
Using A s p i r a t i o n Windows f o r
M i n i m a x A l g o r i t h m s

Reza Shams * H e r m a n n K a i n d l
Alcatel-ELIN SIEMENS AG Osterreich

Forschungszentrum GudrunstraBe 11
Ruthnerg. 1-7, A-1210 Wien A-1101 Wien

Austr ia Aust r ia

H e l m u t H o r a c e k
Univers i tat Bielefeld

Postfach 8640
D-4800 Bielefeld 1

Germany

Abs t rac t
This paper is based on investigations of sev­
eral algorithms for computing exact min imax
values of game trees (ut i l iz ing backward
pruning). Especially, the focus is on trees
w i th an ordering simi lar to that we have ac­
tual ly found in game playing practice. We
compare the algori thms using two different
distr ibutions of the static values, the uni­
form distr ibut ion and a distr ibut ion esti­
mated from practical data. Moreover, this is
the f i rst systematic comparison of using as­
pirat ion windows for al l of the usual min i ­
max algorithms. We analyse the effects of
aspiration windows of varying size and posi­
t ion.

The use of an aspiration window not only
makes alpha-beta search competit ive, but
there also exists previously unpublished de-
pendencies of its effects upon certain proper-
ties of the trees. In general, the more recently
developed algori thms wi th exponential space
complexity are not to be recommended for
game-playing practice, since their advantage
in having to visi t fewer nodes is more than
outweighed under practical conditions by
their enormous space requirements. Final ly ,
we propose a method for an analytic determi­
nation of estimates of the optimal window
size, presupposing evidence about some char­
acteristic properties of the domain of applica­
t ion. In summary, we discovered and found
empirical evidence for several effects unpre-
dicted by theoretical studies

1. I n t r o d u c t i o n and Backg round
For long, the only known method for computing the
exact minimax value of a game tree without gener­
at ing this tree in its entirety was the so-called
alpha-beta algorithm (for a description and histori­
cal review see for instance [Knuth & Moore 75]). In
the meantime, several other pruning algori thms
have been found. A short review and references w i l l
be given in Section 2, and more elaborate descrip-

* The contr ibut ion of th is author was performed as Dip lom-
arbe i t " supervised by the second author (comparable to a
Master's thesis) before jo in ing A lca te l -EL IN Forschungs­
zentrum. I t was supported by S IEMENS AG Osterreich,
especially in provid ing faci l i t ies.

tions can be found for instance in [Ka ind l 90] and in
the cited references.

Natura l ly the question arises which is the most
efficient a lgor i thm (more precisely, under which
conditions). For some of these algori thms there
exists exact formulae for the expected number of
terminal positions on certain game trees (random
trees wi th uni form branching degree and dist inct
terminal values) [Pearl 84]. These render alpha-
beta (in its pure form) clearly less efficient than its
competitors. However, for trees of the k ind occur­
r ing in real games the situat ion is not this clear:
[Marsland & Campbell 82) defined strongly ordered
trees, in which 70% of the t ime the first branch
from each node is best. [Campbell & Marsland 83]
and [Marsland et al. 871 investigated different tree
ordering types using a form of Monte Carlo simu­
lat ion.

W i th respect to issues of relat ive efficiency, such
cr i ter ia seem to be a promising attempt to model
the actual conditions occurr ing in computer game
playing. Therefore, we actual ly gathered such data
(among others) w i th the chess program MERLIN..
The statistics compiled from 438 move decisions
(most of them under tournament conditions)
showed a mean value of 90.3% (wi th a standard
deviation of 8.2%) for the relat ive frequency of the
first branch from each node being "best" (more such
statistics can be found in [Ka ind l 88]). Since we
were mainly interested in a comparison using
parameters which reflect best the practical condi­
tions occurring in real game playing, we choose to
investigate very strongly ordered trees.

