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Abstract

The notion of minimality is widely used in three
different areas of Artificial Intelligence: non-
monotonic reasoning, belief revision, and con-
ditional reasoning. However, it is difficult for
the readers of the literature in these areas to
perceive the similarities clearly, because each
formalization in those areas uses its own lan-
guage sometimes without referring to other for-
malizations. We define ordered structures and
families of ordered structures as the common in-
gredient of the semantics of all the works above.
We also define the logics for ordered structures
and families. We present a uniform view of how
minimality is used in these three areas, and
shed light on deep reciprocal relations among
different approaches of the areas by using the
ordered structures and the families of ordered
structures.

1 Introduction

The notion of minimality is proving to be a key unify-
ing idea in three different areas of Artificial Intelligence:
nonmonotonic reasoning, beliefrevision, and conditional
reasoning. However, it is difficult for the readers of
the literature in these areas to perceive the similarities
clearly. The models used differ, sometimes superficially,
sometimes in depth, and the notation is different, mak-
Ing it hard to apply results on, say, conditional logic to,
say, belief revision. Even within the same area there is
confusion, as, for example, different authors use differ-
ent formalisms for conditional logic, sometimes without
relating their proposals to the literature. We present a
uniform view of how minimality is used in these three ar-
eas, shedding light on deep connections among the areas.
We clarify differences and similarities between different
approaches by classifying them according to the notion
of minimality that they are based on.

The first field in which minimality plays a crucial role
is nonmonotonic reasoning. Shoham [1987] proposes a
uniform approach to subsuming various formalisms of
nonmonotonic reasoning in terms of preftrenttal relations
among interpretations, Kraus, Lehmann and Magidor
[1990] propose several consequence relations that capture
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general patterns of nonmonotonic reasoning. A conse-
quence relation, denoted by 4 b ¢, means that g is a
good enough reason to believe ¢, or that ¢ is a plausible
consequence of g. We can regard their work as an exten-
sion of Shoham's work since some consequence relations
can be characterized in terms of preferential relations
among possible worlds.

The second field in which minimality is discussed
Is knowledge base revision and update. Alchourron,
Gardenfors and Makinson [3985] propose, on philosoph-
ical grounds, a set of rationality postulates that belief
revision operators must satisfy, Katsuno and Mendelzon
[1989; 1991a] show that the AGM postulates precisely
characterize revision operators that accomplish a modifi-
cation with minimal change among models of knowledge
bases expressed in a finitary propositional logic.

Katsuno and Mendelzon [1991Db] clarify a fundamen-
tal distinction between knowledge base revision and up-
date. They propose update postulates in the spirit of the
AGM revision postulates, and show that the update pos-
tulates precisely characterize minimal change update op-
erators just as the revision postulates characterize min-
Imal change revision.

The third field is conditional logic, which is concerned
with the logical and semantical properties of counter/ac-
tuals, statements such as "if | were a bird then 1 could
fly." Many applications of counterfactuals in Artificial
Intelligence are pointed out by Ginsberg [1986]. Dcl-
grande [1988] uses a conditional logic to formalize default
reasoning.

There are several different conditional logics, and some
of them can be formulated in terms of minimal change
[Nute, 1984]. According to this minimality view, a coun-
terfactual, 4 > ¢, is true if we add its antecedent u to our
set of beliefs, modify the set as little as possible to pre-
serve consistency, and then its consequent O is true under
the modified set of beliefs. Gardenfors [1988] shows the
difficulties associated with using revision to model this
view of counterfactuals; Katsuno and Mendelzon [1991D]
suggest using update instead of revision. This suggestion
is carried out by Grahne [1991] in a logic of updates and
counterfactuals,

Lewis [1973] proposes conditional logics called VC and
VW. In the semantics of VC and VW, total pre-orders
(in Lewis' terminology, "systems of spheres"”) play a key
role. Pollock [Pollock, 1981; Nute, 1984] proposes an-



other conditional logic, called SS, the semantics of which
is determined by changing total pre-orders in VC to par-
tial orders.

