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Abs t rac t 

Recent research suggests the uti l i ty of per­
forming induction over explanations. This 
process identifies commonalities across expla-
nations that cannot be extracted solely by 
explanation-based techniques. This has impor­
tant implications for the 'correctness' of learned 
knowledge [Flann and Dietterich, 1989] and, as 
we show, on the efficiency with which learned 
knowledge can be reused. Specifically, we i l ­
lustrate that inductive concept formation can 
abstract and organize explanatory knowledge 
for efficient reuse in a domain of algebra story 
problems. 

1 I n t r o d u c t i o n : Pr inc ip les of M e m o r y 
Organizat ion 

An increasingly well-accepted view in psychology and 
AI is that problem solving is a process of classifica­
tion. Performance improves by learning patterns that 
discriminate between problem-solving choices. Produc­
tion system models of learning and problem solving (e.g., 
[Langley, 1985]) make the 'problem solving as catego-
rization' view explicit, as do models of case-based rea­
soning [Kolodner, 1987]. Another paradigm concerned 
with learning and problem solving is explanation-based 
learning [Mitchell et at, 1986; Minton, 1988]. Each 
of these three strategies aims to improve the efficiency 
with which knowledge is accessed and reused in novel 
problem-solving situations. 

Of these three approaches to improving problem-
solving performance, we wil l focus on explanation-based 
learning, though the general approach that we describe 
is relevant to other paradigms as well. In particular, we 
have looked at explanation-based learning as a model of 
learning to solve algebra story problems IMayer, 1981]. 
Consider the problem, 

"A train leaves a station and travels east at 12 
km/h. Three hours later a second train leaves 
and travels east at 120 km/h. How long will it 
take to overtake the first train?" 

*This research was supported by NASA Ames grant NCC 
2-645. We thank the reviewers for useful comments. 

Figure 1: A generalized problem solution trace (expla­
nation). 

A learner with a set of primitive rules that consti­
tute domain-specific knowledge (e.g., Distance = Rate 
* Time) and general algebraic knowledge (e.g., a*b = c 

forms a solution to this overtake prob­
lem that is abbreviated in Figure 1. The time until 
overtake (Time = Distance / Rate) may be obtained 
from the distance that must be made up by the faster 
train where D1 is the distance traveled 
by the first train before the second train starts), and 
the relative rate of travel of the second train (R = R2 
— Rl). Explanation-based learning wil l generalize the 
arguments (i.e., by turning them to variables in a con­
trolled way) of this AND-tree solution trace so that it 
can be reused on future problems. 

Unfortunately, even after variablization, the applica­
bil i ty of this solution trace wil l be highly l imited. Con­
sider a second opposite-direction problem, 

"Two trains leave the same station at the 
same time. They travel in opposite directions. 
One train travels 64 km/h and the other 104 
km/h. In how many hours will they be 1008 
km apart?" 

which has a solution structure almost identical in form 
to the solution of Figure 1; it differs only in the structure 
of the boxed subtree. Nonetheless, the earlier solution 
cannot be used to solve the new problem unless the basic 
EBG process is altered. Flann and Dietterich [1989] and 
others [Hirsh, 1988; Pazzani, 1988] suggest the uti l i ty 
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of per fo rm ing Induction over Explanations ( I O E ) which 
can generalize an exp lanat ion beyond simple variablizar 
t i on . I O E does th is by super imposing a set of AND- t ree 
explanat ions, and p run ing subtree structures tha t are 
not shared by a l l trees. For example, per fo rming I O E 
over the exp lanat ion trees for an opposi te-direct ion and 
overtake problems wou ld y ie ld a tree s t ructure w i t h the 
boxed r igh tmos t subtree of F igure 1 severed. 