Comprehensive experiments under such condi­
tions showed some interest ing results (see [Ka ind l
et al. 89)). As a main result, alpha-beta (in its pure
form) is also less efficient than its competitors on
ordered trees, although it profits most f rom an in­
creased ordering of the trees. In practice, however,
many enhancements to alpha-beta are used (see
[Schaeffer 86, 891 for a comprehensive set of experi­
ments comparing their performance in the domain

1 M E R L I N is a collaborate effort of the second and the th i rd
author together w i t h Marcus Wagner . I t played some major
computer tournaments, for instance it t ied for 10th out of 22
part ic ipants at the Wor ld Computer Chess Championship in
1983, and for 6 th out of 24 par t ic ipants at the Wor ld Computer
Chess Championship in 1989.

192 Automated Reasoning

of computer chess). Whi le most of these enhance­
ments just serve the purpose of achieving improved
ordering, it is also common practice to use an aspira­
tion window for alpha-beta, but to our best knowl­
edge there is no published account of the effects of
vary ing window size. Note, that alpha-beta was only
compared in its pure form (in part icular wi thout such
windows) in the previous theoretical studies. Our
comparisons gave a strong indication of its improve­
ments using such a window, which made it fu l ly com­
peti t ive to the newer algorithms. Whi le this en­
hancement is often used for improving alpha-beta,
we are not aware of a published comparison of the ef­
fects of using windows for the other algorithms.
Hence, we found it interest ing to compare " a l l " the
min imax search algori thms using such a window.

Moreover, we had serious doubt that in practice al l
the possible values are equally l ikely result ing from
the static evaluator, as usually assumed in theoret­
ical studies. Therefore, we became interested in the
effects of using a distr ibut ion of the values estimated
from practical data, compared to having them equal­
ly distr ibuted. The question is, how the simpl i fy ing
assumption of uni form dist r ibut ion affects the re­
sults.

Since using an aspiration window always bears the
danger of having to repeat the search (re-search), in
case the minimax value is outside the window, the ef-
fort for computing it may even become greater than
that when using no window at a l l . Whi le the tech­
niques of estimating the posit ioning of such a win
dow are quite developed, its size is only determined
by experienced guessing. Hence, we present the first
method for an analytic determination of estimates of
the optimal window size.

2. A lgo r i t hms Compared
Like alpha-beta (AB), the newer algori thms SCOUT
[Pearl 80] and palphabeta [Fishburn & Finkel 80]
have l inear space requirements. These have simi lar
average performance [Musczycka & Shinghal 85]. In
our experiments, we actually used a sl ight ly im­
proved variant called negascout (NS) [Reinefeld 83].
SSS* [Stockman 79] and D U A L * [Marsland et al. 87]
are best-first search algori thms and consequently
have exponential space requirements.

Enhancements to NS have led to INS {informed
NS), which saves information for the case that sub­
trees must be re-searched [Marsland et al. 87].
Hence, INS has storage requirements comparable to
SSS* or D U A L * (see also [Schaeffer 86]). These
enhancements have s imi lar effects as the use of the
usual hash tables in game playing programs.

AB is normally used in practice in its refined ver­
sion aspiration alpha-beta (AAB). Usual ly, game
playing programs can estimate the minimax value
quite accurately to lie w i th in a certain range, even
before the search is done. (This abi l i ty is strongly re­
lated to the use of iterative deepening in most pro­
grams: searching the tree successively deeper and
deeper, see e.g. [Kor f 85].) This range is usually

called the aspiration window, and its bounds are
used as an (art i f ic ial) in i t ia l isat ion of the parameters
a and B at the root. Quite s imi lar ly to NS, a re-search
w i th modified parameters is necessary, when the ac­
tual min imax value is not inside this window.

