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Abstract

There are many new application fields for au-
tomated deduction where we have to apply ab-
ductive reasoning. In these applications we
have to generate consequences of a given theo-
ry having some appropriate properties. In par-
ticular we consider the case where we have to
generate the clauses containing instances of a
given literal L. The negation of the other Iit-
erals in such clauses are hypothesis allowing to
derive L.

In this paper we present an inference rule,
called L-inference, which was designed in or-
der to derive those clauses, and a L-strategy.
The L-inference rule is a sort of Input Hyper-
resolution. The main result of the paper is the
proof of the soundness and completeness of the
L-inference rule. The L-strategy associated to
the L-inference rule, is a saturation by level
with deletion of the tautologies and of the sub-
sumed clauses. We show that the L-strategy is
also complete.

1 Introduction

Traditionally automated deduction systems are devoted
to prove if a given formula is a theorem; their applica-
tions , as is well knwon, have been very succesful in many
domains of Computer Science. Gradually this tradition-
al functionality has been extended.

For example in Logic Programming, or in Deductive
Databases, it is not enough to know if a closed formula
Is a theorem, indeed we want to know the set of substi-
tutions used in the proof of a formula.

Recently applications, like ATMS, automated diagno-
sis, generation of "why not" explanations, conditional
answering in Deductive Databases, partial deduction, all
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ofthem involving some kind ofabductive reasoning, have
emphasized the need of new functionalities. For every of
these new applications it is necessary to produce, for a
given formula, the set of hypothesis we have to add to a
given theory to prove this formula. This shows that we
are now expecting from an automated deduction method
more information than an answer of the form : "yes", or
"no", or a set of substitutions.

For these new aplications (see [7, 9, 11, 1, 5], and Inoue
[4] for hypothesis generation) the expected information
is, for a given Database DB, and a given query Q which
Is not derivable from DB, the set of hypothesis X such
that X —> Q is derivable from DB, and X is as general
as possible. Such X are called the minimal supports for
Q by Reiter and de Kleer in [14].

In order to mechanize the production of hypothesis
some new algorithms have been defined. For example,
in the frame of Propositional Calculus, by Siegel [13],
Cayrol and Tayrac [10], Oxusoff and Rauzy [12], and
Kean and Tsiknis [6], and in the frame of First Order
Calculus, by Cholvy [2], and Inoue [4].

The objective of this paper is to present a new infer-
ence rule, and its associated strategy, which have been
designed in order to efficiently compute the minimal sup-
port for a query.

We shall assume the reader is familiar with traditional
theorem proving techniques as they are presented in [3].

2 General definition of the generation
hypothesis problem

In all the paper we consider a First Order Language
where formulas are in clausal form.

Let S be a set of consistent clauses, a query adressed
to S is represented by a literal L.

It is not restrictive to have only query represented by a



single literal. Indeed, ifthe query is a first order formula
F we can introduce a new atomic formula Q, and we can
add to S the clauses generated by the clausal form of :

Q « F. Then the answer to the query Q provides the
minimal support for Q.

The answer to the query L, relative to S, is a set of
clauses containing instances of L, defined by

ans(L,S) = { L'VX | S F L/vX, where L’ is an instance
of L, and L’V X is not a tautology, and there is no clause
¢ derivable from S such that ¢ strictly subsumes L’ vV X

'}

According to this definition the clauses in ans(L,S) are
minimal with regard to the subsumption.

If L'V X is in ans(L,S), the negation of X is an hy-
pothesis which allows to infer L' in the context of S.

It is worth noting some consequences of the condition
of minimality. If L'V X is minimal we have

e L'is not derivable from S. That means that if L'V X

Is in the answer, we need additional hypothesis
to derive L',

« X is not derivable from S. Therefore the correspond-
ing hypothesis to infer L' is consistent with S.

« there exists no clause L'V X' derivable from S such
that L' V X' subsumes V V X. Since the condition
L'V X" subsumes L'V X implies X' subsumes X,

there is no weaker hypothesis than X to infer
L' in the context of S.

A consequence of L’ V X not being a tautology is that
X 1s not the trivial hypothesis -L'.

Examplel :

S = {P(x,y) V
S5(x,y), Q(a,b), =S(a,c), Q(b,d)}

-Q(x,y) V

Let L=P(a,x) be the query, the answer 1s :

ans(L,S) = {P(a,x) V =-Q(a,x) V S(a,x), P(a,b) V
S(a,b), P(a,c) V-Q(a,c)}

3 Definition of the Inference Rule

Definition 1. Let L be a literal. A clause C is an L-
clause iff there is a literal L' in C such that L is an
iInstance of L'.

