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Abstract 

This paper extends Yeap's [1988] computational 
theory of cognitive maps, focusing on the 
problem of computing a raw cognitive map by an 
autonomous agent. In addition to having a 150° 
view of the environment as input, the agent 
also maintains a representation of her 
immediate surroundings. This representation is 
referred to as an MFIS, a Memory For one's 
Immediate Surroundings. Arguments for the use 
of the MFIS are presented. The main questions 
that we ask in implementing our ideas are: (i) 
what frame of reference is appropriate for the 
MFIS? and (ii) how does the MFIS change as 
the agent moves through the environment? A 
program has been implemented successfully and 
the main algorithms used and the results of 
running the program are presented. 

1 Introduction 

Psychologists have long suggested that humans and 
animals compute a representation of the environment 
(i.e. a cognitive map) which allows them to find 
their way about in it and return to places of interest 
ITolman, 1948]. More recently, a computational 
theory of cognitive maps was developed which 
further suggested that the cognitive mapping process 
(CMP) computes a raw map and a full map [Yeap, 
1988]. This paper describes further extensions of this 
theory dealing specifically with the raw map. In 
particular, we focus on the problem of computing a 
raw map of a large environment, based on one's 
memory of ones immediate surroundings (a structure 
which is referred to as an MFIS) rather than on ones 
immediate perception. Results from our simulation 
studies are presented and briefly discussed. 

A raw map is a representation of the physical 
environment computed from one's sensory perception 
of the world. This representation forms the basic 
input to the later cognitive mapping processes, Hence, 
the input for computing a raw map is information 
from the senses and the output is a representation 
containing explicit information about our physical 
world which is relevant for later tasks. We adhere to 
a modular structure for the CMP similar to that 
suggested by Man- [1982] in his study of the visual 
process since we view the CMP as a natural extension 
of Marr's theory of vision at the level of the 2D 
Sketch. Hence, the next module to compute after the 

Sketch is the raw map, not the 3D Sketch as 
suggested by Marr and Nishihara [1978]. We shall 
digress briefly to discuss this point in a little more 
depth because, as Marr pointed out, one key problem 
in formulating a computational study is to identify 
clearly the likely modularisation. 

Marr argued convincingly why we need a 
Sketch and abandoned trying to segment an image 
using specialised knowledge about the nature of the 
scenes. His argument was that "since most early 
visual processes extract information about the visible 
surface, it is these surfaces, their shape and 
disposition relative to the viewer, that need to be 
made explicit at this point in the processing". 
Following his argument, we suggest that the next 
module should compute the spatial layout of these 
surfaces as the viewer moves among them rather than 
forming 3D descriptions of the individual surfaces. 
The latter task should come much later in the process 
since not all information necessary for computing a 3D 
description is available at the initial encounter. This 
observation is further supported by some recent 
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psychological experiments which demonstrated that 
a viewer-centered description and not an object-
centered description of objects is remembered by 
subjects in an object recognition task [Tarr and Pinker, 
1989; Rock et al 1989]. Like Marr's argument for 

computing the Sketch which does not preclude 
the fact that higher-level knowledge is useful, we 
are also not suggesting that we do not compute 3D 
objects. It is, however, unlikely that they should be 

computed immediately from the Sketch. Doing 
so would be like perceiving the objects without a 
spatial context and this would be contrary to the way 
we normally perceive our environment. That objects 
appear to us with a spatiality that we should not 
ignore has been raised sporadically in several areas 
of research |Veap and Handley, 1990]. Furthermore, 
computing a 3D Sketch is only one aspect of a more 
general problem of concept formation and we must 
therefore begin by asking why objects are formed and 
how, before suggesting specific algorithms to compute 
any aspect of it. 

In the theory, it is suggested that the raw map is a 
network of Absolute Space Representations <ASRs), 
i.e. representations of individual local environments 
which have been visited (or entered) by the viewer. 
In this paper, we describe a program which simulates 
an agent moving with a 150° view through the 
environment. Information from each view is used to 
update the MFIS from which ASRs are computed. 
The questions that need to be asked are: 

( i ) how to compute an ASR from the MFIS?, 
( i i ) what frame of reference would be appropriate 

for the MFIS?, and 
( i i i ) how does the MFIS change as the agent moves 

through the environment? 