In this paper, we discuss fundamental similarities and
differences among the above works, and give a unified
view of all the above in terms of notions of minimality.

A good deal of previous work has been done, espe-
cially recently, on comparisons among consequence re-
lations, knowledge base revision and conditional logics.
Kraus, Lehmann and Magidor [1990] point out a rela-
tionship between one of their consequence relations and
conditional logics. We extend their result and show more
accurate semantic and syntactic correspondences.

Makinson and Gardenfors [Makinson and Gardenfors,
1991; Gardenfors, 1990] show the relationship between
the AGM postulates for revision and postulates for non-
monotonic consequence relations. Gardenfors [1988] also
investigates the relationship between knowledge base re-
vision and conditional logic based on Ramsey test In
terms of syntax. He shows that although there are
close resemblances between his postulates for revision
and axioms of conditional logic, it is impossible to for-
mulate conditional logic by knowledge base revision and
Ramsey test. We show the distinctions between condi-
tional logic and knowledge base revision in light of their
semantics, and show that there is a close relationship
between knowledge base update and conditional logic.
Grahne [I991] proposes a new logic in which counterfac-
tual and update are treated in a unified way.

Bell [1989] proposes using a conditional logic, called C,
to extend Shoham's work. The C logic is no more than
SS, although the semantics of C seems to be slightly
different from the semantics of SS.

Boutilier [1990a; 1990b] establishes a mapping be-
tween two conditional logics, called CT4 and CT4D, and
consequence relations. We show the differences between
his conditional logics and other conditional logics in light
of notions of minimality. We also extend these results to
other conditional logics.

The outline of the paper is as follows. We define,
in Section 3, ordered structures and families of ordered
structures as the common ingredient of the semantics of
all the works above, based on the observation that an
order among possible worlds is a key concept in all of
them. We define logics for ordered structures and fam-
ilies, and give sound and complete axiomatizations for
them. In Section 4, we consider in detail each of the
three areas - nonmonotonic logic, belief revision, and
conditional logic - and show how the works in each area
fit into our framework. Finally, in Section 5 we use our
framework to derive new cross-connections among the
areas.

2 Preliminaries

Let L be a language of propositional logic that may have
an infinite number of propositional letters. Let L, be a
finitary propositional language that has exactly n propo-
sitional letters. We denote the set consisting of all the
interpretations of L, by |,. Throughout this paper, we
use V\ /i and <> to denote a well-formed formula of L.

A pre-order < over a set W is a reflexive and transitive
relation. We denote the strict order of < by <. An
element w 15 & minimum with respect to < if w < v
for any w' € W — {w}. Let W’ be a subset of W. An
element w 18 minimal in W’ with respect to < if w is
a member of W’ and for any v’ € W, v' < w implies
w < w'. We denote by Min{W’, <) the set of minimal
elements iIn W’ with respect to <. We can define a total
pre-order and a partial order in a usual way.

3 Common Language

We define a common language L.. to discuss conse-
quence relations, knowledge base revision, update and
conditional logics in a unified way. The language L. 1s
a language augmented L with a binary connective ~.
The connective ~ is directly related to the connective
h in the context of consequence relations and the con-
ditional connective > of conditional logics.

We define Wff.. as the set consisting of all the well
formed formulas of L... We also define 5- W{l.. as the set
of formulas that have no nesting of ~». For example, ¢ ~
(¢ ~ ) 1s not a formula of S-Wff.,. We define W, .
as the set consisting of all the formulas in W{f., such
that every propositional letter occurred in the formula
1s a propositional letter of L.

3.1 Ordered Structure

An ordered structure i1s one of the central notions in
the semantics of the works that involve minimality. We
can give semantics of the formulas in 5-Wf.. by using
ordered structures. An ordered structure is a special case
of Kripke structure used in modal logics.

We define an ordered struclure O as a triple (W, <, V},
where W 1s a nonemplty set of worlds, < 15 a pre-order

over W satisfying the smoothness property defined later,
and V isa function that maps a pair of each propositional

letter of L and an element of W to T or F.

