligent robots [Iba88]. For this purpose, we now
research on further extensions in the algebraic reason-
ing. This is to cope with the failure in Phase |V, that

is, the failure to derive appropriate geometrical infor-
mation from algebraic representations. This failure is
caused by the lack of primitives to make inverse transla-
tions from algebraic expressions, or by the inappropriate
algebraic reasoning in phase |Il. From the more prac-
tical viewpoint, we think it important to calculate ap-
proximated solutions based on the final remainder terms
by using numeric methods or simulations. A program
called TLA embodies this kind of methodology for me-
chanical simulations [Kramer90]. On the other hand,
mathematical expert systems seem to us promising, in
which formal handling of geometric semantics could be
realized by the knowledge or meta-knowledge in mathe-
matics. Thus our future research of concern is to further
extend our method in this direction to realize the ap-
propriate control of reasoning in algebraic domains, and
to formalize its algorithm with both domains; symbolic
and algebraic.

6 Conclusion

Reasoning about geometric notions is difficult to exe-
cute only by the usual symbolic method. This paper
presents a new scheme for geometric reasoning with al-
gebraic constraint-directed method. Although our alge-
braic approach avoids the complicated problem of rea-
soning in auxiliary lines or handling of heuristics, at the
same time it encounters computational difficulty in se-
lecting independent variables. To solve this, we have
tried to derive geometric semantics of algebraic expres-
sions from the original problem description, and to es-
tablish the constraint-directed reasoning based on these
semantics. Finally, the validity of our system GREW
has been shown by experiments.
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Qs

Q:

Q.

Fig.5 Two-circle problem

PHASE 1 : Translation into
algebraic expressions

Desc; : (ON $Q 30,)
Descy : (ON 8T $05)
Descy : (IS - CIRCLE 3(0O7 2) NIL ry)
Descy : (|S-—- CIRCLE 3(02 2) NIL r2)
Descy; : (IS-POINT $(Q 2} NIL)
Descg : (IS—POINT $(T 2) NiL)
Desc; : (IS—POINT $(P 2) (MID - POINT 3Q $T))
Descg : (FIND 8P)

i
Descy : (IS - CIRCLE 3(0O5 2) $SA rg)
Descm ‘ (lS—ClRCLE 3(02 2) SB r2)
Desc;; : (IS-POINT S(Q 2) (q1 q3))

Desc;» : (IS - POINT 3$(T 2) (t) tz))
Desciz : (IS—-POINT $(A 2) (ay 27))
Desc;y : (IS—POINT $(B 2) (by bsy})
Descis : (IS=POINT $(P 2) (p1 p2))

hyp, = -risi+a—a
hyp- = —ciry+q92 — a2
hyp3 = 8‘12 + C'.']! -1
hyp;, = ty—r2s2-b
hyps = ta—cro—bo
hypg = —t4) —q +2p
hyp.r = -—tg - QQ + 2p2
hyps = 82 -+ (‘-2 -1
DESCRIPTIVE

{01.02,11.r2,Q,T.P}
INDEPENDENT

{Pl,Pz}
DEPENDENTS

{a1.32,11,491.92} U {by, b2, 12, t1, t2}
U{p1.P2.t1,t2-91,492} U {c1, 51} U {ca, 52}
SYMMETRIC

{(01,02), ((31,32,r1,491,a2)(b1,b2,r2, t1,t2))}
FORALL

(trigonometric ¢l sl) A (trigonometric c2 s2)