Computing ASRs from the MFIS implies that they 
are no longer computed directly from what could be 
perceived in a single view (either 360° or smaller) but 
from one's memory of one's immediate surroundings. 
This was not considered before in the earlier work 
and in robotics research concerned with building 
autonomous mobile robots [Chatila, 1982; Iyengar et 
al 1985; Rueb and Wong, 1987). A new algorithm was 
designed to compute an ASR from the MFIS and is 
described in detail in |Yeap et al, 1990] Section 2 
briefly describes the idea of computing an ASR from 
the MFIS. The second and third questions are the 
main concern of this paper. Section 3 discusses these 
problems and related work. Section 4 describes the 
algor i thm and presents the results of our 
implementation. Section 5 concludes the paper with 
some comments on the usefulness of our simulation 
study. 
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2 Background on Computing an ASR 
from Memory 

Consider an agent who has just entered a new space 
and remains stationary at a point. To compute an 
ASR, one is faced with the problem of identifying the 
surfaces (unfamiliar or otherwise) in this new 
environment which, to the agent, appear to enclose 
her and separate this part of the environment from 
the rest of it. As well as the surfaces which can be 
seen from the current viewing position, there are 
surfaces which are hidden from the agent's view 
because they are occluded or behind her. If these 
surfaces were a part of the agent's recent experience of 
the environment then they, along with the surfaces 
which can actually be seen, are used to compute an 
ASR. As Attneave and Farrar [1977] pointed out, "our 
internal representation of the world around us is 
based in part on current sensory input, but in much 
greater part on past sensory inputs, i.e., upon 
memory". 

The key to successfully computing an ASR is to 
identify which surfaces (in memory) are best 
combined at each step of the construction process. This 
is usually straightforward where two surfaces are 
already connected but in a complex, cluttered 
environment there are gaps in walls and obstacles of 
various sizes which occlude walls and other obstacles 
so that it is not immediately clear which surface 
should form the next part of the boundary. Our 
algorithm tackles this problem by characterising six 
possible connections which may occur between any 
two adjacent surfaces. Depending on the type of 
connection, imaginary surfaces are used to fi l l in gaps 
between real surfaces and real surfaces may be 
clipped forming sub-surfaces. A different weight is 
applied to each surface so that, for example, real 
surfaces are normally selected in preference to 
imaginary ones. At each stage of the construction 
process a preferred subset of all the possible 
connections is "grown" unti l the initial surface is 
reached. The set of surfaces which form the minimum 
weighted boundary defines the ASR for the current 
local space. For details of the algorithm see earlier 
work (Yeap et al, 1990]. 

3 The MFIS 

Early Al models on cognitive maps [Kuipers, 1978; 
Davis, 1984] used a kind of "You Are Here" pointer to 
ident i fy a person's current posi t ion in the 
environment. Such a pointer obviously under-
represents the amount of information available at 
one's current position but it nonetheless indicates the 
usefulness of such information for computing a 



cognitive map. Furthermore, based upon the 
observations of our own visual system, such as a 
limited view and limited range vision, and our visual 
behaviour, such as the need for active scanning 
[Norton and Stark, 1971 J, psychologists have also 
suggested that we need to integrate the different 
views to form a more complete picture of what we 
perceive of our surroundings (e.g. [Gibson, 1979]). 
Robotics researchers have shown that it is necessary 
for their robots to compute a global representation of 
the whole environment in addition to partitioning 
the environment into smaller spaces [Yeap et al,  
19901. Although computing a global representation of 
the whole environment is not necessary, computing a 
global representation of the immediate surroundings 
seems to be desirable [Yeap and Handley, 1990]. 
There are also advantages for doing so. For example, 
using it, one can detect that one is re-visiting a local 
space which has just been visited [Yeap, 1988] (and 
see below) and it provides a richer description of the 
environment for computing an ASR [Yeap et al, 1990]. 

Information in the immediate surroundings can be 
represented using either an egocentric (defining 
spatial positions in relation to the self) or an 
allocentric (defining spatial positions external to the 
self) frame of reference. It is clear that from an 
implementation viewpoint, it is inefficient to use an 
egocentric reference frame. To use an allocentric 
reference frame, one has to specify where the 
reference frame should be centered. The choice of this 
external point need not be chosen arbitrarily if one 
uses the current ASR as the frame of reference. An 
ASR is defined by a boundary (see section 2) and any 
part of it would be suitable. In the implementation 
we choose to use the entrance to the current ASR as 
the center of the reference frame. When the agent 
moves out of the current ASR, the MFIS is shifted to 
center on the entrance to the next ASR. Figure 1 shows 
how the MFIS defined as such, would follow the 
viewer as she moves through the environment. 

The extent of the MFIS can be defined arbitrarily 
but, more importantly, need not be defined exactly, 
say, in metrical terms. Varying its size is a tradeoff 
between how much information is remembered (and 
hence how useful the MFIS is) and how much effort is 
required to compute it. Given an MFIS with a fixed 
size, part of an ASR will often be excluded as it lies 
outside the area covered by the MFIS (Figure 1). 
Figure 2 demonstrates that one advantage of having 
the MFIS is to help one recognise that nearby local 
spaces were visited before. We therefore do not want 
to remove a part of an ASR just because it falls outside 
the area covered by the MFIS. Since its extent is 
defined arbitrarily, it is better to include the whole 
ASR if a part of it lies within the area covered by 

the MFIS. Figure 3 shows how the MFIS defined as 
such would grow and shrink as the viewer moves 
through the environment. 

