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Abstract 
We present an architecture for rule induction that 
emphasizes compact, reduced-complexity rules. A new 
heuristic technique for finding a covering rule set of 
sample data is described. This technique refines a set 
of production rules by iteratively replacing a 
component of a rule with its single best replacement. A 
method for rule induction has been developed that 
combines this covering and refinement scheme with 
other techniques known to help reduce the complexity 
of rule sets, such as weakest-link pruning, resampling, 
and the judicious use of linear discriminants. 
Published results on several real-world datasets are 
reviewed where decision trees have performed 
relatively poorly. It is shown that far simpler decision 
rules can be found with predictive performance that 
exceeds those previously reported for various learning 
models, including neural nets and decision trees. 

1 Introduction 
Although many different models of induction, such as 
decision trees, neural nets, and linear discriminants, have 
been used for classification, their common goal is accuracy 
of prediction. A central issue in the design of most 
classifiers is the tradeoff of goodness of fit versus model 
complexity. While an increasingly complex classifier can 
usually be made to cover training samples better, its 
accuracy of predictions for new cases may be inferior to a 
simpler, less complex classifier. For example, a fully 
expanded decision tree may cover training samples 
completely, but a smaller tree, with a larger apparent error 
on the training cases, may be more accurate in its 
predictions for new cases. 

Classifier complexity and prediction accuracy are highly 
related. Learning from sample data can be described as the 
estimation of parameters for a model. Finding the 
appropriate complexity fit of a model is a determination of 
the number of parameters that can be accurately estimated 
from the samples. From this characterization of learning it 
follows that given two classifiers that cover the sample data 
equally well, the simpler one is usually preferred because 
fewer parameters are estimated and therefore, predictions 
are likely to be more accurate. The theoretical foundation of 
this form of complexity fit analysis is presented in (Wallace 
and Freeman, 1987]. The related concept of minimum 
description length as a measure of the best complexity fit is 
found in [Rissanen, 1978, Rissanen, 1987]. 

In practice, designers of learning systems have implicitly 
recognized these principles, and many techniques for model 
simplification can be characterized as finding relatively 
compact solutions with an appropriate complexity fit. 
Examples from decision trees are quite numerous including 
the use of heuristic tree splitting functions to reduce 

expected tree size [Breiman, Friedman, Olshen, and Stone, 
1984, Quinlan, 1986], tree pruning [Breiman, Friedman, 
Olshen, and Stone, 1984, Quinlan, 1987a], and the one-
standard-error heuristic for selecting among pruned trees 
[Breiman, Friedman, Olshen, and Stone, 1984]. For 

parametric statistical linear discriminants, heuristic variable 
selection methods have been developed to reduce the 
number of features in the discriminant [James, 1985]. For 
rule induction, simplification has been achieved by pruning 
the rules implicit in decision trees [Quinlan, 1987a]. For 
single hidden layer back-propagation neural nets, the 
number of hidden units can be used as measure of 
complexity f i t, and the apparent and true error rates wil l 
follow the classical statistical pattern [Weiss and Kapouleas, 
1989]. 

Thus, there are strong theoretical reasons for developing 
learning methods that cover samples in the most efficient 
and compact manner. In this paper, we discuss a new 
approach to generating reduced complexity solutions for 
rule induction models. In a related work [Weiss, Galen, and 
Tadepalli, 1990], it was shown that short, disjunctive 
normal form expressions sometimes offer superior 
solutions. While that method empirically supports the 
reduced complexity approach, it is applicable only to 
problems with few attributes and classes. In this paper, we 
describe a new iterative rule method for inducing reduced 
complexity solutions in larger dimensions. We then describe 
a unified approach to finding the appropriate complexity fit 
among several competing rule sets. 

2 Methods 
2.1 The Rule-based Class i f ica t ion M o d e l 
We are given a set of sample cases, S, where each case is 
composed of observed features and the correct 
classification. The problem is to f ind the best rule set RSbest 
where the error rate on new cases, Errtrue(RSbest), is 
minimum. 