Using I O E , the common substructure o f mu l t ip le ex­
planat ions can be reused in a wider var iety of s i tu ­
at ions. T h e subst ructure does not provide the com­
plete exp lanat ion , bu t i t ideal ly provides a sizable chunk 
tha t can be completed using the p r im i t i ve rules of 
the or ig ina l domain theory. Thus , induc t ion over ex­
planat ions abstracts redundant substructures ou t , thus 
promis ing to improve the efficiency w i t h which appl ica­
ble learned knowledge can be found and reused.However, 
unconstra ined induc t ion can remove al l the benefits of 
explanat ion-based learning. Consider t ha t there may be 
radical ly dif ferent explanat ions of why oat-bran cereal 
and baked f ish are h e a l t h - f o o d . Abs t rac t i ng ou t the 
common subst ructure m igh t y ie ld an 'exp lanatory ' sub­
s t ruc ture , h e a l t h - f o o d ( x ) , wh ich is a t r i v i a l s tatement 
of the target concept. T h u s , on one hand max ima l l y -
operat ional explanat ions prov ide a complete explanat ion 
for new s i tuat ions, b u t i t is d i f f icu l t to f ind applicable ex­
p lanat ions since redundant st ructures must be searched 
mul t ip le t imes. Conversely, maximal ly-general struc­
tures (e.g., c u p ( x ) , h e a l t h - f o o d ( x ) ) make i t easy to 
f ind appl icable past 'experience', b u t no th ing useful is 
gleaned in hav ing done so. 

The tradeoffs of an explanat ion-based memory are 
closely re lated to tradeoffs t rad i t i ona l l y found in induc­
t ive concept fo rmat ion [Fisher, 1987; Lebowi tz , 1982; 
Kolodner, 1987]. Ideal ob ject concepts are those where 

. m a n y features are predictable (i.e., favor ing specific con­
cepts), b u t many features are also predictive (i.e., favor­
ing general concepts). Our concern w i t h 'p red ic t ion ' ac-
curacy in explanat ion-based learning may seem at odds 
w i t h the t rad i t i ona l v iew t ha t efficiency is the cr i t ica l 
performance dimension in explanat ion-based learning. 
However, choices in a domain theory search const i tute 
predict ions; in fo rmed and accurate decisions at choice 
points result in an efficient search, whi le erroneous deci­
sions are the cause of backt rack ing and inefficiency. The 
hypothet ica l curve of F igure 2 i l lustrates performance 
trends t ha t m i g h t be expected. Max im iz ing predict ive-
ness (general i ty) w i l l under f i t the data, necessitating un­
in formed pred ic t ion (e.g., un in formed search th rough a 
domain theory ) . Conversely, max im iz ing pred ic tab i l i t y 
(opera t iona l i t y ) w i l l overf i t the da ta and in t roduce re­
dundancies i n t o the search for appl icable past exper i ­
ence. An ideal abst rac t ion should be re lat ively unique 
and easily ident i f ied ; i t can then predict a sizable por­
t ion of the complete exp lanat ion s t ruc ture ; the domain 
theory is on ly requi red to complete the proof (e.g., of 
re lat ive ra te ) . 

Th i s paper shows t ha t induc t i ve methods of concept 
formation [Gennar i et al, 1989] can abstract redun­
dancy ou t of explanat ions and organize shared substruc­
ture(S) to improve the efficiency of f inding explanat ions 

Figure 2: Prediction error (and search efficiency). 

for reuse. Section 2 describes our system, E X O R ( E x p l a ­
nat ion ORganizer) , wh ich clusters and classifies explana­
t ions based on shared s t ruc ture . In section 3 we report 
exper imenta l results which i l lus t ra te tha t Ex OR effec­
t ive ly improves problem-solv ing efficiency in a domain 
of algebra s tory problems. Sections 4 and 5 analyzes 
the strengths and weaknesses of the approach, and de­
tai ls i ts re la t ion to ongoing research in explanation-based 
learning. 