More precisely, a sl ight ly modified version of the
alpha-beta a lgor i thm is used in this context today
which was proposed by [Fishburn & Finkel 80]. In
case the min imax value is outside the or ig inal win­
dow, it can provide t ighter bounds for the re-search.
Hence, they called it "Fail-soft Alpha-Beta" (abbrevi­
ated here by FAB). More details on this can be found
in [Marsland & Campbell 82]. However, we could not
f ind any quant i tat ive data on the savings compared
to the or ig inal version of aspiration alpha-beta which
is not u t i l i z ing the advantages of FAB. (This version
we cal l O L D A A B here.)

In the fol lowing we generalize the method of using
a window for a l l the given algori thms. The use of an
aspirat ion window for NS and INS is analogous to
that for AB. We call these algori thms ANS and
AINS. However, for the corresponding versions of
SSS* and D U A L * , ASSS* and A D U A L * , the window
is useful only from one side, by in i t ia l is ing their in­
ternal bound w i th the upper or the lower bound of
the window, respectively. When the min imax value
is inside the window, this is obvious from their way
of handl ing their internal bound. Of course, when the
value of the second bound of the window is reached or
exceeded, stopping the search is possible according to
[Campbell & Marsland 83] and [Reinefeld 89]. How­
ever, when the exact min imax value has to be deter­
mined this is not to be recommended. A re-search
w i th the new bound would have to be done, in effect
wasting resources by searching again parts of the
tree whose results would be available when con­
t inu ing the stopped search. Therefore, ASSS* and
A D U A L * cannot ut i l ize their second bound, and thev
should not be hindered by it. A pseudo-code formula­
t ion of the key part of ASSS* looks l ike the fol lowing.

Value := SSS*(Position, b),
if Value = 6 then

Value := SSS*(Position, +<*>);
end if;

Analogously, the key part of A D U A L * can be formu
lated as follows:

V a l u e r DUAL*(Posi t ion,a);
if Value = a then

Value := DUAL*(Posit ion, -°°);
end if;

3. Exper imen t Design
As usual for mathematical analysis as well as
simulat ion studies, the standard model of a uniform
game tree of width w and depth d has been used. In
our experiments, we kept w fixed (w = 5) while
varying d from 3 to 9.

Since the approach of generating such trees pro­
posed and used by [Schaeffer 86] requires only O(wd)

Shams, Kaindl. and Horacek 193

storage, we have also adopted it for our experiments.
It works on the principle of deriving the value of a
subtree from information available at its parent
node. A minimax value is chosen and used w i th the
specified ordering cr i ter ia to bui ld a tree from the
root down. The ordering parameters can be specified
here in the form of w weights reflecting the chance
that each of the w moves from anv node w i l l lead to a
subtree having the min imax value of this node. A
more detailed description can also be found in
[Marsland et al. 87].

Whi le we have made some few experiments w i th
random trees {independent and identically distri­
buted, see [Pearl 84]), our emphasis was on very
strongly ordered trees. For the chance of the f i rst
branch being best we chose the values 70%, 80%, and
90%. Since the effect of the ordering of the remaining
moves appears to be largely negligible [Ka ind l et al.
89], we assumed them to have equal chance of being
best.

Let the distr ibut ion function Fx (x) = P (X x)
characterise the random variable X ranging over the
same interval as the static evaluation function fin).
The probabil i ty p — P(X — x) for node n is the proba­
b i l i ty of the event that fin) returns x. FX(x) has been
assumed to be uni form (as usual) and al ternat ively
estimated from practical data of a chess program.
The compiled statistics revealed that the static val­
ues around 0 occured very frequently. For this rea­
son, a normal d is t r ibut ion could not f i t these data
wel l (according to stat ist ical tests). Hence, we de­
fined a distr ibut ion funct ion Fx1 (x) approximat ing
our data as an estimate of Fx (x) (see [Shams 90]). It
seems that the exact shape of the distr ibut ion func­
t ion is not really important for the results of the
simulat ion runs, only the values around 0 must have
a signif icantly higher probabil i ty.