We examine solutions posed in disjunctive normal form 
(DNF), where each class is classified by a set of disjunctive 
productions (terms). Each term is a conjunction of tests, p i, 
where pi is a proposition formed by evaluating the truth of a 
binary-valued feature or by thresholding any of the values a 
numerical feature assumes in the samples. One such model 
is the decision tree, where all the implicit productions are 
mutually exclusive. However, a general DNF model does 
not require mutual exclusivity of rules. With productions 
that are not mutually exclusive, rules for two classes can 
potentially be satisfied simultaneously. Such conflicts can 
be resolved by assigning a class (or rule) priority ordering, 
with the last class considered a default class. For example, 
the rule set in Figure 1 is a solution induced for the heart 
disease data discussed in Section 3. 
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Figure 1: Example Rule Set 

While tree induction remains the most widely applied 
rule-based learning system, other learning techniques have 
been developed with some success for non-mutually 
exclusive DNF rule induction. These systems include C4 
[Quinlan, 1987b, Quinlan, 1987a] and the CN2 [Clark and 

Niblett, 1989] and GREEDY3 [Pagallo and Haussler, 1989] 
variants of the AQ family of rule induction systems 
[Michalski, Mozetic, Hong, and Lavrac, 1986]. 

Although the aforementioned rule induction methods may 
appear quite different, only a few key variations emerge. 
These rule induction methods can be characterized in terms 
of their covering schemes and their rule refinement 
techniques. The covering rule-set is induced by (a) decision 
tree; or (b) a single best rule is found, the cases covered by 
that rule are removed from the training sample, and the next 
rule is induced until no cases remain. The set of rules can 
be refined by pruning or by applying some statistical test. 

2.2 A Swap-1 C o v e r i n g Procedure 
Both the tree covering and the single-best-rule covering 
methods that have been mentioned, look ahead one attribute 
and try to specialize the tree or rule. To this end, a heuristic 
mathematical function is used, such as an entropy or gini 
function [Breiman, Friedman, Olshen, and Stone, 1984]. 
For the tree covering solutions, these heuristics tend to work 
well on many problems, and the combinatorics of finding an 
optimal solution make alternative search procedures 
impractical. 

Like the tree induction methods, current single-best-rule 
methods expand only a single rule at a time and add tests 
one by one until a rule has 100% predictive value, i.e. 
makes no errors on the training cases.1 Although any single 
rule is relatively short, these single-best-rule procedures 
never look back, only look ahead for a single test. 

In this section, we present a procedure, called Swap-1 that 
constantly looks back to see whether any improvement can 
be made before adding a new test. The following steps are 
taken to form the single best rule: (a) Make the single best 
swap for any rule component including deleting the 
component; (b) If no swap is found, add the single best 
component to the rule. Figure 2 formally describes the 
Swap-1 procedure. As in [Weiss, Galen, and Tadepalli, 
1990], "best" is evaluated as predictive value, i.e. 
percentage correct decisions by the rule. For equal 
predictive values, maximum case coverage is a secondary 
criterion. Swapping and component addition terminate 
when 100% predictive value is reached. 

The process of generating the single best rule can be seen 
in Figure 3, where an example rule is generated in 7 steps. 
Swap-1 tries to maximize predictive value. The initial rule is 
randomly assigned p3, which gets swapped out in favor of 
the single best test, p6. Then in step 3, pi is the single best 
component that can be add to the rule. However, in step 4, 
p6 is swapped out for p4, which is found by refining 
previously selected rule components. In the final step, we 
see that p3, which was swapped out in the first step, gets 

1Some variations such as GN2, may stop earlier, based on a statistical 
significance test. 

Input: S a set of training cases 

Initialize = empty set, and  

repeat 
create a rule B with a randomly chosen attribute as its LHS 
while (B is not 100% predictive) do 

make the single best swap for any component of B, 
including deleting the component, using cases in Ck 

if no swap is found, add the single best component to B 
endwhile 
Pk := rule B that is now 100% predictive 
^ := cases in Ck that satisfy the single-best-rule Pk 

until (Ck is empty) 
f ind rule r in Rk that can be deleted without affecting 

performance on cases in S 
while (r can be found) 