PHASE II : Wu’s method

Rem-l- = —{41)1!‘131 -— 2’)11‘1.‘" - 2(111"131 + T% - ".[2
+dcipary ~ 2bacyry = 2a06)1) — 4”% + dbap2
+4aapr — 41).‘12 + “wlpl + 4a1p; — bi’!
=2a9b9 — b{‘ - 2a1b) ~ a::: - a;f)

with Conc = hypg

X1 = €1, X2 = q1,X3 = q2,%X4 = t1.
Xg = 12,X6 = $2.%7 = €3

PHASE III : Algebraic reasoning

Applied — ruley

RES‘ILIH

4

Acos0+Bsinb+C =0 (0<V0 < 2x)
= A?+B?> (C?
where cosd = c; s1nb = s

(FORALL - condition) in Rems

-3+ (2r? + 8p3 + (—8by - Ba.)m + 8p3 + (—8b; — 8ay)p) + 2b3

+ dagba + 26% + duyby + 2a3 + 2a2)r} — v + (8p3 + (- —8by ~ fog)pg

+ Spl + (—8b; — 8ay)p, + Qbf + 4ayhs + 261 + 4a,by + "a‘; + 2a1 )rl

-~ lﬁpg + (32by + 326‘2)1’% + ("32]1? + (3261 + 3240y )1 — 24”% — 48a2by

— 8b7 — 16a; b, — 24a3 - 8ad)p3 + ((3%2 + 32a,)pt + ((-32&. ~ 32a; )by
— 32a20y - 32ayaq2)p; + 80') + 24a- >f) + (862 + 16a;0; + 241’12 + Baf)bg

+ 8a3b% + 16a;asb; + 8a3 + Ba“ao)po ~ lﬁpl + (32by + 32ay)p{ - a3

+ (= Sb“ - 10aqby — 24(), - 48aby - 8a1 - 24a1)pl <+ ((80y + Bay )b3z - a3
+ (16aaby + 16aja2)bo + 803 + 244 b} + (8a3 + 24af)b; + (—4a)a3 - 4ai )by
-+ Salu:ﬁ + Su"‘ll)p[ - b; - 4(1‘_)[)% + (*2()? - 4aybh| - 601 - 201)52 -alaz

-+ (-—-4(1-31;'1*’ - 8ayuady — 4u3 - dajas)by — b'l‘ — dayb} + (- 2u2 - Ga|)62 20

Applied — rules

Resultsy

Applied — rule;

Resultq
Rcsult.;

J

factorize and factorsum

LHS =
-—(r% —orira + T“f - 4])% + 4bypg + daqypy — 4?%
+4b1p1 + da1p) — b% — 242(,2 — b% - 2a1 by - a% _ a‘i))
(r3 + 2rirg + 13 — 4pd + 4bapy + dagps — 4p? + 4byp,
+4a,p) - b:ﬁ —~ 2agby —~ bi; — 2a1by — a% - a?)
===
—{(r2 = 11)? = 4(p2 — BFR)? - 4(p, - BF)Y)
((r2+ 700 = d(pz = =32)2 = d(py ~ §2)?)

(T=alr=-b) <0 (a<bh) & a<z<b

where = = (py - 1A ;b )2 + (py — n;;fﬁ-_»)z

(py — 41‘&—*)‘+(p2 21h)2 - (242)2 <@
(py — Wt )? + (pg — BEF2)2 - (8522 >

PHASE IV : Translation into

New — Desc;

New — DQBCQ

New — Descj

New — Descy

New — Descs

§

symbolic representations

(ON $P (DOMAIN
(IN —-SIDE  303)
(OUT — SIDE $04)))
(1S - CIRCLE $(0O;3 2)
$PP
(times& (plus ry rp)))
(IS - CIRCLE $(O4 2
$PP
(timesi (abs (minus r; rp))))
(IS - POINT §(PP 2)
(MID - POINT SA 2B))

(ON §$P

(DOMAIN
(IN - SIDE
(CIRCLE
(MID — POINT (CENTER - OF $0Oy)
(CENTER ~ OF 804))
(times % (plus r; r2))))
(OUT - SIDE
(CIRCLE
(MID —~ POINT (CENTER —~ OF $0,)
(CENTER — OF $0,))

(times & (abs (minus ry r)))))))

Fig.7 Solution to locus problem (1)
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Fig.6 Skew-line problem

