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Abstract

The key concept of autoepistemic logic intro-
duced by Moore is a stable expansion of a set
of premises, i.e., a set of beliefs adopted by
an agent with perfect introspection capabilities
on the basis of the premises. Moore's formal-
ization of a stable expansion, however, is non-
constructive and produces sets of beliefs which
are quite weakly grounded in the premises. A
new more constructive definition of the sets of
beliefs of the agent is proposed. It is based
on classical logic and enumerations of formulae.
Considering only a certain subclass of enumera-
tions, L-hierarchic enumerations, an attractive
class of expansions is captured to character-
ize the sets of beliefs of a fully introspective
agent. These L-hierarchic expansions are sta-
ble set minimal, very tightly grounded in the
premises and independent of the syntactic rep-
resentation of premises. Furthermore, Reiter's
default logic is shown to be a special case of
autoepistemic logic based on L-hierarchic ex-
pansions.

1 Introduction

Nonmonotonic reasoning is one of the most important
and active areas of research in knowledge representa-
tion and reasoning. Autoepistemic logic introduced
by Moore [1985] appears to be one of the best avail-
able tools for studying nonmonotonic reasoning as re-
cent results [Elkan, 1990; Konolige, 1989; Marek and
Trusiczyriski, 1989] on the relationship between au-
toepistemic logic and other forms of nonmonotonic rea-
soning suggest that it offers a unifying approach to a
large part of nonmonotonic reasoning.

Autoepistemic logic is a modal logic with an operator
L which is read 'is believed'. It was originally introduced
as a reconstruction of McDennott and Doyle's [1980]
nonmonotonic logic to avoid some peculiarities of this
logic. Autoepistemic logic models the beliefs of an ide-
ally rational agent who is capable of perfect introspec-
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tion. The interesting question is to determine the set of
beliefs of the agent given a set of formulae as the initial
assumptions of the agent. The agent's rationality is in-
terpreted as requiring that the beliefs of the agent have
to be logical consequences of the initial assumptions and
the beliefs of the agent. The agent is capable of using
both positive introspection (if x is a belief, BO is Lx) and
negative introspection (if x is not a belief, then ~Lx is).
The agent is also ideal: if a formula is a logical conse-
quence of the beliefs of the agent, then it belongs to the
set of beliefs of the agent.

The informal description of the set of beliefs of the
agent given above is circular: the set of beliefs is defined
using the set of beliefs. Moore [1985] offers a formal def-
inition where the sets of beliefs, the stable expansions of
the initial assumptions, are defined as the fixed points of
an operator given with the aid of the logical consequence
relation used by the agent. Moore's formalization is ele-
gant but in connection with some sets of premises it pro-
duces sets of beliefs which are quite weakly grounded in
the premises. Another problem is that Moore's formal-
ization is non-constructive. It yields no direct method of
enumerating or constructing a set of beliefs of the agent
given a set of premises. It merely states a condition to
be satisfied by any proper set of beliefs based on the
premises.

We propose a new more constructive definition of the
set of beliefs of the agent. It is based on classical logic
and enumerations of formulae. It produces sets of beliefs
which are a proper subclass of the stable expansions de-
fined by Moore. In fact, the class coincides with iterative
expansions defined by Marek and Truszczynski [1989].
lterative expansions have many desirable properties. In
particular, autoepistemic logic based on iterative expan-
sions can be regarded as a generalization of the other
leading nonmonotonic logic, default logic [Reiter, 1980].
The basic problem ofiterative expansions is that they are
not necessarily stable set minimal which suggests that
autoepistemic logic based on iterative expansions is not
a proper generalization of default logic. This problem
iIs analysed and shown be the result of the possibility of
introspecting a formula before introspecting its subfor-
mulae when constructing an iterative expansion. When
using the new definition where the enumeration specifies
the order of introspection tighter groundedness can be
ensured by restricting the order of the formulae in the
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enumeration, i,e., the order of introspection.

In this paper we propose a new class of expan-
sions based on a special subclass of enumerations, L-
kierarchic enumerations, as the sets of beliefs adopted
by an ideal agent with perfect introspection capabili-
ties. L-hierarchic expansions turn out to be more tightly
grounded than iterative expansions because they are al-
ways stable set minimal. However, autoepistemic logic
based on L-hierarchic expansions still remains a gener-
alization of default logic.