2 Concept Fo rmat ion over 
Explanat ions 

Our system, E X O R , performs concept fo rmat ion over ex-

planations. We use the domain of algebra story problems 
Mayer, 1981] to describe and evaluate our system. In 

par t icu lar , E X O R embeds I O E w i t h i n a contro l s t ructure 
for bu i ld ing abst ract ion hierarchies t ha t was inspired by 
Lebowi tz 's [1982] U N I M E M and Fisher's [1987] C O B W E B . 
Figure 3 gives an example of the type of abstract ion h i ­
erarchy formed by E X O R over algebra s tory problems 
tha t span 16 types (e.g., overtake, opposite d i rect ion, 
round t r ip ) taken f r om Mayer [Mayer, 1981]. Solutions 
to these problems range f r om very s imi lar to qui te differ­
ent . The domain theory includes formulae l ike those de­
scribed above w i t h a var iety of ways for solving the quan­
t i t ies: D i s t a n c e , T ime, and Rate . W i t h i n each node 
of the abstract ion hierarchy is a general ized-explanation 
subtree tha t is common to a l l descendents of the node. 
I f there is no common substructure over the ent i re set 
of observed explanat ions, then the roo t of the hierarchy 
w i l l be empty . 

To incorporate an explanat ion in to a classification 
tree, the exp lanat ion is compared to the explanat ion 
substructure of a node of the abstract ion hierarchy ( in i ­
t ia l ly the root ) and the remainder o f the I O E procedure 
is appl ied to generalize the new explanat ion and the 
node's subst ructure. I f th is results in a generalization 
tha t is equivalent to the node's generalized explanat ion, 
then the new explanat ion must be more specific than 
the node's par t ia l exp lanat ion; in th is case classification 
of the explanat ion proceeds to the chi ldren of the node. 
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Figure 3: A classification tree over explanations (problem solving traces). 

If IOE yields a structure that is more general than the 
current node, then the node's explanation structure is 
not more general than the new explanation; in this case, 
the new explanation is made a sibling of the node. Of 
course, to be useful the hierarchy must not simply be 
used to store explanations, but it should facilitate ex­
planation construction. In this case, E X O R solves a tar­
get concept (e.g., distance) using a problem statement of 
operational predicates and the classification tree. If the 
subexplanation stored at the node is applicable to the 
new problem and the variable instantiation constraints 
(if any exist) can be satisfied by the new problem then 
one of the node's children is selected for investigation. 

Figure 4 illustrates the basic classification process. 
As search down the classification tree proceeds, E X O R 
extends the solution to the current problem using the 
subexplanations that are stored at each node along the 
path. If a contradiction occurs between a node's partial 
explanation and the known conditions of the problem 
statement, then the node is abandoned, its conditions 
(the partial explanation) are retracted, and search con­
trol looks to a sibling of the node. That is, control re-
turns to the node's parent and another child is explored. 
If all of a node's children result in contradictions then an 
attempt is made to complete the partial explanation ac­
cumulated thus far by using the domain theory. This 'last 
resort' is represented in Figure 4 by the 'house-shaped', 
dashed boxes that emanate from examined nodes. If this 
fails then the node is abandoned as above (i.e., its con­
ditions are retracted and backtracking returns control to 
the node's parent). 

Figure 4 indicates that classification is not necessar­
ily deterministic. Some search of the tree (and domain 
theory) is still required, though we hope that this is less 
than an uninformed search of the domain theory. To 

Classification path 

Problem solved 

Figure 4: Problem solving by classification. 

direct classification, a measure of category utility [Gluck 
and Corter, 1985] is used to rank the promise of children 
under a node. In addition to storing a partial explana­
tion at a node, which is true of all of the node's descen-
dents, we store statistics on the distribution of opera­
tional predicates of explanations stored under the node 
- statistical trends in operational predicates can be used 
to heuristically guide the selection of nodes from which 
E X O R builds an explanation for the current problem. 

Intuitively, category utility is a measure of the pre­
dictability and predictiveness of a new problem's oper­
ational predicates relative to a category - i.e., a classi­
fication tree node. The predictability of a predicate Fk 
relative to a category (node) Ni is given as 
the probability that Fk will participate in an explana­
tion stored under Ni. The predictiveness of a predicate 
is given by . the probability that an explana­
tion with Fk will be stored under Ni. Recalling the dis­
cussion from Section 1, category utility is a tradeoff be­
tween these two factors:  
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where P(Fk) weights the impor tance of the tradeoff for 
the most f requent ly observed predicates. W h e n a prob­
lem statement is presented to EXOR, candidate nodes 
are ranked by the i r category u t i l i t y scores over the op­
erat ional predicates. T h e highest scoring nodes are in ­
vest igated f i rst . Cont rad ic t ions may s t i l l arise, causing 
E X O R to abandon a proposed node, b u t the induct ive 
assumpt ion is t ha t the d i s t r i bu t i on of operat ional pred­
icates provides considerable heurist ic guidance. 