Several different window sizes were chosen in our
experiments: 1, 79, 159, 239, 319, 399, 479, and 639
values inside the window, out of the range -
999...999. (This corresponds to 0.05%, 4%, 8%, 12%,
16%, 20%, 24% and 32% of the total value range.)
The window containing 1 value has been called nar­
row window by [Marsland et al. 87] and is of special
interest, because it is the smallest window possible
for a successful search. The window position has been
chosen uniformly over the whole range. In case the
minimax value is outside the window, we have
performed additional experiments, in which it was
more l ikely that the window position is "closer" to
the minimax value (a more realistic assumption).

In these experiments, 20 simulations were done for
the case, that the min imax value MM is inside the
window (a, 6), and 20 in case it is outside. This means
10 simulations wi th MM a, and 10 wi th MM b.
In both of these cases A A B , ANS and AINS perform a
re-search in the sense of " fa i l ing low" and " fa i l ing
h igh" , respectively. However, ASSS* only re­
searches if MM b and A D U A L * does so if MM a.
The overall performance figure is gained by weight-

194 Automated Reasoning

ing the data according to the frequency observed in
practice (see below).

General ly, every stochastic event has been simu­
lated by a call to a pseudo-random number generator,
parameterized independently of the relat ive frequen­
cies achieved earl ier in the tree generation process.
Whi le the seed for the random number generator was
different for each of the generated trees, each of the
algor i thms searched the same trees, of course. As a
measure of performance we selected the number of
bottom positions (NBP), as usual. It is known, that
some of the algori thms (SSS* and DUAL*) have
more overhead than others (AB, NS and INS)
[Marsland et al. 871. However, whether this is s igni f i ­
cant (in the sense of runn ing time) depends strongly
on the cost of going from one node to another and
evaluat ing terminal nodes in the domain of
application, as well as the encodings. In part icular ,
the runn ing times of SSS* and D U A L * in the
simulations are signif icant ly larger than those of
AB, NS and INS. The si tuat ion is atypical , however,
since in the simulat ions just calls to a random
number generator are performed instead of real
operations, which are usually more expensive.

The empir ical data have been prepared in
i l lust rat ive figures. Of course, only a very l imi ted se­
lection of these can be presented here. A compre­
hensive set is available, however, in [Shams 90].

4. Results o f Us ing A s p i r a t i o n W indows
Specific results regarding AB and A A B should be
noted. Many of the published comparisons of min i ­
max algori thms as well as our experiments show
that AB (in its pure form) is less effective than its
newer competitors. Some investigations of its im­
provement through an aspiration window indicate
savings on the order of 20% (according to our experi­
ence w i th MERLIN and [Gi l logly 78, Baudet 78,
Marsland 83]), which make the alpha-beta a lgor i thm
competitive. This is also supported by our results
w i th AAB. They showed even a sl ight superiori ty of
A A B in case of using a window of real ist ic size.

The deeper the search, the more can be saved in
absolute terms of NBP using A A B instead of AB.
Compared to the algor i thms which do not use a win­
dow, A A B shows the least degradation in perform­
ance (relative to the min ima l tree) when the search
depth is increased. From our empir ical data it seems
that the use of an aspirat ion window leads to a
certain reduction in branching factor, depending on
the window size.

So the question arises, whether the other algo­
r i thms can uti l ize a window just as wel l . Based on ex­
periments w i th chess programs, we could conjecture
that NS and its variants only marginal ly improve by
use of an aspiration window. In fact, these algo­
r i thms use a s imi lar idea internal ly . As described
above, ASSS* and A D U A L * can use windows only
f rom one side. Actual ly , the results of our experi­
ments provide empirical evidence that AB profits
most from using an aspiration window.

F ig . 1. Comparison of a lgor i thms w i t h va ry ing window size to
m i n i m a l tree - NBP, averaged over depths 3 to 9, d is t r ibu t ion of
t e rm ina l nodes' values according to FX1 (x), w id th = 5.