The outline of the paper is as follows. First we in-
troduce antoepistemic logic. Then we present a short
survey of the groundedness notions proposed previously.
After that we introduce the enumeration based expan-
sions and show that Reiter's default logic is a special case
of antoepistemic logic based on L-hierarchic expansions.

2 Autoepistemic logic

We can view autoepistemic logic being induced by some
underlying logic CL whose language is8 £. In our case
CL is the propositional logic. We build an autoepis-
temic logic CL,. on top of CL.. We extend £ by adding
a monadic operator L and obtain an autoepistemic lan-
guage L, which is the language of CL,.. Lg. 18 defined
recursively as [ but containing an extra formation rule:
if ¢ € Lao, then Lo E L,,.

Autoepistemic logic models an ideal agent’s reasoning
about his own beliefs. The agent reasons according to a
consequence relation based on the underlying logic and
can reflect on his own beliefs. The consequence relation
of the underlying logic CL is extended to the richer lan-
guage L,. simply by treating L¢ formulae as atomic.
Thus the consequence relation = used by the agent is
defined as follows. A formula ¢ is a consequence of a set
of formulae X (2 |= ¢) if ¢ is true in every interpretation
in which every formula in I is true. The interpretations
treat L¢ formulae as atomic formulae.

The key objects in autoepistemic Jogic are the sets of
total beliefs of the agent given a set of premises as the
agent’s initial assumptions. These sets are called stgble
ezpansions of the premises and they are the fixed points
of an operator defined with the aid of the underlying
consequence relation in the following way.

Definition 2.1 [Moore, 1985/ A 1s a stable ezpansion
of L sff A satisfies the following fized point equation.

A={$€ La |SULAYU-LB)E 4} (1)

where L(A) = {L$ | $ € A}, -8 = {~¢ | ¢ € A},
and A = L, — A. Thus -L(A) = {~L¢ | ¢ € Lo — A}

3 Groundedness

It can be argned that stable expansions are too weakly
grounded in the premises. We start by an example clar-
ifying the problem.

Example 1 Consider the following premise where p is
an atomic formula.

Lp—p (2)
The premise has two stable expansiona: one containing
p and the other not containing p. The stable expansion
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containing p can be considered too weakly grounded be-
cause the agent’s belief p is based on the fact that the
agent believes p, thus obtains Lp by positive introspec-
tion and from this and the premise deduces p. This kind
of a belief based on a circular argument ie rather weakly
grounded in the premiges and a stronger form of ground-
edness is often required. [ |

In this chapter we survey the various groundedness
notions proposed in the literature and show in what re-
spects they are not satisfactory.

Konolige [1988] presents two stronger notions of
groundedness leading to moderately grounded and
strongly grounded ezpansions. His basic motivation is
to find a class of stable expansions which would capture
extensions in default logic [Reiter, 1980| under a suit-
able translation of default logic to autoepistemic logic.
To eliminate circularly based beliefs Konolige introduces
the concept of a moderately grounded expansion. He
shows that a set of formulae A moderately grounded in
3 18 1n fact a stable expansion of ¥ which 18 minimal
in the following sense: there is no stable set'® § which
contains I such that SN L Cc AN [, ie. formulaeof S
without the L. operator are a proper subset of formulae
of A without the L operator. Such expansions are said
to be stable set minimal for L.

Moderately grounded expansions (or stable set min-
imal expangions) do not quite capture extensions in
default logic and, moreover, are still rather weakly
grounded as can be seen from the following example also
discussed by Konolige [1988].

Example 2 Consider the following set of premises L
where p, ¢ are atomuc.

