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Abs t rac t 

We present an algebraic approach to geomet­
ric reasoning and learning. The purpose of 
this research is to avoid the usual difficulties in 
symbolic handling of geometric concepts. Our 
system G R E W is grounded on a reasoning 
scheme that integrate the symbolic reasoning 
and algebraic reasoning of Wu's method. The 
basic principle of this scheme is to describe 
mathematical knowledge in terms of symbolic 
logic and to execute the subsidiary reasoning 
for Wu's method. The validity of our approach 
and G R E W is shown by experiments, such as 
applying to learning-by-example of computer 
vision heuristics or solving locus problems. 

1 I n t r o d u c t i o n 

This paper presents a new approach for learning or 
reasoning of geometric concepts based on algebraic 
constraint-directed methods. 

Geometric reasoning is available for many applica­
tions, such as robotics, C A D and computer vision. How­
ever, most previous reasoning systems, which are based 
on predicate logic, have difficulties in handling geomet­
ric notions. This is because the usual symbolic approach 
fails to grasp the essential characteristics of geometry, 
and cannot solve complicated problems, such as those 
which require auxil iary lines. 

As a result, handling geometric concepts causes great 
trouble in many applications of reasoning. For in­
stance, consider the heuristics called skewed symme­
try in computer vision [Kanade81]. This is a fa­
mous geometric constraint which claims that a two-
dimensional skewed symmetry is a projected image of 
a genuine three-dimensional symmetry (Fig.1). Because 
of transformation-invariant characteristics such as shear 
transformation, it is very difficult to represent this con­
straint by usual predicate logic, st i l l more to establish 
the reasoning system. In order to solve these difficul­
ties, we select Wu's method as algebraic approach, and 

*I wish to thank members in FAI-WG (Foundation of Art i­
ficial Intelligence) and CLP-WG (Constraint Logic Program­
ming) of ICOT for useful comments and discussion on earlier 
drafts of this work. 
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The above procedure is called Wu's method [Chou84]. 
We have constructed an algebraic theorem proving sys­
tem based on Wu's method. This system uses strategies 
for the efficient t r iangulat ion, such as decomposition of 
reducible cases, simplif ication of expressions, and con­
flict resolution of auxi l iary or degenerate conditions. We 
have experimented in many examples to confirm that the 
efficient process is achieved [Iba90]. 

2.2 A l g e b r a i c c o n s t r a i n t - d i r e c t e d m e t h o d fo r 
g e o m e t r i c r eason ing 

We realized geometric reasoning based on the algebraic, 
method. In this section, we explain the constraint-
directed principle w i th Wu's method. 

Consider the case that the final remainder of Wu's 
method is not zero; 

Remr ± 0 (3) 
This expression is factorized into irreducibles as follows, 

and retry Wu's method under this new hypotheses, then 
the new remainder generally equals to zero. Thus each 
fj is regarded as new algebraic constraints for validating 
the conclusion under the old hypotheses. These fj's are 
derived heuristics or candidates of geometrical descrip­
tions. Therefore we apply Wu's method to geometric 
reasoning w i t h the following fundamental principle; 

C A S E I: Conclusion is given beforehand. 
In this case, each derived fj works like a candidate 
of newly-found heuristics that validates the original 
conclusion under the hypotheses trij. 

C A S E I I : Conclusion is not given. 
In this case we apply Wu's method by choosing one 
trij as Conc.The independent variables ui, regulate 
the resultant remainder description. That is, the 
final remainder Remr is represented on the basis 
of independent variables. Therefore it is necessary 
to choose appropriate independent variables for fi-
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Fig.3 Line drawing of brick 
3 G e o m e t r i c reason ing sys tem: G R E W 
Algebraic method elaborately solves reasoning problems 
w i t h auxi l iary lines or ad-hoc heurist ics. However, at 
the same t ime, this approach is accompanied by compu­
ta t iona l problems such as the selection of independent 
variables or the der ivat ion of geometric in format ion f rom 
algebraic expressions. These kinds of problems are dif­
f icul t to solve only w i t h i n algebraic domains of polyno­
mials (called syntax of expressions). Rather, reasoning 
w i t h symbolic descriptions (called semantics of expres-
sions) is required. 

In order to realize an effective handl ing of geomet­
ric not ions, we have constructed an integrated reason­
ing scheme; integrat ion both of symbolic reasoning and 
algebraic reasoning of Wu's method (Fig.4). The ba­
sic pr inciple of th is scheme is to describe mathemat ical 
knowledge in terms of symbol ic logic and to execute sub­
sidiary reasoning for Wu's method. Thus, our system 
establishes appropr iate handl ing of geometric semantics. 
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nal expressions, and fj is regarded as the geometric 
representation on the basis of ,-. 

We call the above pr inciple as the constraint-directed 
reasoning, which is just i f ied alge-geometrically as fol­
lows. The f inal remainder (3) forms a subset of alge­
braic variety of hypotheses and the conclusion. Thus 
the desired geometric in format ion is represented, though 
part ia l ly , as algebraic constraints of remainder terms. 