For an ordered structure (@ = (W, <,V}, we define
truth of each formula in S- W/, as follows. First, we
recursively define the truth of formulas at a world w by
using O, w p=.

O,wkE iff Vipw)=T

O, wE o iff O w i a,

OuwkEaoAf if OQOuwlkoand OwkE/f,

Owk¢~p it Min(lgll. <) C llell,
where ||¢l| = {w |V (¢, w) = T}.

We say that a formula o in §5- Wff.. is true under an
ordered structure {7, denoted by O | a, if O, w k= o for
any w in Mi{W, <), that is, o is true at every minimal
world of W.

Note the following facts.

1. If w; € we means w; is a more natural world than
ws, then the semantics defined above shows that
¢ ~+ i i1s true under O if and only if all most natural
worlds that satisfy ¢ also satisfy ¢.

2. If W is an infinite set, there might exist infinite
descending chains of elements of W. Then, al-
though some ||¢|| is not empty, Min(||¢{|, <) might
be empty.
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The smoothness condition, mentioned in the defini-
tion of ordered structure, precludes the possibility of the
above emptiness problem. A pre-order < satisfies the
smoothness condition if, for any formula ¢ of L and any
w € ||¢||, there is some world w' such that &' < w and
w' 18 minimal in [|¢{| with respect to <.

We consider various restrictions on an ordered struc-
ture O = (W, <, V). If the pre-order < is a total pre-
order (or a partial order), then we say that O is a fotally
ordered struciure (or partially ordered struciure). 1f W
is finite, we say that O is a finite ordered structure. If,
for any two different worlds, w; and w4, there 15 some
formula ¢ of L such that V(¢,w;) # V(¢, wy}, then we
say that O is a distinguishable ordered structure. I O s
a distinguishable ordered structure then no two worlds
represent the same interpretation of L. If the pre-order
< has a minimum in W, we say that  is an ordered
struclure with a mimimum, The ordered structures with
a minimum are used to give semantics to formulas of
Wil...

The readers who are famuliar with ranked models and
preferential models of consequence relations may easily
notice that totally (resp. partially) ordered structures
are very similar to ranked (resp. preferential) models.

Anocther restriction is the case where a fimtary propo-
sitional logic L, 1s used instead of .. An ordered L, -
siructyre 18 an ordered structure (W, <, V) such that if
a propositional letter p is not in L, then V(p, w) 15 un-
defined. We can also define various restrictions (total,
partial, finite, distinguishable, with a minimum) on or-
dered L, -structures.

Next, we consider a collection of ordered structures in
order to give semantics to any formula of Wff.,. A fam-

Wy of ordered structures @ = (O, )wew 18 a collection
of ordered structures such that W is a nonempty set of
worlds, each O, = (W, <,,, V) 18 an ordered structure,
We 1s a nonempty subset of W, w 18 minumal in W,
with respect to <, and a stronger smoothness condi-
tion defined later is satisfied. For a family of ordered

structures O = (W, <w, V)lwew, if each w 15 the min-

imum of W, with respect to <,, then we say that O is a
famaly of ordered structures with minsmum. We can also
define various restrictions on a family of ordered struc-
tures (with mirimum) in a similar way to the case of
ordered structures.

For a family of ordered structures O = (Owlpew, we
recursively define the truth of formulas at each world w
in W as follows.

O, w Ep iff
O,wk A il
OwkAAB iff
Owk A~ B iff
where [[AlI° = {w|O,w & A}. Intuitively, the set
JA||® denotes all the worlds under which A is true. We
say that A 18 true under a family of ordered structures
O if ||A|I° = W,
The sironger smoothness condition for a family of or-
dered structures ¢ is: for any formula A i Wf.. and

Vipw) =T,
XTI
O,wl Aand O,wkE B,
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Min(||AII° NW,,, <.) C 1BI°.

any w € W, if v € ||A|l° N W, then there is some
world w” € W, such that w” < w' and w” is minimal

in I]AHE N W, with respect to <,,.
3.2 Valdity

We investigate the relationship between ordered struc-
tures and families of ordered structures (with minimum)
in light of the validity of formulas. We also show how
various restrictions on those structures are related to the
interpretation of formulas.