"We say that ¢ "strictly subsumes" ¢' if ¢ subsumes ¢' and
c' does not subsumes c

Definition 2. Let L be aliteral and let M;Ve;, 1 <1< p,
be a set E of clauses, called electrons, such that each M;
IS a literal, and each e; is an L-clause. Let n be the
clause : Ny VN2 V ... VN, V n', where the Ni's are
literals, which is called the nucleus. A finite sequence of
L-clauses Ry,..., Rpis an L-inference iff:

* Ro is n,

« each Rj:y is aresolvent obtained (by the Resolution
principle) from R;, and M;Ve;, where the literal Mj is
resolved against the instance ofthe literal Nj, which
isin R, 1 <j3<p.

R, is called the L-resolvent of E and n, and the R;,
for 1 <1< p~-1, are called the intermediate resol-

vents. The L-inference will be represented by : ER L
p
Definition 3. Let S be a set of clauses. A L-

deduction of C, from S is a finite sequence Co ... C,
of clauses such that : each C, is either a clause in S or
there are Ciq .. Cig in the L-deduction, with each ij < i,
such that C; is the L-resolvent of C;,,,...Cik, by an L-
inference whose nucleus is in S.

Definition 4. A R-deduction of C, from S is a
finite sequence Co . * C,, of clauses such that : each C;
IS either in S or there are C;, C,3 in the R-deduction,
with each i; < i, such that C; is the resolvent ( by the
Resolution Principle) of C; and C,,.

Theorem 1. (R.C.T. Lee [8]) Let S be a set of
clauses, if ¢ is a clause derivable from S, there is a clause

e', subsuming c, such that c' is derivable from S by a
R-deduction.

Theorem 2. Let S be a set of clauses and L a given

literal. If there is a R-deduction of L V C, then there is
a L-deduction of L V C.

Proof. The proofis by induction on the number n of
inferences in the R-deduction of LV C from S.

For n=1, LV C is the resolvent of two clauses C; and
C, in S. Then either C; or C, ( say C; ) is of the form
M Ve, where e is a L-clause, and M is the resolved literal.
Therefore the R-inference is a L-inference.

For the induction step we assume we have a R-
deduction of L V C from S using n inferences. Let's
consider in this R-deduction some clause Co which is
the resolvent of two clauses C; and C, which are in S.

Then there is a R-deduction of LV C from S and C,
using n-1 inferences.

We distinguish the following two cases:
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Case 1. Cg 1s a L-clause. For the same reason as in

the base induction step CLCOQZ 1s an L-inference. Then

by induction hypothesis the R-deduction of L V C from
S and Cy there exists a L-deduction D of LV C from S

and Cy. If we add the L-inference : CJCOCJ before the

first occurence of Cg 1n D, we get a L-deduction of LVC
from S.

Case 2. Cp 1s not a L-clause. Then by 1induction hy-
pothesis there exists a L-deduction D of L V C from S
and Cp. Assume the L-inference using Cg, in D, is of the

E C : .

—-C,:(-Q , where E 1s a set of electrons and Cg 1s the
nucleus .We define a partition of the set E into two sets
F.; and E-» as follows : a clause e 1n E 1s in E; 1if and

only if the literal in e which 1s resolved 1n the inference

b, CSQ is provided by the clause C;.

form

F CLC C2
Then we transform the proof d : Caﬂ ,
E_Co 1s an L-inference, and C1_C;

where “ 1s an
Cs Co

R-1nference,

into d’ : C.

The 1nferences By Gy and By G2 are L-
Ca Cs
E Cy

inferences, because C 1s a L-inference, 1.e. each

intermediate resolvent in the L-inference 1s an L-clause,
and the resolved literals in E; (resp. E2) and C; (re-
sp. Co) are the same literals as the literals resolved in

EE and Cy. Then C4 and Cg are L-clauses, and 1n the

| Ca C
inference iC =2
'6

- the resolved literals are the same

. . Cy C
as 1n the inference : 4(,0 2

- moreover these literals

are not the hterals which make C4 and Cg be L-clauses,

- Cq Cs
then Ce

1s an L-inference. So Cg 1s an L-clause,
and the transformed proof d’ 1s an L-deduction.

The set of literals which must be unified, and resolved,
in the proof d and in the proof d’ are the same, then the
two sets of equations defining the most general unifiers
in d and d’ are the same. Then the substitution apphed
to the literals of E, C, and C,, whose instances are 1n Cg,
is the same as the substitution applied to the literals of
E,, E2, C; and Cs whose instances are in Cg. Therefore
Cg 1s1dentical to Ca. Finally if we replace in D the proof
d by d’ we get an L-deduction of L V C from S.