To i l lust rate this algebraic constraint-directed ap­
proach, we show its appl icat ion to learning-by-example 
of geometric heuristics in computer vision. We alge-
geometrical ly represent heuristics or relations in com­
puter vision as follows. 

IF conditioni (constraints on variables) 
THEN conclusion f(x1. • • •, xr) = 0 
U N L E S S cond i t ion 2 

Conclusion f corresponds to the par t of expressions 
that may occur in the f inal remainder term of Wu's 
method. C o n d i t i o n 1 describes constraints on variables 
in / . Learning of heuristics is realized by der iv ing 
condi t ion 1 and conclusion par t f rom common terms in 
the f inal remainder of Wu's method. Th is strategy is 
based on the above c la im in C A S E I. 

Fig.2 shows the learning process of Kanade's heuris­
tics, in which the skewed-symmetry heuristic (F ig . l ) is 
learned f rom exemplar bricks and wedges. In this case, 
hypotheses and the conclusion consist of six expressions 
w i th bricks, and five w i t h wedges. These expressions are 
after [Swain86]. For instance, h1, • • h6 represent a brick 
as a whole (Fig.3). Here, h1,....h3 correspond to Mack-
wor th constraints or paral lel- l ine heuristics [Kanade81]. 
More precisely, h1 shows tha t the vector (GB — GA) is 
vert ical w i t h the vector ab, and this is equivalent to the 
fact that upper and lower lines of face B (projected to 
parallel segments in two-dimensions) are also paral lel in 
three-dimensions. A n d h 4 , . . . . . . . .h 6 mean tha t faces A , B , C 
are vert ical w i t h each other in three-dimensions because 
the normal vector of face A is {ga\,ga2,l) and so on 
( F i g . l ) . The whole system of h1 , . . . . . . . .h6 together gives 
a complete descript ion of two-dimensional v is ib i l i ty and 
three-dimensional model of bricks and their relations. 

The remainder resul t ing f rom Wu's method is shown 
as Rem in Fig.2. Though omi t ted in the figure, learning 
examples are actual ly taken f rom six types of bricks and 
five types of wedges. The reasoning process is executed 
such as pat tern-match ing, e l iminat ing t r i v ia l cases (aa 2 ) , 
and stor ing analogous patterns of terms (ab2ac2gb22-\—) 
and (aa2ab2ga22 + •••)• The match ing of (acy </&2-ac2<7&i) 
and (ab\ac2 — al)2dC\) fai led because the dimensions of 
gb, ab, ac are different (gb is gradient, and ab, ac are 
metr ic ) . Af ter necessary generalizations, the fol lowing 
representation is obtained as a heuristic. 

Where G is a x,y coordinate of three-dimensional gradi­
ent of the paral lelogram formed by vector a and b. (a,b) 
means an inner product of vectors. U N L E S S par t rep­
resents a subsidiary premise which makes this heuristic 
applicable [Swain86]. Through the use of this U N L E S S 



Our system G R E W consists of four fundamental 
phases as follows. 

Phase I: Translation of symbolic representations into al­
gebraic representations 

Input expressions Desci for G R E W are represented 
by symbols. In Phase I, these descriptions are trans­
lated into algebraic representations hypi. We realized 
the translation of about 20 geometric notions in two- or 
three-dimensional Euclidean space into algebraic repre­
sentations. This translat ion is, in general, reversible. In 
Phase IV , the inverse translat ion is used to derive geo­
metric descriptions in the symbolic form. 

In Phase I, in addit ion to the above mechanical trans­
lat ion, the following impor tant information is derived for 
the subsequent reasoning. This corresponds to the geo­
metrical semantics in algebraic expressions. 

(1) D E S C R I P T I V E 
The informat ion as to which variables exist in the origi­
nal problem description. This is used in Phase IV . 

(2) I N D E P E N D E N T 
This maintains impor tant informat ion of dependent vari­
ables used in the tr iangular derivation (Phase I I ) . In lo­
cus problems (Fig.5,6), variables in the F I N D statement 
are independent because they are designated to lie in 
the desired locus. On the other hand, added variables 
are generally candidates for dependents. 

(3) D E P E N D E N T S 
This represents a set of dependent variables, which can 
be derived from problem descriptions by judging whether 
to lie on the same figure or geometric relations. It is 
diff icult, in general, to determine I N D E P E N D E N T and 
D E P E N D E N T S completely. Thus some sorts of heuris­
tics are essential. These two kinds of information are 
used for the tr iangular derivation in Phase I I . 

(4) S Y M M E T R I C 
The information as to the symmetry of descriptions. 
Symmetries are ubiquitous in geometric problems and 
enable an effective reasoning, as shown later. 

(5) F O R A L L 
The informat ion as to the variable definit ion range for 
universally valid equations is maintained. This informa­
t ion is used in Phase I I I . 

Fig.7 shows a part of the reasoning process of G R E W 
for the two-circle problem. This problem is described as 
follows (Fig.5). 

F ind the locus of the mid-point P of all seg­
ments QT"s, where the end points Q and T lie 
on 01 and 02 respectively (01 and O2 are two 
circles outside each other and the radi i are r1 

and r2, respectively). 