First, we can show that there 1s no difference between
ordered structures and {amilies of ordered structure in

light of the vahdity of formulas of S-Wf....

Theorem 3.1 For any formule o in 5-Wf.., a is valid
under tolally (resp. partially) ordered structures if and

only if o 1s vahd under families of totally (resp. parttally)
ordered siruclures.

The validity under families of ordered structures and
the validity under families of ordered structures with
minimum are dtffereni. We show, at the end of this sub-
section, that the two vahdities are equivalent for some
restricted formulas.

Next, we can show that all the restrictions on totally
ordered structures introduce no distinction as long as we
consider formulas of §- Wff.. in the context of L,. This
result tmphies that none of the restrictions influence the
validity of each formula a.

Theorem 3.2 For any {loilally ordered structure O,
there erisis a finile, distinguishable, folally ordered [.,-
struclure (' such that for any formula o 1n S-Wff, .,
a 15 true under O 1f and only 1f o 18 true under 0.

The case of partially ordered structures i1s different
from the case of totally ordered structures. The valid-
ity under finite, distinguishable, partially ordered L,-
structures i1s exceptional.

Theorem 3.3 For any partially ordered siruciure O,
there erxists a finite, partially ordered L, -structure ¢V
such that for any formula o in 5-Wff, ., o s true un-
der O if and only if o 15 true under 0.

We can show similar theorems about families of or-
dered structures (with minimum) in the context of Wff...

Third, we can define a conditional Horn formula by
regarding g ~+ ¢ as an atom. For example, a formula
(1~ @) A A (pe ~ @) D (4~ ¢) 18 a conditional
Horn formula. Then, we can prove that the validity of
a conditional Horn formula is independent of whether
total pre-order or partial order is used in ordered struc-
tures. This fact is interesting in light of axiomatizations,
because in the axiomatic systems proposed in various
works, non-Horn axioms are used to discriminate total
pre-order cases from partial order cases.

Furthermore, we can show that the validity of a con-
ditional Horn formula under families of ordered struc-
tures is the same as the vahidity under families of ordered
structures with minimum.

3.3 Axiomatization

We show axiomatic systems for ordered structures and
families of ordered structures {with minimum). As we



see later, the axiomatic system for ordered structures is
the sarne as the axiomatic system for families of ordered
structures except for the fact that a variable of the for-
mer system ranges over a formula in either S-W§., or L,
but a variable of the latter system ranges over a formula
in Wit...

First, let {, n and £ be formula variables that range
over formulas of L. Let v and & be formula variables

that range over formulas of S-W{f.,. Let X, Y and Z be
formula variables that range aver formulas of Wf... An

axiomatic system TO is a set of the following axiomatic
schemas and inference rules.!

Axiom Schemas

(PC) Truth-functional tautologies.
(1ID) ¢~ (.
(MP)  ({~n)D({Dn)

(AND) () A((~ &) D ((~ (nAL))

(OR)  ({~EA(n~E)D((LVn)~E)

(CE)  ({~n)A(n~OA{{~E)D(n~E).

(RM)  ({~EA((~=n)D{((AR)~E)
Inference Rules

(Mp) From & and é D v infer v.

(RCM) From np D £ infer (( ~1n) D (( ~ £).

Another axiomatic system PO is the axiomatic system
obtained from TO by removing the axiomatic schema
(RM).

We can show a kind of the completeness theorem.

Theorem 3.4 A formula o in 5-Wfl.. 15 a theorem of
TO (resp. PO) if and only sf o 1s valid under totally

(resp. partially} ordered structures.

Next, let us give an axiomatization for families
of ordered structures. An axiomatic systern FTO
(resp. FPO) is the axiomatic system obtained from TO
(resp. PO) by replacing the formula variables ¢, 5, £, 6
and y with X, Y, Z, X and Y, respectively.