3 Exper imen ta l Results 
E X O R ' S ab i l i t y to improve problem-solv ing efficiency in 
the domain of 48 algebra problems was tested. A subset 
of 32 problems were selected for t ra in ing and 16 were 
selected for test ing. A t i n te rm i t t en t po in ts in t ra in ing 
(i.e., every four problems) , the performance of the E X O R 
classif ication tree was evaluated. In par t icu lar , we com­
pared the to ta l number of predicates ins tant ia ted using 
a domain theory search (no learn ing) , an EBG-l ike sys­
tem, and the heur is t ica l ly-guided Ex OR tree search over 
the 16 test prob lems. 1 

Figure 5 i l lustrates the t o ta l number of predicates i n ­
s tant ia ted dur ing a domain theory search and an E X O R 
classif ication tree search as t ra in ing proceeds over the 
32 t ra in ing problems. T h e exper iment has been run ten 
t imes w i t h dif ferent random orderings o f the data. The 
dashed hor izonta l l ine reflects the t o ta l work performed 
f r o m domain theory search alone (i.e., no learning) over 
the 16 test problems. T h e amount of work performed 
by E X O R trees is also graphed, bu t recall f rom the de­
scr ip t ion o f the exp lanat ion-const ruct ion procedure tha t 
search using an E X O R classif ication tree stems f r om two 
sources. F i r s t , E X O R searches a pa th in the classif ication 
tree to f ind a maximal ly-speci f ic node tha t appears to be 
appl icable to the new prob lem. T h e par t ia l exp lanat ion 
at such a maximal ly-speci f ic node may not cont rad ic t 
the operat ional (observed) predicates of the new prob­
lem, bu t the par t ia l exp lanat ion may not be successfully 
extended by any of the node's ch i ldren. However, before 
a node is abandoned, a final effort is made to extend 
the pa r t i a l exp lanat ion using the domain theory; these 
(nested) domain theory searches are the second source 
of search. T h e shaded ( lower, increasing) area reflects 
search in tree nodes; the upper (decreasing) curve gives 

1 There are many dimensions over which we could have 
compared performance (and did): the total number of rules 
examined, and the total number of backtracks. We report 
predicate instantiations, as this is the most granular dimen­
sion. We did not choose to systematically investigate cpu 
time since the 'no learning' condition and our EBG imple­
mentation take direct advantage of the Prolog interpreter in 
applying rules, while EXOR includes some overhead that is 
implementation-based, and not of theoretical consequence. 
This is not to say that all of our system's overhead is sim­
ply implementation-based. For example, the use of category 
ut i l i ty and probabilistic matching are legitimate theoretical 
concerns in terms of rule match cost. Future work wi l l have to 
untangle theoretical f rom implementation overhead. Suffice 
it to say that currently EXOR and EBG appear comparable 
in terms of cpu t ime, though this is a dubious comparison in 
favor of EBG. See Segre, Elkan, and Russell [1990] for a good 
summary of possible performance dimensions. 

Training examples 

Figure 5: Performance as a func t ion of t ra in ing . 

the to ta l amount of search required to solve al l 16 test 
problems inc lud ing the domain theory search ( i .e . , the 
difference between the upper and lower curves) to com­
plete par t ia l solut ions. Thus , E X O R reduces the over­
all effort required to solve problems ( i .e . , the decreasing 
curve); the effort t ha t is required is increasingly borne 
by the Ex OR classif ication tree, whi le the domain theory 
plays a corresponding smaller role as t ra in ing proceeds. 