F i g . 2. Comparison of a lgor i thms to m i n i m a l tree - N B P (%) , one
re-search (in case of aspi rat ion a lgor i thms), window conta in ing
79 values, 80% f irst-move-best, d is t r ibu t ion of t e rm ina l nodes'
values according to FX, (x), w id th = 5.

Now let us have a more detailed look at these
results. F i rs t we consider the case that the min imax
value is inside the window. When using small win­
dows l ike those in practice, ANS is the worst of the
algori thms compared here, although NS is clearly
better than AB. In the average, the gain in efficiency
by decreasing window size is approximately " l inear" ,
though w i th a different slope for the various algo­
r i thms (see Fig. 1). Moreover, we observed some
exceptional cases, when a larger window results in a
more efficient search than a smaller one. This is par­
t icular ly remarkable for A A B , but it is only possible
here when both bounds of one window differ f rom the
bounds of the other. An example and a proof sketch
for this phenomenon can be found in [Shams 90].

In very strongly ordered trees, the differences
caused by various window sizes are small. There may
be the h int for practice to avoid too small windows,
since the r isk of having to re-search may be greater
than the savings. The method for est imating the win­
dow size presented below takes this into account
implicitly.

If the f i rs t search fai ls, a re-search has to be done
w i th an opened window. In these cases, ASSS* is the
most efficient algor i thm. W i t h increasing ordering of
the trees, A INS becomes nearly as efficient as
ASSS*. ANS is here better than AAB, just as NS is
better than AB, while wi thout 'Tai l ing" and when
using smaller windows A A B is more efficient than
ANS.

Again, there is an approximately l inear behavior
according to the window size, though w i th different
slopes and more pronounced differences among the
algorithms. Moreover, there is a different reason
here for exceptions: An in i t ia l l y larger window may
well cause a more costly first search, but this may
result in a better bound for the second one, in effect
reducing the overal l effort. These exceptional cases
are more frequent than those occurring when the
minimax value is inside the window.

There is also an interest ing phenomenon when the
minimax value is identical to one of the bounds. Each
of the two searches may visi t fewer bottom nodes
than the min imal tree contains, while the sum must
of course be at least as large.

In general, our results showed that " fa i l ing low" is
more expensive than " fa i l ing h igh" This observation
coincides w i th the results of experiments wi th the
min imal window as reported by [Marsland et al. 87).

As described above, ASSS* and A D U A L * can use
only one of the window bounds. Hence in our experi­
ments, re-searches are performed only in 10 instead
of 20 cases, in which the minimax value is outside
the window. Taking the results of a l l 20 simulat ion
runs into consideration, these algorithms are the
most efficient ones, ASSS* being the best. However,
concentrating on the re-search cases only, A D U A L *
is surprisingly inefficient, while ASSS* is s t i l l the
best. Plausible reasons for this phenomenon are that
A D U A L * visits comparably many nodes in the in­
i t ia l fa i l ing search, and it "fai ls low", which we have

Shams, Kaindl, and Horacek 195

observed to be more costly than 'Tai l ing h igh" (as
SSS*does).

Focussing on practical conditions, a comparison
should be made on combined data. Hence, we have
chosen the frequency of re -searches (1 out of 20 cases)
according to our experiences wi th MERLIN, which
have been confirmed by statistics compiled from the
five games played at the World Computer Chess
Championship in 1989. There, out of 815 indiv idual
searches using AAB (usually, iterative deepening
uses more than one search for one move decision) a
mean value of 5.4% (wi th a standard deviat ion of
22.6%) resulted for the relat ive frequency of re­
searches. Therefore, we weighted the re-search data
w i th a factor of 1/20 and the remaining ones wi th
19/20. This means that the essential results of the
case in which the min imax value is inside the
window st i l l hold. Fig. 2 shows the relative efficiency
of the investigated aspiration algori thms, and com­
pares them also to AB and NS.