Theorem 3.5 A formula A i Wi, 15 a theorem of
FTO (resp. FPO) of and only if A is valid under famalies
of totally (resp. partially) ordered siructures.

Third, we consider an axiomatization of families of
ordered structures with minimum. An axiomatic system
FTOM (resp. FPOM} is the axiomatic system cbtained

from FTO (resp. FPO) by adding an axiomatic schema:
(CS) (XAY)D (X ~Y).

Theorem 3.6 A formula A in W 1s a theorem of
FTOM (resp. FPOM) if and only 1f A 15 valid under fam-
tlies of lolally (resp. partially) ordered structures with
mintmum,

For each axiomatic system above, we can construct a
kind of canonical model such that a set consists of all the
true formulas at a wotld of the model iIf and only if the
set is a maximally consistent set under the axiomatic
system. A later version of this paper will provide the
details.

Finally, we note that we can prove nonexistence of ax-
iomatic systems, such as PO, for finite, disinguishable,

1TO and the other axiomatic systems given are based on
the axiomatization of Bell’s C logic [Bell, 1989).

partially ordered L,-structures. Despite this, Katsuno
and Mendelzon {1991a} give a kind of axiomatization of
finite, distinguishable, partially ordered I -structures in
the context of knowledge base revisions. They achieve
this by introducing a revision operator that corresponds
to a kind of function mapping a formula to another for-
mula.

4 Comparison

4.1 Consequence Relation

A consequence relation represents a well-behaved set
of conditional assertions, where a conditional assertion
g b~ ¢ intuitively shows that y is a good enough reason
to believe ¢. Kraus, Lehmann and Magidor [Kraus el al.,
1990; Lehmann, 1989] define preferential (resp. rational)
consequence relations as a set of conditional assertions
that is closed under a set of inference rules, P {resp. R).
They also define preferential models and ranked mod-
els to discuss the semantics of the consequence rela-
tions. They show that preferential (resp. rational) con-
sequence relations can be characterized by prefcrential
(resp. ranked) models. 1t is easy to define a bijection
between preferential (resp. ranked) models and partially
(resp. totally) ordered structures.

By associating the connective ~+ to the connective p,
we can transform the results on TO or PO to the re-
sults on consequence relations, and vice versa, A super-
ficial difference between consequence relations and TO
or PO 1s the way of representations of rules and ax-
toms. (zentzen-style rules are used 1n consequence re-
lations, while a Hilbert-style axiomatization 1s used for
ordered structures, Since a transformation between the
two styles 1s straightforward, we can easily find a coun-
terpart of each rule of R or P in the axioms, the inference
rules, or the theorems of TO or PO. However, note that;
when we consider the converse transformation, there s
no counterpart to (MP) in the rules of consequence re-
lations.

Another difference is that some logical combinations
of conditional assertions are not allowed 1n rules of con-
sequence relations, while all combinations are allowed 11
S-Wi... For example, ({¢t1 b ¢1) V (42 b ¢2)) D pis
not allowed, but ({p; ~ @)V {2 ~ ¢2)) D p is allowed.
Boutilier [1990a; 1990b] also extends the syntax of conse-
quence relation so that we may usc logical combinations
of conditional assertion. However, his semantics of an
extended formula s different from ours.

Although the above differences exist, Theorem 4.1
shows that there is no essential distinction between IR
(resp. P) and TO (resp. PO). For any subset I' of 5-
Wil , we define Con(I') as a set of conditional assertions

such that Con(T) = {u b ¢|pu~ ¢ €T}.

Theorem 4.1 A set of conditional assertions U 1s a
ranked (resp. preferential) consequence relation if and
only if there 1s some deductively closed set I' of S- WS,
under TO (resp. PO} such that C = Con(T).