{Lp — p,~Lp — q} (3)

L has two stable expansions: one containing p but not
g and one containing ¢ but not p. Both are stable set
minimal but the first one contains the belief p which s
based on the belief p, i.e., the same circular argument as
in the previous example. s

To capture extensions in default logic Konolige pro-
poses the notion of an expansion strongly grounded in
the premises. The notion is defined only for autoepis-
temic formulae in a normal form:

~LavifiVv...VLB,. V7 (4)

where a, 8;, and -y are all in £. Strongly grounded ex-
pansions are also moderately grounded. However, Marek
and Truszcsynski [1989] have discovered that strongly
grounded expansions do not capture extensions in de-
fault logic. Marek and Trussczynski [1989] report that
Konolige has introduced a corrected version of the defi-
nition of strongly grounded expansions. Neither defini-
tion of strong groundedness is satisfactory because dif-
ferent expansions could be grounded in different subsets
of the premises and strongly grounded expansions de-
pend on the syntactic representation of premises. This

1A set S is stable if it is closed under propositional conse-
quence and satisfies the conditions (1) if ¢ € § then LY € S

and (2) if ¢ € S then ~L¢ € S.



means that classically equivalent premises do not have
the same strongly grounded expansions. For example,
(Lp — p} A (=Lp — p) is eqmivalent to p in proposi.
tional logic but the former has none and the latter has
one strongly grounded expansion (according to the cor-
rected definition of strong groundedness).

Marek and Trussczynski [1989] present an interesting
notion of groundedness in their study of the relationship
of default logic and autoepistemic logic. It is based on a
monotone operator A defined as follows.

A(L) = Cn{Z U L(E)) (5)

where Cn(ZL) = {¢ | T = ¢}. The operator 4 is
equipped with a context parameter A C £,. and given
a set of premise T C [,, the operator A2 jg iterated in
the following way.

AB(E) = Cn(Zu-L(B)) (8)
A%4(T) = A(42(D)) (7)
A%(Z) = |JA2(D) (8)

Marek and Truszczynski [1989] note that A2 (X)) is the

set of formulae provable from £ U —rL(&_) using propo-
sitional logic and the necessitation rule. They define a
new class of expansions based on the operator A.

Definition 8.1 (Marek and Truszczynski [1989]] A ts
an iterative expansion of L iff A = A4 ().

They prove that iterative expansions are in fact stable
expansions. The class of iterative expansions is an at-
tractive candidate for the sets of beliefs adopted by a
fully introspective agent. In particular, because in a later
paper Marek and Truszczynsk [1990) show that iterative
expansions generalize nicely reasoning in Reiter's default

logic. They show that under the translation trp of the
defaults D in a default theory (D, W)

a:ﬂl,...,ﬁl _
i
(LaA-~LL=-Bi A...A=LL-B,) -y {9)

default logic can be seen as a fragment of autoepistemic
logic based on iterative expansions, i.e., E ig an extension
of a default theory (D, W) iff E = An £ for an iterative
expansion A of trp (D, W).

Marek and Truszczynski [1990] already observed a ba-
sic groundedness problem of iterative expansions and
gave the following example which shows that itera-
tive expansions are not necessarily stable set minimal.
Thus iterative expansions may be regarded too weakly
grounded.

trr(

Example 8 Consider a set
L= {-L-Lp — p} (IU)

where p is atomic. The set 2 has two stable expansions:
one containing p and the other not. Both are iterative
but only the second one 18 minimal. Technically the
problem seems to be that the definition of A2(L) allows
the adoption of a belief (in the context A) which is jus-
tified (indirectly) on the basis of the same belief. This is

Strongly grounded
Strong iterative | —

Robust |
) . }

Mo&&aﬁly grounded
!Stable set minimal

[ Iterative

— | Stable exﬁ ansion

Figure 1: Relationships of groundedness concepts.

what happens in the first iterative expansion. If p is put
to the context A but —Lp iz not, then by negative intro-
spection we have that ~L-~Lp € A3 (X)) and p € Ai ).
Thus Lp € AL(Z). Hence p € A4(Z) and Lp € A {E .
It cannot be the case that —~Lp € A2(Z) (unless A2(L)
is inconsistent, which it is not}. Thus the justification of
p is indirectly based on the belief p. »

Marek and Truszczynski [1989) show how to cap-
ture extensions in default logic using two new classes
of expansions: sirongly slerative expansions (a strength-
ened form of iterative expansions) and robust ezpansions.
These classes of expansions are equivalent with Kono-
lige's strongly grounded expansions and are also defined
only for premises in the normal form (4}. They suffer
from the same unnatural properties as discussed in con-
nection with Konolige’s strongly grounded expansions,
especially, the dependence on the syntactic representa-
tion of premises.