The efficiency o f E B G has no t been graphed, bu t i t 
was tested on the same data . A f te r 32 t ra in ing prob­
lems, E B G required 1352.6 predicate instant ia t ions to 
solve 16 test problems. Th i s is considerably more than 
either the domain theory alone o r E X O R . E X O R ' S relat ive 
success stems f r om its ab i l i t y to explo i t shared par t ia l 
solut ions. For example, E X O R can explo i t the general­
ized solut ion f r om an 'opposite d i rec t ion ' and 'overtake' 
problem to par t ia l l y solve a 'closure' prob lem; some­
th ing tha t E B G can not do. Th is l im i t a t i on o f E B G i s 
magnif ied when there are many explanat ions tha t dif­
fer in very minor ways. For example, suppose tha t an 
opposi te-d i rect ion p rob lem describes a car t rave l ing eas t 
and the other t rave l ing wes t , and there are domain the-
ory inference rules t ha t te l l us t ha t e a s t and wes t are 
o p p o s i t e - d i r e c t i o n s , a s are n o r t h and s o u t h . E B G 
w i l l not be able to exp lo i t the so lu t ion to the f i rs t prob­
lem in i ts a t t emp t to solve a new prob lem, wh ich is iden­
t ica l to the f i rs t , except t ha t the cars are t rave l ing n o r t h 
and s o u t h . In fact , the great s im i la r i t y between prob­
lems may lead to a considerable amount of redundant 
search u n t i l a cont rad ic t ion is f ound . Th i s was the case 
w i t h many o f the problems in our doma in , thus the poor 
performance o f E B G . However, E B G proves qui te ade­
quate on problems tha t s t ruc tu ra l l y ma tch previously-
observed problems. In the fo l lowing section we w i l l dis­
cuss th is and other issues of explanat ion-based learning, 
and the manner in wh ich these l im i ta t ions are addressed 
by E X O R using lessons adapted f r om induct ive learning. 
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4 S e l e c t i v e U t i l i z a t i o n a n d P r u n i n g 

In addition to our experimental demonstrations, E X O R 
classification hierarchies also suggest natural approaches 
to specific issues in explanation-based learning. One of 
these concerns the selective utilization [Markovitch and 
Scott, 1989; Mooney, 1989] of learned knowledge. Un­
der what conditions should learned knowledge be ex­
ploited and when is it best to rely solely on the init ial 
domain theory? Markovitch and Scott's LASSY accumu­
lates statistics on how frequently each antecedent of a 
rule will fail; learned rules are only used in attempts to 
prove antecedents that have succeeded sufficiently often 
(e.g., at least 50% of the time). The justification for 
this strategy is that if a subgoal is likely to fail then 
one should not search for a subproof in vain twice -
once with learned rules and once with the domain theory 
from which the learned rules were constructed. Mooney's 
[1989] EGGS uses a technique that is similarly motivated. 
These approaches mitigate the uti l i ty problem and im­
prove efficiency, but nonetheless suffer from two l imi­
tations. First, the likelihood of subgoal failures is only 
estimated within the context of a single (domain theory) 
rule; intuitively, one might expect that the likelihood of 
a subgoal failure would be dependent on the more com­
plete problem solving context. Second, LASSY and EGGS 
decide to make all learned rules available for examination 
or none; rather we believe that the relevance of learned 
rules wil l vary with problem solving context. It should 
be possible to ignore rules that are deemed irrelevant. 

An EXOR classification hierarchy addresses both l im­
itations. Each node represents the status of the com­
plete problem-solving context. The system maintains 
statistics much like LASSY's number of backtracks (fail­
ures) at each node. Nodes with an unacceptable number 
of backtracks (e.g., greater than 50% of the time) are 
pruned [Quinlan, 1986]. If all of a node's children are 
pruned then this effectively identifies the problem solv­
ing contexts in which the system should rely exclusively 
on domain theory. Those children that do remain serve 
to identify learned extensions that have been previously 
applicable; learned rules that are not present in these 
children are not considered when attempting to extend 
the explanation from the current node. Figure 6 illus-
trates the classification process after pruning low ut i l i ty 
nodes. Rather than overfit the problem solution, E X O R 
turns to the domain theory at 'suitable' levels of speci­
ficity. 