4.2 Knowledge Base Revision

A major problem for knowledge base management 1s how
to revise a knowledge base (KB) when new information
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that is inconsistent with the current KB is obtained. Al-
chourron, Gardenfors and Makinson [1985] propose ra-
tionality postulates for the revision operation. Katsuno
and Mendelzon [1989; 1991a] characterize the AGM pos-
tulates in terms of minimal change with respect to an
ordering among interpretations. We discuss the rela-
tionship between those works and the results on ordered
structures.

Gardenfors and his colleagues [Alchourron et al., 1985;
Gardenfors, 1988; Gardenfors and Makinson, 1988] rep-
resent a KB as a knowledge set. A knowledge set is, in
our context, a deductively closed set of formulas in L,
Given knowledge set K and sentence U, K*u is the revi-
sion of K by U. K+u is the smallest deductively closed
set containing K and p. Kz is the set consisting of all
the propositional formulas. The AGM postulates consist
of the following eight rules. See [Gardenfors, 1988] for a
discussion of the intuitive meaning and formal properties
of these postulates.

(K*1) K*p is a knowledge set.

(K*2) pe k*p

(K*3) K*4 C Ky

(K*4) If ~u € K, then K*tu C K*pu

(K*5) K*u = K, only if i 1s unsatisfiable.
(K*6) If u = é then K*u = K*¢.

(K*7) K*(uAd) C(K*u)*t¢

(K*8) If ~¢ & K"p then (K pu)7¢ C K*(n A 4)

We note that (K*3) and (K*4) imply the condition:
if new knowledge u 18 consistent with a knowledge set
K then the revised knowledge set K*p is Kt . We call
this condition an erpansion condilion.

Makinson and Gardenfors [1991] discuss similarities
between these postulates and rules of consequence re-
lations by fixing a knowledge set K and by using the
transformation rule: ¢ € K*u ifl u b ¢. Since the rules
of consequence relations can be translated into formulas
in S. Wi K we can apply their discussion to the relation-
ship between the postulates and formulas in S-W{L..

We give a semantic characterization of the postulates
(K*1)~(K*8) by using the ordered structures. We can
capture a revision operator * by a collection of totally
ordered structures, where a totally ordered structure is
assigned to each knowledge set. The total ordered struc-
ture O = (Wk, <k, Vx) assigned to a knowledge set
K must satisfy a covering condition?: for any satisfi-
able formula u there is some world w € Wy such that
Vic(u,w) = T. The expansion condition of the postu-
lates implies a remarkable property (the third condition
of Theorem 4.2): each consistent knowledge set K con-
sists of all the propositional formulas that are true un-
der every minimal world of Ok. The second condition
of Theorem 4.2 corresponds to the transformation rule
proposed by Makinson and Gardenfors.

Theorem 4.2 A revision operalor x salisfies (K*i}~
(K*8) if and only if for ecach knowledge set K, there is
a tolal ordered siruciure Ox such that

*This property is related to (K*5).
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1. Ok satisfies the covering condition,
2. K*'u={¢|Ok | p~ ¢},
8. K={¢|O0x | ¢} tf K # K, .

Katsuno and Mendelzon [1989; 1991a)] consider knowl-
edge base revision in the framework of a fimtary propo-
sitional logic L,. They represent a KB as a formula
of Ly, since a computer-based KB must be finitely rep-
resentable. We note that every knowledge set K (i.e.,
deductively closed set) can be represented in the context
of L, by a formula ¢ of L, such that K = {¢{v¢ F ¢}.
We denote by y o u the revision of a KB ¢ by u, where
o 1S a revision operator.

Katsuno and Mendelzon show the six postulates
{R1)~{RH) for a revision operator o that are equiva-
lent to (K*1)~(K*8). By introducing total pre-orders
among interpretations of L, , they characterize all the re-
vision operators satisfying ( R1)~(R6) in hight of minimal
change with respect to the introduced total pre-orders.
It is possible to rephrase the characterization in terms
of finite, distinguishable, totally ordered L,-structures,
and show a theorem similar to Theorem 4.2.