endwhile 
output Rk and halt 

Figure 2: The Swap-1 Procedure 

Step Predictive Value Rule 1 
1 31% p3 
2 36% p6 

3 48% p6&pl 
4 49% p 4 & p l 

5 69% p4 & p i & p2 

6 80% p4 & p1 & p2 & p5 

7 100% p3 & pi & p2 & p5 

Figure 3: Example of Swapping Rule Components 

swapped in again. Thus, it can be seen that if a test is 
swapped out, it does not necessarily stay out, but can be 
added back later on if doing so improves the predictive 
accuracy of the current rule. The completed rule is selected 
as the single best rule, and the method proceeds as usual 
with the removal of the covered cases, and the re-
application of the single-best-rule construction procedure to 
the remaining cases. 

As a pure covering procedure, Swap-1 has been compared 
to other rule-based methods for covering randomly 
generated expressions from uniformly distributed 
attributes [Indurkhya and Weiss, 1990, Indurkhya and 
Weiss, 1991]. Its performance exceeds that of other rule 
induction methods and matches the performance of 
FRINGE [Pagallo, 1989], an iterative tree induction 
technique. When applied to real-world data with numerical 
attributes, the Swap-1 procedure can lead to fragmentation 
of the data by covering with too many short rules. There 
may be longer rules that are still 100% predictive, but cover 
more cases. Therefore, once a 100% predictive rule, Ri, is 
obtained, a longer rule R: is induced by swapping on Ri for 
minimum errors (not predictive value) to obtain Rk and then 

Weiss and Indurkhya 679 



re-initializing R1 in the Swap-1 procedure with Rk. R i is 
then compared for coverage with the longer rule Rj. 

Finding the optimal combination attributes and values for 
even a single fixed-size rule is a complex task. However, 
there are other optimization problems, such as the traveling 
salesman problem [Lin and Kernighan, 1973], where local 
swapping finds excellent solutions. 
2.3 F i n d i n g the R i g h t C o m p l e x i t y Ru le Set 
There have been some efforts to find the best rule set by 
devising measures of minimum description length which 
can give reasonable answers because complexity and 
predictive performance are highly related [Quinlan and 
Rivest, 1989]. However, the central objective remains to 
find a rule set that minimizes the true error rate, and this can 
be more directly measured by determining the true error 
rates of varying complexity rule sets. 

Given a set of samples S, the objective is to select rule set 
RSbes t from {RS1,...RS i,...RSn}, a collection of varying 
complexity rule sets, such that RSbest w i l l make the fewest 
errors on new cases T. In practice, the optimal solution can 
usually not be found because of incomplete samples and 
limitations on search time. Typically, there are insufficient 
cases to both train and accurately estimate the error rate of a 
rule set, Err(RS i). Moreover, it is not possible to search 
over all possible rule sets of complexity Cx(RS i), where Cx 
is some appropriate complexity f i t measure, such as the 
number of components in the rule set. 

Several thousand independent test cases are sufficient to 
give highly accurate estimates of the error rate of a 
classifier [Highleyman, 1962]. When fewer cases are 
available, resampling gives the most accurate estimates of 
the error rate. Cross-validation [Stone, 1974] is generally 
the procedure of choice [Breiman, Friedman, Olshen, and 
Stone, 1984], and 10-fold cross-validation2 is usually quite 
accurate when the cases number in the hundreds. Because 
cross-validation techniques, such as 10-fold or leaving-one-
out, average the estimates for many classifiers that are 
trained on approximately the same number of cases as the 
ful l sample, learning techniques have been developed that 
can train on all sample cases. 

If the set {RS1,...RS i,...RSn} is ordered by some 
complexity measure Cx(RS i), then the best one is selected 
by min [Err(RS i)].3 Thus to solve this problem in practice, a 
method must induce and order {RSi} by Cx(RS i) and 
estimate each ErrCRSj). Such methods have been developed 
for decision trees. Studies have shown that the 
minimization of a single complexity parameter, Cx, in 
addition to the error rate estimator, Err, adds a little bias to 
the estimates when used with resampling [Breiman, 
Friedman, Olshen, and Stone, 1984]. 