Figure 1 Defining an MFIS using the current ASR at 
the point marked X as shown from (a) to (d)- When 
the viewer moves out of the ASR, the MFIS is 
shifted to centre on the new ASR. The arrow 
indicates the position of the viewer. 

Figure 2. Recognising a local space using the 
viewer's position in the MFIS. The solid line shows 
the viewer's path through the environment. The 
viewer is currently re-visiting the shaded area. 
One can recognise that one has been to this place by 
noting the global position of where things are in the 
MFIS 

In addition to those surfaces defined as part of an 
ASR, two other types of surfaces are also included in 
the MFIS. The first are those surfaces which are 
currently in view and the second are those surfaces 
which were previously in view but do not belong to an 
ASR. The former are included in the MFIS every time 
the MFIS is updated with information from the 
current view. As such, it does not matter where these 
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surfaces lie. The latter must fall within the boundarv 
of the MFIS and if not, they are removed from the 
MFIS. Note that in the current implementation, 
surfaces are removed from the MFIS only when the 
MFIS itself is shifted. 

Figure 3. Defining the extent of an MFIS whereby 
an ASR is either included in it or excluded. As is 
shown from (a) to (d), the shaded areas indicate 
the actual size of the MFIS (only expressed in 
terms of the number of ASRs) as the viewer moves 
through the environment. 

Thus, the MFIS contains the following three 
kinds of surfaces: 

( i) those which are part of an ASR - the whole 
ASR must be included in the MFIS, 

(ii) those which are currently in view - by 
current, we mean those surfaces which are 
perceived when in the current ASR. These 
surfaces are added to the MFIS irrespective 
of whether they fall within or outside the 
area covered by the MFIS, and 
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( i i i ) those which were perceived when outside 
the current ASR and are not part of any ASR -
these are the least important surfaces and 
one's ability to remember them is influenced 
by a wide variety of other factors. They must 
lie within the area covered by the MFIS. 

4 Implementation and Results 

Figure 4 shows the steps taken to maintain the MFIS 
for computing a raw map. As in earlier work (Yeap, 
1988], we detect the re-visiting of a local environment 
using three kinds of information, namely: the exit 
information, the viewer's position in the MFIS, and 
the shape of the local environment. However, the 
difference in this implementation is that the MFIS 
now "moves" with the viewer as she moves through 
the environment and ASRs are computed at each 
appropriate point in the environment rather than 
being given. 

In the implementation, we continue to use a 
cartesian co-ordinate system, both in describing the 
surfaces in each view and in the MFIS. In the former, 
the co-ordinate system is centered on the viewer. 
Transforming the MFIS is straightforward and the 
algorithm need not be presented here. The algorithm, 
RETAIN_SURFACES, which decides which surfaces 
to remove from the MFIS once it is transformed is 
given below. 

RETAIN_SURFACES 

;; MFIS_L is a list of all the surfaces which lie 
;; within the area covered by MFIS before it was 
;; shifted. 
;; MFlS_ASRs is the list of ASRs in the MFIS and 
;; CV is the list of surfaces in the current view. 
;; MRS.ASRs, MFIS,L and CV are all global data 
;; structures. 

1. Remove all surfaces from MFIS J- belonging to 
any ASR which is no longer in the current MFIS. 

2. With the remaining surfaces in MFIS_L Do 

2.1 Retain surfaces in it which belong to the 
current view (CV). 

2.2 Retain surfaces in it which belong to an ASR 
in MFlS_ASRs. 

2.3 Retain surfaces which do not meet the 
criteria of 2.1 and 2.2 only if they lie within 
the boundary of the shifted MFIS. 



But, we find that this area would be too small for 
those surfaces which are not part of any ASR. 
Hence, one solution is to have two extents for the 
MFIS. 

Figure 4. A Flowchart for maintaining the MFIS, 
from which a Raw Cognitive Map is computed. 

Note that in the implementation we use two 
different boundaries to indicate the size of the 
MFIS. The reason is as follows. Since we have 
argued that an ASR must either be retained 
completely or removed from the MFIS, the 
designated area for their inclusion need not be large. 

Figure 5. shows how the MFIS (right) changes as 
the viewer moves through the environment (left). 
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Examples of how the MFIS changes as the 
viewer moves through this environment are shown 
in Figure 5, For a complete result, see [Naylor, 
1991], 

5 Conclusion 

The current study shows that an ASR is not only used 
as an indication of the viewer's current local 
environment but also as a locus for describing the 
viewer's immediate surroundings. The current 
implementaiton reveals several problems in 
computing the individual ASR for building a raw 
map of the environment. For example, the shape of 
the ASR obtained does not always correspond to the 
shape of the room (especially the corridor) and 
updating for both the partial ASR and the MFIS 
becomes a complex problem. These problems are 
currently being investigated using our program. 
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