The results of our experiments w i th random trees
suggest that the relative gain in efficiency by using
an aspiration window is nearly the same for al l
investigated algori thms, except that AB and NS (the
ones wi th l inear storage requirements) prof i t more.
However, their aspiration versions are st i l l less
efficient than those of the others.

Our comparison of A A B w i th OLDAAB revealed a
previously unknown property of FAB. W i th increas­
ing search depth their efficiency becomes more and
more the same. Empir ical data showing this phe­
nomenon are i l lustrated in [Shams 90, Figs. 90-101].
As we found out, the main reason is that w i th in­
creasing depth it is more l ikely that FAB returns the
same value as the or ig inal AB, namely the alpha or
beta bound. Hence, it appears that the advantage of
FAB over the or iginal alpha-beta a lgor i thm is only
marginal . However, since it cannot be worse and its
overhead is negligible, FAB is s t i l l to be preferred.

5. Effects of D i f fe ren t D is t r i bu t i ons
Al l the algori thms are more efficient on trees w i th
uniform distr ibut ion of terminal values than on
those having terminal values distr ibuted according
to Fx1 • A plausible reason for this effect is as follows.
As usual in practice, the minimax value lies more
l ikely near the mean of the distr ibut ion of al l the
values. In contrast, when using the uni form distr ibu­
t ion, more often large values (positive and negative)
outside the window occur, which result more fre­
quently in cutoffs.

Especially AB shows more gain in efficiency from a
better ordering on trees w i th terminal values distr ib­
uted according to Fv , presumably because there is
simply more to gain. In the average, D U A L * is most
efficient on trees wi th both distr ibut ions, but using
Fxt the performance of INS becomes essentially the
same (see [Shams 90, Figs. 9-11]). On trees wi th uni­
form distr ibut ion of the terminal values, SSS* is
even sl ight ly more efficient than D U A L * when
searching to even depths, whi le it is clearly worse for

196 Automated Reasoning

odd depths. Fx1 makes SSS*'s performance s l ight ly
worse. In general, the results of dependencies on the
d is t r ibut ion of terminal values also hold for the
aspirat ion var iants of these algor i thms.

6. E s t i m a t i n g an O p t i m a l W i n d o w Size
One goal of our experiments is to produce a basis for
determining suitable search parameters to min imize
the overal l cost of the search (measured by NBP).
Hence, certa in properties of the domain have to be
estimated or empir ical evidence has to be collected
by means of statistical observations. In order to de­
termine a window size which can be expected to
produce the lowest possible cost, we need data about
two properties of the domain:
1. the d is t r ibut ion of the static values Fx (x) as

described above, and
2. the d is t r ibut ion of the min imax values Fy (x) — P

(Y < x) which characterises the random variable
Y also ranging over the same interval as X, p = P
(Y = x) for node n is the probabi l i ty of the event
that the minimax value MM (n) is identical to x.

The funct ion Fy ix) is used to estimate the proba­
b i l i ty of avoiding a re-search, depending on the
window size. Of course, Fx(x) and Fy(x) are related
to the static evaluation function used.

The cost of a search depends on whether the min i ­
max value is inside (Cin) or outside iCout) the
pregiven window, and consequently in the average
case on the frequency of each of these occurrences.
Cin and Cout depend on Fx(x) and on the window size
s. As sl ight simpli f ications which seem to be just i f ied
in most practical cases of interest we assume s to be
odd, and a window centered around 0 (the data col­
lected have been shifted appropriately). The total
cost can be computed according to the formula