Desc9,- - -Desc15 and hyp1,......hyp8 are the results of 
Phase I. N I L means to be undecided slots in the original 
descriptions. In this case it is unnecessary to describe 
the center or radius of circles beforehand. These slots 
are appropriately filled by new symbols in Phase I. The 
F I N D statement means that the point P is on the de­
sired locus. 

Phase I I : Constraint-derivation based on Wu's method 
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This phase is the core of our reasoning system 
G R E W , which deduces algebraic constraints wi th Wu's 
method. Here the triangular form is derived wi th the 
following principles of selecting dependents; that is, se­
lecting as many variables that belong to the same set in 
DEPENDENTS as possible, and avoiding the selection 
of variables in INDEPENDENT and FORALL. These 
principles work as heuristics for Phase IV. 

Phase I I I : Algebraic reasoning based on mathematical 
knowledge 

The reasoning is executed on the final remainder 
terms. Mathematical knowledge is maintained for this 
execution as follows. 

(1) Manipulations of algebraic expressions 
Simplify the final remainder terms by factorizing or 
transforming. This is effective when focused variables 
are given beforehand, such as locus problems. In locus 
problems those variables are designated by F IND state­
ments (Fig.7,8). 

(2) Reasoning as to universally valid equations 
In order to derive the condition for making the final re­
mainder term zero, the reasoning about universally valid 
equations is executed wi th FORALL descriptions. 

Reasoning is executed based on symmetry or analogy of 
derived algebraic expressions. Geometric semantics are 
essential for this. We il lustrated the learning experiment 
in this reasoning (Fig.2). 

Phase I V : Inverse translation into symbolic representa­
tions 

Translate algebraic expressions into symbolic repre­
sentations inversely. The basic strategy is to make 
pattern-matching wi th the template of deduced alge­
braic expressions in Phase I. DESCRIPTIVE informa­
tion is used so as to derive symbolic expressions as gen­
eral as possible (the least number of variables newly in­
troduced). 



4 E x p e r i m e n t a l Resul ts 
We have confirmed the val idi ty of G R E W and our al­
gebraic constraint-directed reasoning scheme by many 
experiments such as locus problems (Fig.5,6) and con­
struction problems [Iba90] 

Fig.7 shows a part of the reasoning process of G R E W 
for the two-circle problem. The constraint-directed 
reasoning is executed based on inequality relations of 
tr igonometry and quadratic inequalities (type (1)(3)(4) 
in Phase I I I ) . New — Dec5 is finally derived and shows 
that the point P is in the range which is outside a circle 
(the center is a mid-point of centers of circle 01 and cir­
cle O2, and the radius is and which is inside a 

circle (the center is the same, and the radius  
As another example, Fig.8 shows the solution to 3D 

skew-line problem . This problem is described as follows. 

Two lines X X ' and Y Y ' are given. These lines 
are not in the same two-dimensional plane, and 
are vertical w i th each other. Find a locus of the 
mid point M of all segments KL 's , where the 
end points K and L are on lines X X ' and Y Y ' 
respectively, and the distance of KL is constant 
P (Fig-6)-

5 F u t u r e research 
Our reasoning scheme has an advantage in handling of 
geometric notions, and we mean to make applications of 
this method to more practical domains; such as path-
planning problems or environment model managements 
of intell igent robots [Iba88]. For this purpose, we now 
research on further extensions in the algebraic reason­
ing. This is to cope w i th the failure in Phase I V , that 

is, the fai lure to derive appropr iate geometrical infor­
mat ion f rom algebraic representations. Th is failure is 
caused by the lack of pr imi t ives to make inverse transla­
t ions f rom algebraic expressions, or by the inappropriate 
algebraic reasoning in phase I I I . From the more prac­
t ical v iewpoint , we th ink i t impor tan t to calculate ap­
proximated solutions based on the final remainder terms 
by using numeric methods or simulat ions. A program 
called T L A embodies th is k ind of methodology for me­
chanical simulat ions [Kramer90]. On the other hand, 
mathemat ica l expert systems seem to us promising, in 
which formal handl ing of geometric semantics could be 
realized by the knowledge or meta-knowledge in mathe­
matics. Thus our fu ture research of concern is to further 
extend our method in th is d i rect ion to realize the ap­
propr iate control of reasoning in algebraic domains, and 
to formalize i ts a lgor i thm w i t h bo th domains; symbolic 
and algebraic. 

6 Conclusion 
Reasoning about geometric notions is diff icult to exe-
cute only by the usual symbolic method. This paper 
presents a new scheme for geometric reasoning w i th al-
gebraic constraint-directed method. A l though our alge­
braic approach avoids the complicated problem of rea­
soning in auxi l iary lines or handl ing of heuristics, at the 
same t ime it encounters computat iona l di f f iculty in se­
lect ing independent variables. To solve this, we have 
t r ied to derive geometric semantics of algebraic expres­
sions f rom the or ig inal problem descr ipt ion, and to es­
tabl ish the constraint-directed reasoning based on these 
semantics. Final ly, the va l id i ty o f our system G R E W 
has been shown by experiments. 
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