5 C o s t - E f f e c t i v e F e a t u r e s 

In addition to pruning, we have also investigated a sec­
ond extension. Initially, EXOR'S search procedure was 
guided by a category ut i l i ty score computed solely over 
predicates that are known to be true from the prob-
lem statement. Thus, problem statements draw an ini­
tial boundary of operationality [Braverman and Russell, 
1988]. However, this boundary is not necessarily opti­
mal for purposes of efficiency. For example, recall from 
an earlier example that predicates such as east and vest 
convey litt le information per $e - it is the inferred predi­
cate, o p p o s i t e - d i r e c t i o n , that distinguishes solutions 

Class i f ica t ion path 

Figure 6: Classification after pruning low ut i l i ty nodes. 

to which a problem corresponds. Thus, improved perfor­
mance is expected by combining some forward-chaining 
capabilities (e.g., inference from the problem statement 
to an appropriate boundary) with the backward chaining 
mechanisms that currently dominate EXOR'S processing. 

The success of forward chaining depends on identify­
ing predicates (e.g., oppos i t e -d i r ec t i on ) that differen­
tiate categories of different problem solving experiences, 
thus better focusing the search for solutions to new prob­
lems. However, proving or disproving the t ruth of a pred­
icate requires effort as well. Thus, an ideal boundary 
of operationally includes predicates with greater effi­
ciency benefits than costs. We can formalize this notion 
in terms of the expected number of problem-solving steps 
(or predicates instantiated, or any of several other mea-
sures of cost) required to solve a problem with and with­
out knowledge of a predicate's t ruth. Let E(c\N) be the 
expected cost of solving an arbitrary problem beginning 
at node N of an E X O R classification tree. Assume that 
we investigate the children, C,-, of TV in order of prob­
ability. Our inductive assumption is that children wil l 
successfully extend the current problem with roughly the 
same probability that they successfully classified earlier 
problems. Thus, 

i 

where ,  
is the expected cost (e.g., number of steps) of 

successfully finding the problem's solution under a child, 
Cj, and I is the expected cost in an unsuccessful 
search of Cj for a solution to the problem. Thus, the 
cost of finding a solution in the second most probable 
subtree of N, Cmax-1, includes the cost of having first 
searched the most probable node unsuccessfully. These 
quantities can be computed or at least approximated 
from the statistics that are maintained in the tree (e.g., 
P(Cj)) and from the structure of the tree itself (e.g., 
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Table 1 : Performance comparison o f E X O R w i t h different opt ions. 

| original EXOR /w pruning and forward chaining | improvement (%) 

| tree search 337.0 316.4 6.1% 
DT search 180.9 140.6 22.3 % 

| total search 517.9 457.0 | 11.8 % J 

E(c\Cj)). Using s imi lar construct ions we can approx i ­
mate the expected cost when the t r u t h of a predicate Fk 

is known , E ( c \ N , Fk), and the expectat ion in the case of 

P u t t i n g these quant i t ies together, i t is useful to for­
ward chain in an a t t emp t to veri fy a predicate i f 

where E(cp Fk) is the expected cost to prove the predi ­
cate Fk, P(Fk\N) is the p robab i l i t y tha t we w i l l be able 
to prove the t r u t h of Fk and 1 - P(Fk\N) is the proba-
b i l i t y t ha t i t is not t rue . In general, knowing the com­
plement to be t rue can also be predict ive of a par t icu lar 
course of act ion, and ExOR exploi ts th is knowledge as 
wel l . P(Fk\N) can be approx imated by the propor t ion 
of explanat ions stored under N] t ha t contain Fk and the 
p ropor t ion tha t do not . E(cp Fk) and E(cp - F k ) are 
current ly approx imated f r om the domain theory: how 
many rules conta in Fk as an consequent and how many 
rule combinat ions can conclude Fk - assuming tha t the 
combinat ions tha t are responsible for concluding Fk are 
equiprobable, the expected cost is propor t iona l to ap­
prox imate ly 1/2 the card ina l i ty of th is set. In tu i t i ve ly , 
the greater the branching factor and distance of Fk f r om 
the in i t i a l operat ional (p rob lem statement) boundary, 
the greater the cost of in ferr ing i t . 2 

Notice tha t the u t i l i t y of fo rward chain ing on a part ic­
ular predicate Fk varies w i t h the problem-solv ing con­
tex t ( i .e. , node N); we only expend work on in ferr ing 
Fk when it w i l l help dist inguish N'S descendents. Once 
ident i f ied, stat ist ics on these predicates are used in the 
category u t i l i t y calculat ion to bias search in the most 
promis ing direct ions. 