Figure 1 displays a summary of the various grounded-
neas conditions discussed above and their relationships.
The arrow is interpreted as implies. E.g., strong ground-
edness implies stable set minimality.

It seems clear that to get tighter grounded expansions
the construction of an expansion should start from the
formulae without the L operator. Marek and Truszczyn-
aki [1989] present such a construction which builds a sta-
ble set out of its L-free part. This method does not seem
to be applicable to building expansions from premises,
however, because expansions cannot be constructed us-
ing such a layered method where, roughly speaking, all
formulae having the same depth of L operators are de-
cided at the same time. E.g., consider the set of premises
{~Lg~ q,~LLp — g}.

Anocther related idea 1s to restrict the set of formulae
aubject to direct introspection and accomplish further
introspection by applying some modal logic. Tiomkin
and Kaminski [1990| propose nonmonotonic ground log-
tcs based on modal logics T, 84, and 55 where only nega-
tive introgpection restricted to L-free formulae ia applied
directly. The set of beliefs is defined using the following
{ixed point equation

A={¢|Su{-Ly|pelL-A}rsd}  (11)

where s 18 the derivability relation of the underlying
modal logic (T, §4, 55). It seems, however, that these
ground S-ezpanssons are not necessarily stable expan-
gions. E.g., the premise ~Lp — p has no stable ex-
pansions. But all the underlying logics T, S4, and §5
contain the axiom scheme T (L¢ -+ ¢) which produces
an S-expansion containing p. So to stay within stable
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expansions the axiom scheme T has to be abandoned.
Konolige's [1988] moderately grounded expansions are
an example of these kinds of ground S-expansions. They
are based on the modal logic K45. Unfortunately, the
expansions are rather weakly grounded as discussed in
Example 2. In fact, it seems that even ground expan-
sions based on the modal logic K have similar problems
of weak groundedness as discussed in Example 2. Con-
sider the set of premises {~Lp — g,~L-Lp — p}.
seems that it has two ground k-expansions: one con-
taining p and the other containing q. However, the first
one is quite weakly grounded in the premises.

4 Enumeration Based Expansions

Our aim is to find a proper characterisation of the sets
of beliefs of an agent with full introspection capabilities.
These sets should be stable expansions of the premises
but more tightly grounded in the premises. At least
they should be stable set minimal and, in addition, mul-
tiple stable set minimal expansions should be excluded
In the situations like in Example 2. Iterative expan-
sions suggested by Marek and Trussceynski [|989] are
a step in the right direction but are still too weakly
grounded as they are not necessarily stable set mini-
mal. Strong iterative expansions (which are the same
as strongly grounded and robust expansions) are stable
set minimal but are not satisfactory, especially, because
of their dependence on the syntactic representation of
premises. Another goal is to find a more constructive
basis for defining expansions.

We propose a new more constructive definition of
the sets of beliefs of an introspective agent which pro-
duces tightly grounded sets of beliefs. The defini-
tion is based on enumerations of the formulae of L.
Davis [I980] used this idea in connection with McDer-
mott and Doyle's [I980] nonmonotonic logic to charac-
terize the intersection of fixed points in McDermott and
Doyle's logic. The author [Niemela, 1988] has extended
the work of Davis and shown that also individual fixed
points in McDermott and Doyle's logic can be charac-
terised using enumerations of the formulae.

The idea is to build a set of beliefs from premises £
by applying introspection to formulae in the order given
by an enumeration £. A set B*(L) is constructed which
contains all the results of introspection in the order ¢
starting from the premises L. The set B*(YZ) together
with L induces the set of beliefs SE* (L) of a fully intro-
spective agent having initial assumptions L after intro-
specting formulae in the order .

Definition 4.1 Let £ C L.,.. Let ¢ = o, 9q,... be an
enumeration of all the farmufac af Lge. Let BG(E) = .
Define B,_,_I[Z) for t=0,1,... as foHowa

-=L1b.,+1 oth:rwue
Finally let
B'L) = |JBI(D)
=0
SE'(E) = {¢€Lu|TUB‘(T) ¢}
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We would like SE*(XZ)} to be a stable expansion of
induced by the enumeration . Unfortunately, this not
the case for all enumerations.