Katsuno and Mendelzon {1991a) show postulates for a
revision operator that is defined by minimal change with
respect to parfial orders among interpretations. The
postulates consist of (R1)~(R5) and other two postu-
lates (R7) and (R8). Due to space limitation let us only
state the (R8) postulate.

(R8) (Vo) A(¥opus) implies o () V uz).

The postulate {R8) is noteworthy in light of the ax-
iomatization of finite, distinguishable, partially ordered
L, -structures, because it is difficult to find a counterpart
to (R8) in formulas of S-Wff...

We can show the relationship between revision opera-
tors satisfying (R1)~(R5), (R7), (R8) and finite, distin-
guishable, partially ordered L,-structures. To do so, we
need a restriction on partially ordered L, -structures. We
say that a partially ordered L,-structure O = (W, <, V)
has a minimum set If it satisfies the condition: for any
w € Min(W,<) and any v’ €¢ W, if w' ¢ Min(W, <)
then w < w’ holds. The reason why we must impose
this condition is related to the expansion condition which
requires that every model of ¥ be less than any non-
model with respect to the order that characterizes min-
imal change.

Theorem 4.3 A revision operelor o salisfies (R1)~
(R5), (R7} and (R8) if and only if for each formula ¢
of L,., there ts a finile, dislinguishable, partially ordered
Lp-structure, Oy, such that

1. vou= A0y E u~ 8},

2. Oy satisfies the covering condition and has a mini-
mum sel,

8 v = A{¢ |0y F ¢} tf ¢ 15 consisient,
{. if ¢ and ¢, are logically equivalent then O ts equal
to Oy, .

The fourth condition of Theorem 4.3 says that revision
is independent of the syntactic representation of a KB

.



Table 1: Conditional Logic and Axiomatization

| Cnnd:tmnaﬂ Logic_ Axiomatization
%eww 1973; Nute, 1934D FTO
VC( ewis, 1973; Nute, 1984]) | FTOM
| 5SS or C ([Nute, 1984; Bell, 1989)) | FPOM

4.3 Knowledge Base Update

We discuss the relationship between knowledge base up-
date and families of ordered structures with minimum.
The revision discussed in Section 4,2 is used to mod-
ify a KB when we obtain new information about a static
world, while we need another operation, update, to bring
the KB up to date when the world described by it
changes- The distinctions between update and revision
are discussed in [Katsuno and Mendelzon, 1991b].

Katsuno and Mendelzon propose postulates (Ul)~
(U8) for an update operator under L,, and character-
ize all the update operators that satisfy the postulates
in terms of partial orders among interpretations. The
postulates (U1)~(U8) are defined along the same lines
s (R1)~(R8). However, two important differences ex-
ist; one is that (Ul)~UB) do not Tequire the expansion
condition, that is, even if a KB w and new information
u are consistent, the new KB w o u is not necessarily
equivalent to $ A/i. The other difference is that an up-
date operator should satisfy a "disjunction rule" (U8)
guaranteeing that each possible world of the KB is given
Independent consideration.

(UB) (vu Vip)op = (Yr1op)V (¥ opu).

We can show that an update operator satisfying
(U1)~(UB8) can be identified with a family of finite, dis-
tinguishable, partially ordered L,-structures with min-
imum, where an ordered structure is assigned to each
interpretation of L,.

Theorem 4.4 An updaie operator o satisfies (Ul)~
(U8) if and only if there is a family of finile, distin-
guishable, partially ordered L, -structures with minimum

O = (O1)jez, such that

1. O; satisfies the covering condilion,
2. the mintmum of Oy 15 1,

S. vou=N¢|OEYVD (u~¢)}.
4.4 Conditional Logic

The conditional logics consist of the propositional logic
augmented with a conditional connective denoted by >.
If we replace ~> with >, we can regard L. as alanguage
of conditional logics,

The various conditional logics are surveyed in [Nute,
1984]. Table 1 shows a correspondence between the pro-
posed conditional logics and the axiomatization in Sec-
tion 3.3.° For instance, the table states that FTO is an
axiomatization of VW.