In the case where there are several occurences of Cy in

the proof D, and Cg 1s involved 1n several L-inferences of
E' C
the form ol Q
3

, we remove each Cy occurence with a
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similar transformation. Notice that each transformation
decreases by one the number of Co occurences. Then
after a finite number of tranformation of the L-deduction
D we obtain a L-deduction of L V C from S. Q.E.D.

The following completeness theorem is a trivial conse-
quence of Theorem 1 and Theorem 2.

Theorem 3. Let S be a set of clauses, if L V ¢ is
a clause derivable from S, there exists a clause L' V ¢,

subsuming L V ¢, which is derivable from S by an L-
deduction.

Proposition Since every L-inference is a sequence of

application of Resolution principle, the L-inference rule
IS sound.

One could notice that an L-deduction is very close to
an OL-deduction, or an SL-deduction (see [8]) with top
clause -L. However OL-resolution has been proved to
be complete to generate the empty clause, but it fails to
be complete for clause generation, Inoue, in [4], modi-
fled the standard OL-resolution, by adding a new rule,
called "Skip", that allows to reach completeness. The
complexity of the proof of Theorem 1 clearly suggests
that there is no evidence that a strategy which is com-
plete to generate the empty clause is also complete for
the generation of clauses. That is why the proof of The-

orems 2 and 3 is, in our view, the main contribution of
our work.

4  Definition of the L-strategy

A saturation algorithm is considered in order to define
an effective procedure to compute the L-clauses. This

algorithm could be improved using more sofisticated s-
trategies like ordering.

The L-strategy computes the answer to a query into
two steps. In the first step is computed a set of clauses,
called extended answer, containing more clauses than
the clauses in the answer. Namely answers may contain
hypothesis which are inconsistent with S. In the second
step we have to remove all the clauses L'V X in the
extended answer such that X is derivable from S. In this
second step the clause X is known, then testing if X is
derivable from S can be done by any standard theorem
proving strategy. For this reason this second step is not

described in this paper, and we shall present only the
first step.

Definition 5. We call extended answer the follow-
ing set of clauses

eans(L,S) = {L'VX | S h L'VX, where L' is an instance
of L, and L'V X is not a tautology, and there is no clause
c in eans(L,S) such that c strictly subsumes L'V X }



Note that this definition is weaker than the previous
one. Indeed, if L'V X E ans(L,S), X is not derivable

from S, while if L'V X E eans(L, S), X may be derivable
from S.

Notation : We denote [S] a set of clauses where all
the subsumed clauses have been removed.

Definition 6.
let L be a query,
SO,...,Si+1,..

Let S be a set of clauses, and
the L-strategy computes the sets
., iInductively as follows :

So = {(I.vX)e | L'VX €S and o is the most general
unifier of L and L’ }]

Si+1 = [Si U {L'"V X | there exists a set of electrons
E in S;, and a nucleus n in S, such that L'V X is the
L'-resolvent of E and n}]

For the purpose of the next definition we consider de-
ductions as proof-trees instead of proof-sequences.

Definition We call depth ofa deduction the num-
ber of inference steps in the longest path ofthe proof-tree
corresponding to this deduction.

Theorem 4. IfL'V X is in eans(L,S), where L' is an
instance of L, then there exists some i, and a clause c,
such that cis in S,, and c is equivalent to L'V X

Proof : The proofis by induction on the depth j of
the L'-deduction of L'V X from S.

For the base case (j=0) the proofis trivial.

For the induction step, assume there is an L'-

deduction, of depth j + 1, of VV X from S, where the
E n

last L'-inference is of the form L'VX

First we show that tautologies can be removed.

Ifa L'VX proofuses a tautology, then we can show by
iInduction that this tautology is either n or an electron
of E. In that case we can also show that it is possible

to transform the last two inferences in a proof whithout
tautology.

Now we show that subsumed clauses can be removed.

Let e = MV e' be an electron in E, where M is the
resolved literal. Ife does not belong to eans(L,S), there is
an L-clause c in eans(L,S) subsuming e. We distinguish

the following two cases

Casel : ¢ susbsumes e'. Then ¢ subsumes the instance
of €' which is in VV X. That contradicts the fact that
L'V X is in eans(L,S).

Case2 : ¢ does not subsumes e;. Then c is of the form

M'Vc', where M' is an instance of M. In this case we can

transform the inf £
ranstorm e Interence L,Vx

by replacing e in E by c.
Then the new L'-resolvent subsumes L'V X because c'

subsumes e' . That contradicts the fact that L'V X is in
eans(L,S).