Ctotal = C^ iFx <x), S) ■ (> M f-™FY' (x) dx +

Cout (Fx <x). s) (l-^lv2 rl>nFY' (x) dx)
If the functions can be formulated analyt ical ly , the
derivat ion oiCtotai w i th respect to s can be computed
to get the extreme values, the m in imum of which is
the opt imal window size. For our purpose, Fy (x) is
based on statistics compiled f rom the tournament
games of the chess program MERLIN at the Wor ld
Championship in 1989. Unfor tunately, the usual
continuous distr ibut ions for est imat ing Fy (x) could
not f i t these data well (according to stat ist ical tests).
Therefore, we had to use the discrete values of our

TABLE 1 sopt is the calculated value for the estimate of the
opt imal window size based on our data from practice. The value
in parantheses is scaled in "pawn units", the usual measure in
computer chess practice. Ctotai is the total cost in NBP for this
min imum window size based on the simulat ion results.

AAB ANS AINS ASSS* ADUAL*

Sopt 81(1.23) 53(0.83) 135(2.11) 81(1.27) 123(1.92)

Ctotal 1997.59 2102.85 1914.82 1881.82 1898.33

statistics. As for the functions Cm and Cout we have
applied interpolat ion between the data obtained
from the simulat ion runs. The results are sum­
marized in Table 1.

A l though the opt imal window size is signif icantly
different for each of the algor i thms, their absolute
differences of cost are w i th in a margin of about 5
percent for "reasonable" choices of the window size
(about 50 to 150). Nevertheless, a correlation be­
tween total cost and opt imal window size can be ob­
served. The difference between A INS and A D U A L *
manifests in larger cost of re-searches for AINS.
Hence, a larger window for A INS is plausible despite
its larger cost. The estimate of an optimal window
size for SSS* is due to its comparably low value for
Cin at a specific window size (79). In other regions, its
cost is always sl ight ly higher than that of DUAL* .

7. Conc lus ion
The main results can be summarized as follows:
• Pure alpha-beta search is the least effective

backward-pruning algor i thm also on very strongly
ordered trees. However, using an aspiration win-
dow can make it competitive since it profits most
from using such a window. Under realistic condi­
tions AAB is fu l ly competitive (see Fig. 2), which is
also supported by experience wi th computer chess.
Moreover, we have observed previously unpub­
lished dependencies of using such a window upon
certain properties of the trees.

• Whi le ASSS* and A D U A L * visit sl ightly fewer
nodes than their counterparts, we would suggest
that they should not be used especially in domains
where good ordering can be achieved, because this
minor advantage is more than outweighed by their
exponential space complexity. Achieving such an
ordering should be feasible in most structured do­
mains, using methods l ike the history heuristic of
[Schaeffer 86, 89]. Moreover, even though these al­
gorithms vis i t fewer nodes, they are l ikely to be
slower in practice due to their overhead in man­
aging the l is t of "open" nodes.

• Regarding the algorithms w i th l inear space com­
plexi ty, NS can only sl ight ly be improved by using
an aspiration window (ANS). Using smaller win­
dows, A A B has been found to be more efficient
than ANS, and only the var iant of NS wi th expo­
nential space complexity, A INS, is comparably
better (see Fig. 2).

• Our comparison between the variants of aspiration
AB using FAB in contrast to the or ig inal version of
alpha-beta search revealed that the deeper the
search the more l ikely FAB returns one of the
bounds as its result.

• The assumption of uniform distr ibut ion of terminal
values must be handled w i th care, since it affects
the results.

• Presupposing evidence about some characteristic
properties of the domain of application, we found a
method for an analytic determination of estimates

of the optimal window size for each of the algo­
r i thms compared.

Purely theoretical studies did not provide us wi th
these results, since realistic modell ing of the condi­
tions in practice makes the analysis at least very dif­
f icult. More and more simpli f ications often lead to
the loss of important conditions. For instance, alpha-
beta search under realistic conditions is by far not as
inefficient as suggested by theoretical analysis.
Purely empir ical studies in specific domains, on the
other hand, always leave doubt on the generality of
their results. Our experience w i th computer chess is
consistent w i th the results of the simulat ion studies
(as far as they are comparable). We hope that our ap­
proach of less r ig id modell ing and the use of s imul­
ation studies can help to bridge the gap between
theory and practice.