PHASE 1 : Translation into

algebraic expressions

Desc, (ON $K $XX’)
Descy (ON SL $YY")
Desc; (1S — LINE $(XX' 3) NIL NiL)
Desc, (1S — LINE $(YY’ 3) NIL NiL)
Descy, (1S — POINT $(K 3) NiL)
Descg (1S —~ POINT $(L 3) NIL)
Desc; (1S — POINT $(M 3) (MID — POINT 3K $L))
Descy (1S — PERPENDICULAR $XX' 8YY')
Descy (EVAL (eq (DISTANT $K 3L) p))
Descyp (FIND $M)
$

Desc)) (1S — LINE $(XX' 3) $X $A))
Desc)» (1S — LINE S(YY' 3) 8Y $B8))
Desc)j (1S — POINT $(K 3) (kp, ki, ko))
Desc)y (IS — POINT $(L 3) (lp.11.12))
Descs (1S — POINT $(M 3) (a.8.7))
Descm (lS-—pO|NT $(X 3) (XO,XI,XQ})
Desc, (1S — POINT $(Y 3) (yq.¥1.¥2))
Descs (1S - VECTOR §(A 3) (ag,a1,272))
Descyg (IS ~ VECTOR $(B 3) (bp.by,b2))
hyp, = agby +arh + agbg
hyp- = —1xp— aotp+ ko
hypy; = =—zi—atto+ki
hyp, = =—x2-—azte+4k2
hyps, = -w—boti+lo
hypg = -y —bity +1
hyp.: = -w—bt+l
hypy = —lg—-ko+2a
hypg = —{y—ki+ 28
hypyg = -la—ka+ 2y
hyp = p? - (ky—12)? = (ki = 1)? = (ko = lo)°
DESCRIPTIVE

{XX'.YY' p, K .L. M}

INDEPENDENT

{tp.t1. 2, 8.7}

DEPENDENTS

{ko. k1, k2.lp, 13,12} U {a2,b2, 21, b1, 30, bo}
SYMMETRIC

{ (XX, YY),

((ag,al.22, ko, ky k2, X0, x1, %2, 1)
(b, b1,b2, 10, hys 2. y0. Y1, ¥2: 1)
FORALL

(real — number tp t))

PHASE II : Wu’s method

Remg =

~ad(4y3 + 4bat ya — Byyz — dartom
—~4aptgyy — 4byt 29 + 4:!:"1Z + 4aytyTy

—8?:1:[ -+ 43:% + 4aptoTo — 8azxp
~p* + 472 + 48% + 4a?)

with Conc = hypiyy
X] = a2,%p = 2),%3 = by, %4 = by, x5 = lo,
xg = ka,x7 = 11, %9 = k1. x30 = l2. x11kg

PHASE

Applied — ruley

RCS'U.“]

RC 811.“-3
Resulty

Applied — ruleg

Result,

Results
Resnultg

Applied — rules

Result,

Resulty

III : Algebraic reasoning

At+Bs+C=0(Vst € R)
= A=B=C=0
where t =1ty s =1
(FORALL - condition) in Remjp

472 = Syay + 4y% + 4:1::]2 + 4::3 - 8azgp
- + 4/3° + 4a -~ 80z, =0

dai(ry — 1) + dao(zo — yo) =V
4hoyy — 4boxo =0

Additional reasoning
using SYMMETRIC
where XX' < YY'

4y% — 8zay + 4:1:3 + 4y'f + 4y(2, — Bayo
~p? 4402 + 422 - 80y =0

4by (= 1) + 4bo(wo — z0) =0
4a,x9 — 4a2yy =0

Judging perpendicular V,-Voa=0
— Vl.LV'z

ag o —~ Yo
ry — yi
az 2 ~ Y2

bo o — Yo
hh L z1—=n
b2 T2 = Y2

Il
*

PHASE IV : Translation into

New ~ Desc;

New — Desc,
New — Desc;
New —~ Descy

New — Descs

Fig.8 Solution to locus problem (2)

symbolic representations

(ON $M (AND
(SPHERE  $X )
(SPHERE  8Y g)
(ON $X $XX)
(ON SY $YY')

(15 — PERPENDICULAR

(1 —$X 3Y) $XX')
(IS — PERPENDICULAR

(1 - $X 8Y) YY)

Iba and Inoue
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