Example 4 Consider a set of premises
Z={-Lp— g} (12)

and take an enumeration ¢ = g,p,... Then B}(Z) =

{(-Lg} as £ }& g and BI{X} = {-qu,—\Lp} as L U
Bi(Z) £ p. But now g € SE'(E) and ~Lg € SE*(X)
but Lg € SE*(T). Thus SE*(L) does not satisfy the
fixed point equation (1) of a stable expansion. |

To stay within stable expansions we must require enu-
merations to be acceptable in the following sense.

Definition 4.2 An enumeration £ 1s E—accePtable if
there 18 no 1 and no formula ¢ such that ~L¢ € B{(T)
but ZUBIE)  ¢.

Theorem 4.3 For all L-acceptable enumerations e,
SE*(L) 12 a stable expansion of L.

Proof. We prove that SE*(Y} = {¢ | EUB*(X) [ ¢}
is a stable expansion of £ by showing that B*(L) =
L{SE*(Z}) U ~L{SE‘(L})).

If Ly; € B(X), then 2 U B;_,(¥) [ ¥ and as
B!_,(Z) C B*I), ¥ € SE’(B] and thus Ly; €
L(SE'(E)) If ~Ly; € B*(X), then ZUB;_,(T) P: qb.

Assume that T U B'(E) = ;. Then there exists a
k > ¢ such that L U B{(Z) k& ¥; but ~Ly; € B; (E]
which 18 a contradlctmn as £ 18 L-acceptable. Thus
¢ ¢ BE*(Z) and ~Ly; € -L[SE®{Z)). This shows
that B*(X) C L(SE*(Z)} U -L(SE*(Z}).

If -Ly; € ~L{SE*(L)), then ZUB*(Z) £ ¢ Thia
implies that EUB () & ¥ as B{_,(E) C B'Ilr
Thus ~Ly; € B'(E) If Ly, € L(SE* ; then
T UB*I) = #4. Assume that L U B;-—1§
Then there exists a k > s such that £ U B[ (¥) t= ¢.
but ~Ly; € B;(X), which is a contradiction as ¢ is I-
acceptable. Thus LUB{_,(E) E ¢; and Ly; € B*(L).
Hence B*(E) = L{SE*(Z)) U ~L(SE*(T)). O]

T-acceptable enumerations offer a constructive way to
define stable expansions. The expansion is directly buil
from the premises and the enumeration. It should be
noted that even the acceptability condition is in a sense
local to each B!(Z) as only those formula v, have to
be checked for which 7 € ¢ because they are the only
formulae for which —Ly, € B{(Z) could hold.

However, enumerations are not capable of capturing
every stable expansion. Consider the premise Lp — p
discussed in Example 1. It has two stable expansions:
one tontaining p and the other not containing p. Only
the second one is characterisable using enumerations be-
cause in enumeration based expansions Lp cannot be
used in deriving p directly. This leads one to assume
that enumerations might produce minimal expansions.
However, this is not the case as shown by the following
example.

Example 5 Conpsider the set
L = {~L-Lp — p) (13)




where p is atomic. I has two stable expansions which are
both characterisable using enumerations. The first one
not containing p using an enumeration p, ~Lp,... and
the second containing p using an enumeration ~Lp, p, ...
Let us look what happens in the second enumeration «.

1(Z) = {~L-Lp} as & £ -Lp. But then B}(L) =
{-L-Lp,Lp} as TUB}{Z) Ep B

Thus the enumeration method fails to capture sta-
ble set minimal expansions exactly in the same situa-
tion where iterative method fails. This 18 no coincidence
because enumeration based expansions and iterative ex-
pansions are closely related. Enumerations produce al-
ways iterative expansions and at least for finite sets of
premises for every iterative expansion there 18 a corre-
sponding enumeration producing it.

Theorem 4.4 For all YL-acceptable enumerations e,
SE*(Z) is an sterative expansion of L.

Proof. We have to show that for A = SE*(L),
A2(Z) = A holds. First we show that for all 1 =
0,1,2,...