Table 1 shows the result of the E X O R ' S performance 
after the 32 t ra in ing examples w i t h fo rward chain ing and 
p run ing . These extensions reduce the search w i t h i n the 
E X O R tree by 6 . 1 % and the saving f r om the domain 
theory search to complete a pa r t i a l solut ion is 22.3%. 
The to ta l savings f rom fo rward chaining and p run ing is 
11.8%. 

6 Conc lud ing Remarks 
E X O R abstracts redundant explanat ion substructures 
and organizes t h e m hierarchical ly for reuse, thus y ie ld­
ing advantages in terms of problem-solv ing efficiency. 

2Notice that E(cp Fk) is not conditioned on N, though 
this is clearly a preferable strategy; explanations under N 
may exhibit a relatively small number of combinations to 
prove N. Thus, we wish to approximate E(cp Fk\N) in the 
future. 

More generally, our research seeks to un i fy principles 
of induct ive and explanation-based learning. F i rs t , t ra­
d i t iona l explanation-based concerns w i t h efficiency can 
be cast in terms of the t rad i t i ona l induct ive perfor­
mance dimension of predict ion accuracy: accurate pre­
d ic t ion along search choice points result in a more ef­
ficient search [Carlson et a/., 1990; Fisher and Chan, 
1990]. To some extent this relat ionship was recognized 
in earlier work tha t t reated search-control learning as 
a problem of concept induct ion [Mi tche l l et at., 1983; 
Langley, 1985]. However, we have strengthened this 
connection in several ways. Notab ly , pr inciples of fea­
ture predictiveness and pred ic tab i l i ty , which play a con­
siderable role in induct ive concept fo rmat ion systems 
[Lebowi tz , 1982; Ko lodner , 1987; Fisher, 1987], are also 
used to ident i fy in fo rmat ive , cost-effective predicates and 
to guide the search for relevant past experience w i th 
these predicates. Second, too much emphasis on feature 
pred ic tab i l i ty (specif ic i ty) can lead to data overfitting in 
explanation-based learning, as wel l as in induct ive sys­
tems [Quin lan, 1986; Fisher and Chan , 1990] where it-
has been a long recognized prob lem. P run ing in E B L 
contexts, as w i t h induct ive systems, mi t igates the prob­
lem. F ina l ly , E X O R ' S induct ive ly -mot iva ted approach 
addresses some specific research concerns in E B L , no­
tab ly the prob lem of selective u t i l i za t ion [Mooney, 1989; 
Markov i t ch and Scot t , 1989] and ident i fy ing appropr i ­
ate boundaries of operat iona l i ty [Braverman and Russell, 
1988]. 

A second research d i rect ion is to extend E X O R to other 
domains, par t icu lar ly faul t diagnosis. M a n y engineering 
projects (e.g., designing a pu r i f i e r / pump system) con­
s t ruct a fault tree [Malasky, 1982], wh ich is an A N D / O R 
st ructure tha t describes the events (singly and in com­
b inat ion) tha t may lead to a top-level fau l t (e.g., loss of 
pump f low). Search for causes in th is A N D / O R space 
is analogous to a domain theory search, and is thus 
amenable to speedup. As a human-engineered art i fact 
however, there are often inconsistencies in the faul t tree. 
Thus , we p lan to use the fau l t tree as an in i t i a l domain 
theory, bu t to use ExOR to organize experience and more 
eff iciently guide diagnosis; logical inconsistencies may re­
ma in or they may be ' p runed ' ou t , bu t in any case ex­
p lanat ion pat terns tha t bet ter reflect the system's true 
behavior w i l l come to s tat is t ica l ly dominate E X O R ' S rea­
soning. Thus , th is approach to inconsistent domain the­
ories is s imi lar in in tent to systems l ike Towel l , Shavl ik, 
and Noordewier 's [Towell et a/., 1990] neural n e t / E B L 
system, albei t w i t h very dif ferent approaches to the in­
duct ive learning component . 
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