A variation of weakest-link pruning, also known as cost-
complexity pruning [Breiman, Friedman, Olshen, and Stone, 
1984], can be used to prune a rule set and form {RSj}. Let 
the rule set RSj be the covering rule set. Each subsequent 
RS i + 1 can be found by pruning RSi at it weakest link. A 
rule set's weakest l ink can be defined as in equation 1, 

2The avenge result! of 10 runs using 90% training and 10% letting 
cases, with 10 mutually exclusive test partitions. 

3Or as in [Breiman, Friedman, Olshen, and Stone, 1984], the 
min{Cx(RS,)} that is close (within one standard error) to min Err(RS.). 

where Errors(RSi) is the number of errors RSi makes on the 
training cases and Size(RSi) is the number of components in 
RSi The weakest l ink is the point at which the fewest new 
errors per deleted components are introduced. As in 
[Quinlan, 1987a], a rule set can be be pruned by deleting 

single rules or single components, where the weakest l ink is 
measured by W L i . Repeated pruning of the least significant 
single component or rule to RS i sequentially forms {RSk} 
and the global minimum is WL( i ) . The rule set at that point 
becomes the next RS i + 1 . The process is repeated until the 
final RSn is generated, where RSn is single component rule 
of selecting the largest class. 

(1) 

The application of weakest-link pruning results in an 
ordered series of decreasing complexity rule sets, { R S i . 
The complexity of RS i can be measured in terms of WL i or 
alternatively Size(RSi). With a large set of independent test 
cases and weakest-link pruning based on apparent error rate 
estimates, the true error rate of each RSi can be estimated by 
Errtest(RSi), the error rate of RS i on the test cases. With 
smaller samples, where thousands of test cases are not 
available, resampling is preferable and more accurate. As in 
[Bneiman, Friedman, Oishen, and Stone, 1984], 
{RS1,...RSi,...RSn} are determined by weakest-link pruning 
on the complete training set. An n-fold cross-validation, 
typically 10-fold, is performed. In each fold k, an auxiliary 
rule set is induced using the training set of that fold. A new 
RSk of complexity (approximately) equal to Size(RS|) is 
found by weakest link pruning. Test error-rates arc obtained 
using the test cases corresponding to that fold. The average 
of the error rates over all the folds for each rule-set of 
Size(RS i), Errcv(RS1), is the cross-validation estimate of the 
true error rate of RS i. 

Consistent with the minimum length description 
approach, each rule covers the original cases with only the 
weakest rules and components removed. As given, pruning 
a rule set is less stable and accurate than tree pruning 
because coverage of the pruned set is highly variable. While 
pruning a subtree retains ful l coverage of the data set, 
pruning rules can leave gaps in the coverage. Moreover, for 
RS i of complexity Size(RSi), there may be a better RSi of 
Size(RSi). Unlike the decision tree induction where the 
nodes are Fixed, RS i can be refined by the swapping single 
components to minimize the apparent training error 
Err (RS i). The process of refining any rule set RS i into 
RS i can be described as modifying RS i such that 

The 
rules are iteratively checked for the best component 
deletion, rule deletion, or component swap. Here the 
definition of "best" is minimum errors. Thus a rule set can 
be refined so that the refined rule set is smaller or equal in 
size to the original rule set and makes fewer or an equal 
number of errors than the original. 

The net result of this process is an error rate estimate for 
varying complexity rule sets. A typical result is illustrated in 
Figure 4, where the results of resampling for the rheumatic 
disease application in Section 3 are summarized. For each 
rule set RS i, Figure 4 lists the number of rules, the number 
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Figure 4: Example of Summary Table 

of rule components, the apparent error rate on the training 
cases, the test error rate (by cross-validation), the standard 
error of the test error, the average number of components 
over al l cross-validated test sets, and the complexity 
measured by weakest-link pruning. Plotting the error rates 
for increasingly complex RS i as in Figure 5, illustrates the 
classical pattern of behavior for the apparent error rate on 
training cases versus the estimated true error on test cases. 
As model complexity increases, the apparent error rate 
decreases, but the true error rate flattens out and eventually 
increases. 
2.4 M i x e d Mode l s f o r Reduced Comp lex i t y 
While complexity within a given model can be measured in 
some common units, complexity measures for different 
models are not readily comparable. For example, we have 
adopted the number of rules components as the unit of 
complexity measure, where components are simple logical 
propositions. While a tree can be directly decomposed into a 
set of rules, where a path to a terminal node is a rule, these 
rules would share common components, and a complexity 
unit of tree nodes seems more appropriate. Complexity 
units measured in terms of weights are appropriate for linear 
discriminants and neural nets. 