Therefore e belongs to eans(L,S). Since the depth of

the L'-deduction is equal toj, by induction hypothesis e
IS in Sj.

The same conclusion holds for any electron in E, so
from the definition of S;.+1 in function of Sj we can con-
clude that L'V X is in Sj+i.

5 Some typical examples

In this section we present two examples showing the
main features of our approach.

Example2 is a very simple example illustrating the
interest of the L-strategy for automated diagnosis.

Let's consider a very simple system 1, with components
. b, by, by, and c, whose correct working is defined by
the following rules and facts :

| — works — b — works A ¢ — works
b — works «— b; — works A b, — works
bl — works

If we respectively denote by : L, B, By, B, and C, the

propositions . 1-works, b-works, bs-works, b,-works and
c-works, we have :

S={Lv-Bv-C, BV-B;V-B B }
Query : L

S() _ {LV""BV““(?}

N
-—
H

{LV-BV-C, LV-B;V-ByVv-C}

& p
~
1

{Lv-Bv-C, LV-Byv-C}

The answer : L V =B, vV =C can be interpreted as :
"1-works if bo-works and c-works", or as well as : " a

possible explanation that 1 does not work is that b, or c
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does not work".

Example3, which is in Propositional Calculus, is in-
teresting because it shows that the standard Input reso-
lution strategy is not complete. Indeed with this strategy
we cannot infer L V A, while L V A is derivable with the
L-strategy. Here we can see that the reason why the L-
strategy is complete, although it is an Input strategy, is
that the L-strategy is also an Hyperresolution.

S={LVMVN, ~-MVN, MV-N, ~-MV-NVA }

Query : L.

i

So {LVMVN}

S; = {LVM, LVN}

The clauses : LVNV-NVA and LVMV-MVA are
not in S; because they are tautologies, and LVM V N 1s
not in S; because it 1s subsumed by L V M.

SQ — {LVM, LVN, LVA}

. V A 18 generated by an L-inference where the two
electrons are : L VM and L V N, and the nucleus is :
~-MV-NVA. The clauses LV-MVA and LV-NVA
are not in S, because they are subsumed by L V A.

Exampled4 shows how we can get infinite answers.
The intuitive meaning of the query is : What conditions
implies that x is an ancestor of y 7" Since the query
does not refer to a specific set of persons, there is an
infinite set of conditions which guarantee that x is an
ancestor of y; each condition correponds to a different
level in the ancestor's hierarchy.

S = {L(x,y) V —Ancestor(x,y),
—Father(x, y),
Ancestor(x,y) V —Ancestor(x, z) V —-Father(z,y) }

Ancestor(x,y) V

Query : L(x,y).

So = {L(x,y)V —Ancestor(x,y) }

Sy - {L(x,y) V —Ancestor(x,y), L(x,y) V
—Father(x.y),
L(x,y) V ~Ancestor(x,z,) V —~Father(z;,y) }

Sq = {L(x,y) V —-Ancestor(x,y), L(x,y) V
—Father(x,y),

L(x,y) V —Father(x,z,) V —~Father(z, , y),
L(x,y) V —Ancestor(x,z2) V -—Father(zz,2;) V
—Father(z,,y)}
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S; =
—Father(x, y),
L(x,y)V —Father(x, z,) V —Father(z,, y),

L(x,y) V -Ancestor(x,z2) V —Father(z,,2;) V
—Father(z,,y),

{L(x,y) V —Ancestor(x,y), L(x,y) V

L(x,y) V —Ancestor(x,z;) V —Father(z;,zi_-,) V ... V
-Father(z,,2;) V —~Father(z,,y)}

§) Conclusion

We have defined an inference rule and a strategy to gen-
erate the most general hypothesis allowing to infer a for-
mula, represented by a single literal L, in the context of
a given theory. This strategy is efficient in the sense that
it generates only L-clauses. Then the only useless gen-
erated closes are those ones which are not minimal with
regard to the subsumption. Moreover we have the feel-
ing that this second step cannot take advantage of the
work done in the first step, and they can be executed
into two independent steps without waste of efficiency.

Nevertheless many refinements of the strategy should
be investigated in the future. One of them is to make
use of an order on the predicate symbols.

An important issue we want to investigate in the fu-
ture is the case of infinite answers. A first approach is to
find a finite representation of those infinite sets, having
some desirable properties. For example to be easy to
understand. Another approach is to provide only partial
answers, and to cut the computation in a "clean" state.

The right approach certainly depends on the application
field.

Our method can be considered as a step in order

to supply new functionalities for automated deduction
methods.
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