A c k n o w l e d g m e n t s
We would l ike to thank Jonathan Schaeffer for giving us a very
good basis for our exper iments, in prov id ing us especially w i th the
C code of his tree generat ion a lgor i thm. Wolfgang Ginzel's effort in
w r i t i ng software For p lo t t ing the f igures is great ly acknowledged.

References
Campbel l , M.S., and Mars land, T.A., A Comparison of M in imax
Tree Search A lgor i thms, Artificial Intelligence 20 (4), 1983, 347
367.
F ishburn, J . , and F inke l , R.A., Parallel Alpha-Beta Search on
Arachne. Tech. Report #394, Depar tment of Computer Science,
Univers i ty of Wisconsin, Madison, Wis., Ju l y , 1980.
Ka ind l , I I . , Useful Statist ics f rom Tournament Programs, ICCA
Journal 11(4) 1988, 156-159.
Ka ind l , H., Tree Searching A lgor i thms, in Computers, Chess,
and Cognition. T. A. Marsland and J. Schaeffer, Eds., New York:
Springer- Ver lag, 1990, 133-158.
Ka ind l , H., Wagner, M., and Horacek, H., Compar ing Various
Prun ing A lgor i thms on Very Strongly Ordered Game Trees, Proc.
New Directions in Game-Tree Search Workshop, Edmonton,
Canada, May, 1989, 111 120. A comprehensive version is avai l
able as Tech. Report #50, Depar tment of Stat ist ics and Computer
Science, Un ivers i ty of V ienna, Aus t r ia , January , 1988.
K n u t h , D.E., and Moore, R.W., An Analvs is of Alpha Beta
Pruning, Artificial Intelligence 6(4), 1975,293-326.
Korf , R.E., Depth-First I terat ive-Deepening: An Opt ima l Ad
missible Tree Search, Artificial Intelligence 21 (1), 1985, 97-109
Mars land, T.A., and Campbel l , M.S., Para l le l search of strongly
ordered game trees, ACM Comput.Surv. 14(4), 1982,533-552.
Mars land, T.A., Reinefeld, A., and Schaeffer, J . , Low Overhead
A l ternat ives to SSS*, ArtificiaI Intelligence 31 (2), 1987, 185-199.
Musczycka, A., and Shinghal , R., An empi r ica l comparison of
p run ing strategies in game trees, IEEE Trans. Svst. Man Cybern.
15(3), 1985,389-399.
Pearl , J . , Asymptot ic Properties of M in imax Trees and Game
Searching Procedures, Artificial Intelligence 14(2), 1980, 113-138.
Pear l , J . , Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Reading, Mass: Addison-Wesley Publ. Co., 1984.
Reinefeld, A., An Improvement of the Scout Tree Search
A lgo r i t hm, Journal of the International Computer Chess
Association 6 (4), 1983,4-14.
Reinefeld, A., Spielbaum-Suchverfahren. Ber l in : Springer-
Ver lag, 1989.
Schaeffer, J . , Experiments in Search and Knowledge. Ph.D.
Thesis, Univers i ty of Waterloo, Ontar io , May, 1986.
Schaeffer, J . , The History Heurist ic and A lpha Beta Search
Enhancements in Pract ice, IEEE Trans. Pattern Anal. Mach.
Intell. P A M I - 1 1 (11), 1989, 1203-1212.
Shams, R., E in experimentel ler Vergleich ausgewahlter Such­
verfahren. Dip lomarbei t , Ins t i tu t fur Praktische In format ik ,
Technische Univers i ta t Wien, 1990.
Stockman, G.C., A M in imax A lgo r i t hm Better than Alpha-Beta?,
Artificial Intelligence 12(2), 1979, 179-196.

Shams, Kaindl, and Horacek 197