Our approach has been to minimize the complexity of 
rule sets. Although diff icult to express in terms of single 

units, the true complexity of a solution could be further 
reduced by allowing for mixed models. For example, it is 
well-known that in (two dimensional) geometric terms, rule-
based models find solutions that are parallel to the axes and 
cannot efficiently f i t even simple linear functions between 
features such as x>y. This has led to a number of hybrid 
methods that incrementally embed alternative models such 
as piecewise linear discriminants [Breiman, Friedman, 
Olshen, and Stone, 1984] or perceptrons [Utgoff, 1988] 
within decision trees. 

In contrast to those nonparametric, incremental methods, 
we have used the standard parametric linear discriminant4 

where the solution is posed as in equation 2, and for each 
Class i, f i(c), a linear function of the set of attributes e, is 
derived. An unknown pattern is classified by applying the 
functions and choosing the class whose linear magnitude is 
greatest. In addition, heuristic stepwise feature selection 
can be used to find a reduced complexity linear solution by 
reducing the original set of features {ek} to { e j } where j<k, 
i.e a subset of the given features, reducing tne number of 
weights that are estimated [James, 1985]. 

(2) 
The parametric stepwise linear discriminant is highly 

developed and has a strong tendency to produce comparable 
results on both the training and test cases. In our design, the 
discriminant function is completely derived prior to rule 
induction, and the results (on the training cases) are used to 
create artificial features. One binary higher-order feature 
per class is specified, where each feature is simply whether 
or not that class is selected during training by the linear 
discriminant. To the rule induction system, each of these 
higher-order features is no different than any of the original 
features. Unlike previous approaches where the numerical 
result of applying a single linear function is used, here the 
encoding is simplified to a binary feature that preserves the 
classification result of the discriminant. This results in an 
interesting interplay between the linear discriminant and an 
induced rule set. For example in Figure 6, Class 1 is chosen 
when both LD1 and RBPS>109 are true, where LD1 is the 
selection of Class 1 by the linear discriminant, and RBPS is 
a test result. 

Figure 6: Heart Disease Example of Mixed Model Rules 

3 Results 
To evaluate the efficacy of reduced complexity learning, 

four applications were considered. These applications are 
real-world problems with significant published results. 
Following the original publications, studies were performed 
and published by other researchers comparing different 
learning models, usually back-propagation neural nets 
compared with decision trees. Of particular note, decision 
trees performed relatively poorly in these published 
comparisons. Figure 7 summarizes the characteristics of the 
data sets for each application, and the train-and-test 
variations, such as leaving-one-out (Lv-1), used in the 

4This is the standard linear discriminant found in statistical packages 
under the assumption of normality and equal covariance matrices. 
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original studies to estimate the true error rate. 
Figure 8 summarizes the reported results of previous 

studies and our new results for a reduced complexity 
approach. Cx, the complexity measure, is measured in units 
of weights for neural nets or linear discriminants, 
propositions (rule components) for rules, and nodes for 
trees.5 We review the results for each application. 

Text-to-Speech Recognition 
The NETTALK lext-to-speech application was originally 

reported in [Sejnowski and Rosenberg, 1987] and a rigorous 
comparative study of ID3 decision trees and back-
propagation neural nets was reported in [Diettrich, Hi ld, and 
Bakri, 1990]. While the larger goal is the recognition of 
spoken words, in the previous analyses, the problem is 
formulated as the recognition of "letters" or classes of 
phoneme-stress pairs. Although the problem fits the 
traditional classification mold of mutually exclusive classes, 
previous studies have used a relatively complex non-
mutually exclusive encoding for the classes. This was done 
based on knowledge of the domain and its suitability for a 
neural net representation.6 In our analysis, we return to the 
traditional classification approach. There are 47 phoneme 
classes and 4 stress classes but only 99 phoneme-stress pairs 
with more than 1 case in the training set. Despite over 7000 
training cases, relatively few cases appear for many classes. 
The rule sets {RS i} are induced from the training set, and 
given the large number of test cases, the appropriate 
complexity fit, Cx(RS i), can be determined by the test 

cases.7 The classes were ordered by decreasing predictive 
values of their rule sets.8 