B{(E) C L(47(E)) U-L(B). (14)

For 1+ = 0 this holds trivially. If Ly, € B;(I),
then T UB{_,(£) E ¢¥;. By the induction hypoth-
esis £ U L(A2,(2)) U -L(A) k& ¢ which implies
that ¢; € AP (E) = Cn(42,(E) U L{A2(Z))} be-
cause & U -L{A) C A2(Z) for all n = 0,1,... Thus
Léi € L(AB(T)). U “Ly; € B(T), then i & A
as ¢ is D-acceptable. Thus -~L¢ € -L(A).
B!(X) € L(A2(E)) U-L(d).

This result implies A C A2 (L) in the following way.
Let ¢ € A. Then there exists 1+ such that ZUB{_,(X)
¢. By (14) TU L{A2 ,(T)) U -L(A) k= ¢ which implies
that ¢ € AR (E) C A2 ().

We show that for all 1 = 0,1,2,... A2(E) C A
which implies A2(Z) C A and thus A%(Z) = A. Let
¢ € AS(Z). Then TU-L(A) = ¢. Sogp € A =
{¢ | LU L(A)U~-L(A) k= ¢}. Let ¢ € A2(E). Then
A2 (ZYUL{A2 (X)) &= ¢. By the induction hypothesis
A2 (X} C A and thus L{A% | (Z)) € L(A) € A. Thus
¢ € A. O

Theorem 4.5 For each sterative ezpansion A of a finite

set of premises 1. there 13 @ L-acceptable enumeration
such that A = SE*(X).

Proof. It can be shown that a Z-acceptable enumer-
ation £ which induces A can be constructed from A in
the following way if L is finite.

1. Let the first formulae in £ be the formulae ¢; € A
for which Ly; € 8§fE(T)2.

2. The next formulae in £ are those ¥; € A for which
Ly; € SfL(Z) in the order they are produced by the
iteration of A2.

3. All the rest of the formulae in [,. are ordered such
that if Ly; € SfL({+;}), thens < .

_—’Sf L () u the set of the Lx subformulae of the formulae
in L,

Hence

The set 3 has to be finite for the conditions 1 and 2 to be
satisfied by an enumeration of formulae. The guestion
whether there exiats a X-acceptable enumeration ¢ which
induces A for any iterative expansion A of an infinite set
of premises L remains open. ]

Thus enumeration based expansions provide an alter-
native way of defining iterative expansions. Example 5
reveals also why iterative expansions are not necessarily
stable set minimal. It 18 possible to introspect a formula
¢ without first introspecting the subformulae of ¢ which
can effect the result of the introspection of ¢. In the case
of Example 5 it is possible to introspect —~Lp and obtain
-~ L-Lp without first checking the status of p.

So it seems ag a very natural requirement to demand
that in order to get tightly grounded beliefs all subformu-
lae of a given formula ¢ that can effect the result of the
introspection of ¢ must be examined before ¢. This new
groundedness requirement can be incorporated easily to
the definition of enumeration based stable expansions.
We require the enumerations to be L-hierarchic. This
means that a formula ¢ can appear in the enumeration
only after all 4 such that Ly is a subformula of ¢ have
appeared in the enumeration. It is unclear how to incor-
porate this kind of a requirement into the definition of
iterative expansions.

Definition 4.8 Let ¢ be an enumeration o), ya,... of
all the formulae in L,.. € 35 L-hierarchic sf for all ¢;, 9,

holds that sf Lyp; € SfE({y,}), thens < 5.

Definition 4.7 SE“(Z) ss an L-hierarchic expansion of
L 1f £ v a X-acceptable L-hierarchic enumeratlson.

It turns out that the simple requirement on the order
of the formulae in the enumerations guarantees that L-
hierarchic expansions are stable set minimal.

Theorem 4.8 Every L-hserarchic ezpansion SE*{L) of

L 12 a stable set minimal stable expansion of & (s mod-
erately grounded ezpansion of 1),

Proof. We denote SE*(L) by A. Assume that there
exists a stable set S containing I such that Snf C AnL.
We prove that A = § by showing that foralls =1,2,. ..,
t; € A iff v, € S. This proves that A 1s stable set
minimal for X.

If v, € S, then as £ is L-hierarchic ¢, € £ and ¢; € A.
If ¥, € A, then £ | ¢ as £ is D-acceptable. Thus
Y, €5 as L C S and 5 1s stable.