“We have not found any conditional logic proposed in the
literature that corresponds to FPO.

Conditional logics that are not appeared in [Nute,
1984] are CT4 and CT4D proposed by Boutilier [1990a:
1990b). The logics are formalized to represent and rea-
son with “normality”. The semantics of 4 > ¢ under
CT4 (or CT4D) 1s that ¢ 1s true under the most normal
situation where i is true. Roughly speaking, he consid-
ers an order such that the more distant a world is from
w, the more normal the world 1s. A later version of this
paper will provide a formal analysis on Lhe relationship
between Boutilier’s semantics and the notion of ordenng,.

5 Reciprocal Relation

5.1 Consequence Relation versus Revision

If we fix a knowledge set K, we can identify a revision
operator » satisfying (K*1)~(K*8) with a rational conse-
quence relation determined by a ranked model satisfying
the covering condition. The identification 1s established
by Condition 2 of Theorem 4.2. In general, a revision
operator * satisfying (K¥1)}~(K*8) corresponds to some
collection of rational consequence relations.

The discussion in Section 4, in light of P or PO, sug-
gests a way of determining the rationality postulates for
revision to knowledge sets that correspond to preferen-
tial consequence relations.

5.2 Consequence Relation versus Conditional
Logic

Consequence relations are, In some sense, equivalent
to “pesting-free” conditional logics. We can show the
following theorem® by extending the discussion of Sec-
tion 4.1 and by using Theorems 3.1 and 3.5.

Theorem 5.1 For any rule a thai heolds i all ratio-
nal (resp. prfferentia!) consequence relalions, the corre-
sponding formula o' of condiitonal logic 15 a thearem of
VW (resp. FPO). Conversely, for any theorem o of VW
(resp. FPO) that is a restricted formule of S-WfI &, the
corresponding mule o holds 1n all rational {resp. pT‘ffﬂT'-
enlial) consequence relations.

5.3 Revision versus Conditional Logic

Gardenfors [1988] investigates the relationship between
the postulates for revision and the conditional logic VC
in light of the Ramsey test: § € K*a if o > € KA.
He shows that the Ramsey test 1s mwmpanhle witlt the
postulate (K*4) (intuitively, the expansion condition) In
his framework. Since he considers a knowledge set con-
structed from formulas of L. whereas we use a knowl-
edge set as a set of propositional formulas, we can not
translate his results into our context.

A revision operator satisfying (K*1)~(K*8) 1s equiv-
alent to some collection of totally ordered structures.
However, the semantics of VC is determined by a famuly
of totally ordered structures with mmimurm. The two dif-
ferences, 1.e., having minimum or not and different types

*Boutilier [iggﬂa; 1990b] shows a similar theorem in terins
of CT4 and CT4D.

*Note that the syntax of rules of consequence relations is
restricted as discussed in Section 4.1; for example, neither

ph (g b ) nor v A{p b~ ¢) is allowed.
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of collection, suggest an incompatibility result similar to
the incompatibility obtained by Gardenfors.

5.4 Update versus Conditional Logic

The update operators satisfying (U1)~(U8) are charac-
terized by families of finite, distinguishable, partially or-
dered L,-structures with minimum. The semantics of
the conditional logic SS (or equivalently C) is deter-
mined by families of partially ordered structures with
minimum. We can expect more similarities of update to
conditional logic than those of revision from the above
two facts. To develop the correspondence, we must de-
fine an update operator in the context of knowledge sets,
and find postulates for the update that correspond to
(U1)~(U8).

Grahne [1991] proposes a conditional logic VCU? hav-
ing an update operator, and shows the Gardenfors' in-
compatibility result does not hold in VCU?.

6 Concluding Remarks

We define ordered structures and families of ordered
structures (with minimum) as tools to develop a unified
view of existing work on consequence relations, knowl-
edge base revision, update and conditional logics. By
using ordered structures and families of ordered struc-
tures, we can show reciprocal relations among the differ-
ent approaches.
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