If ¢; € A, then ZUB;_,(Z) k= ¢; as £ 1s L-acceptable.
By the induction hypothesis B _,(X) C 5. Thus ¢, € §
as Z C S and S is stable. Let ¢, & A. The formula v;
can be transformed into a normal form ¥ = d; A...Ad,
where each d; 1s of the form

wv5LayV...V0ia,Vv-LB v...v-LS

where v+ € £ and o;, fi € La.. It holds that ¢, € A
ff ¢! € A. So ¢ € A. Thus there exists a dis-
junction d, € A. As A is a stable set, d; ¢ A iff
TnEAaL €A,..,an @A B €A, B €A The
normal form transformation does not go into the Ly for-
mulae. Thus S75({6:)) = S/E({¢{}) and 80 each o
and §; i1s some ¢, such that 7 < 1 because the enumer-
ation i8 L-hierarchic. Thus by the induction hypothesis
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1 €S,...,am €8, B E€S,....[i€S. Asye L and
1€ D, v € 8. Thus d; & § which implies that ¢ g §.
As ¢; is equivalent to ¢!, ¥; € S. Hence A= S O

Thus an L-hierarchic expansion of L is a stable set
minimal iterative expansion which is not dependent on
the syntactic representation of premises. E.g., {Lp —
p,—~Lp — p} and {p} have both the same unique L-
hierarchic expansion. So L-hierarchic expansions are
not necessarily strongly grounded (or strongly itera-
tive/robust},

It turns out that in the case of T-clauses which are of
the form

(Lag A ... ALam A-~LLB A...A-LLB.) =71 (15)

where a;, 8;,7 € L all iterative expansions of every finite
set of premises are also L-hierarchic expansions. It can
be shown that the conditions in the proof of Theorem 4.5
for an enumeration inducing an iterative expansion are
also satisfied by an L-hierarchic enumeration for each it-
erative expansion of every finite set of T-clauses. So for
T-clauses iterative and L-hierarchic expansions coincide.
This shows that L-hierarchic expansions are adequate
to capture extensions in Reiter’s default logic using the
translation proposed by Marek and Trusscsynski (9} be-
cause this translation produces T-clauses,

Theorem 4.9 E C L is an extenson of a finste de-
fault theory (D,W)> iff E = SBE*{trr(D,W))N L for a
trr(D,W)-acceptable L-hierarchic enumeration .

Thus autoepistemic logic based on L-hierarchic expan-
sions 18 a generalization of default logic which provides
an alternative definition of an extension (Reiter [1080]
gave originally a fixed point characterisation). On the
other hand, default logic is a special case of this kind
of autoepistemic logic where only formulae of the form
(La A=LL-fy A...A=LL-f,) — 7 are allowed.

The question of a general semantics approach to L-
hierarchic expansions remains open. In the case of T-
programs which are T-clauses where a;,f;,y € L are
literals Marek and Trusscsynski (1990] have given a se-
mantic characterisation of consistent iterative expan-
sions and as in this case iterative and L-hierarchic ex-
pansions coincide this semantics applies also to conasis-
tent L-hierarchic expansions of T-programs.

5 Conclusions

We have introduced a new class of expansions in au-
toepistemic logic called L-hierarchic expansions. L-
hierarchic expansions are very promising candidates for
the sets of conclusions derived by an ideally rational
agent with full introspection capabilities on the basis
of given premises. This new class of expansions has
a number of attractive properties. Instead of a fixed
point characterisation an L-hierarchic expansion is con-
structed directly from the premises and an enumeration
of the formulae of the language. The construction is
given in terms of classical logic, e.g., no modal logic
is needed. L-hierarchic expansions are independent of
the syntactic representation of premises. They are very

*For a finite default theory (D,W) DU W is a finite set.
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tightly grounded in the premises. They are iterative ex-
pansions [Marek and Trusscsynski, 1989) and, in addi-
tion, always stable set minimal. Furthermore, autoepis-
temic logic based on L-hierarchic expansions captures
default reasoning: it is shown that Reiter's default logic
Is a special case of this new logic. One of the most im-
portant open problems is the question of existence of a
semantic characterisation of L-hierarchic expansions in
the general case.
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