The previously reported best result was for a neural net 
with an error rate of .291 and over 27,000 weights. A 
reduced complexity rule-based solution was found with an 
error rate of .260 and 663 rule components.9 The previously 
reported error rate for a tree-based solution was a relatively 
weak .344. However, with the 99-class representation, the 
error rate of an induced tree is the same as the Swap-1 
rule-based solution although with far greater complexity. 

Heart Disease Classification 
An application to heart disease was originally reported in 

[Detrano et al., 1989] and a comparative study of (ID3) 
decision trees and (back-propagation) neural nets was 
reported in [Shavlik Mooney and Towell, 1991]. In the 
comparative study, the average test results for ten 70% 

5Because the tree complexities were not published, the complexity of the 
trees in Figure 8 was recomputed by running CART. 

6Further details of the application and the class encodings can be found 
in [Diettr ich, H i ld , and Bakn, 1990]. There, the results for the neural net or 
decision tree were further processed by a nearest neighbor method. We 
used the exact data sets of [Diettrich, H i l d , and Bakri, 1990]. 

7The error rate in Figure 8, is the minimum complexity rule set whose 
error rate is wi th in 1 standard error of the minimum error rate. Because the 
test set is so large and the rule sets are pruned without looking at the test 
cases, these estimates are reliable. Skeptics w i l l get the same answer by 
estimating the appropriate complexity f i t solely from the training set using 
a 50% training subsample and a 50% testing subsample. For all the 
N E T T A L K variations we tried, this was a pruning complexity of 1 case per 
pruned component 

8These predictive values were estimated by 2-fold cross-validation of the 
rule sets induced for each class Ci vs. not Ci 

9 With 99 classes, we were unable to get a useful linear discriminant. 

training and 30% testing sets were used. There, the best 
result was for a neural net with an error rate of .194 and 86 
weights. The result of a 10-fold (or a 3-fold) cross-
validation for Swap-1 yields a simple 4-rule, 6-component 
solution with an estimated error rate of .215, as compared 
with the reported .288 for the decision tree. Unlike the 
results in [Shavlik Mooney and Towell, 1991], results were 
improved by pruning the rule sets and not using binary 
encodings of numerical variables. When the linear 
discriminant is added with the original features, the rule set 
RSbes t is simply the linear discriminant which has an 

estimated error rate of .176 with 16 weights.10 

DNA Pattern Analysis 
In [Towell, Shavlik, and Noordeweir, 1990] several 

learning methods are compared on a DNA pattern 
recognition task. In addition, a human expert's "theory," 
described in terms of a grammar, is reformulated as a neural 
network and refined - yielding somewhat better results than 
pure empirical learning systems.11 Error rates are estimated 
by leaving-one-out, and the best reported pure learning 
result is for a neural net with an error rate of .075 and over 
3600 weights. The tree solution does relatively poorly with 
an error rate of .179, and a reduced complexity 3-rule 
solution with 5 components is better with an error rate of 
.132. Still the rule-based solution is not fully competitive. 
Including the results of the linear discriminant in the feature 
set, results in an induced rule set that is pruned back to the 
linear discriminant alone. This discriminant function has 
only 12 weights and an error rate estimate of .047. The 
reduced complexity of this linear discriminant is due to the 
success of stepwise feature selection.12 With 228 features 
and only 106 cases, there are far too many weights to be 
estimated if all the features are used, and a reduced 
complexity discriminant is desirable. 

Rheumatic Disease Diagnosis 
A very preliminary version of a rule-based expert system 

for diagnosing rheumatic diseases was described and 
evaluated in [Lindberg.et al., 1980], The knowledge base 
and data were later used in heuristic refinement systems 
[Ginsberg, Weiss, and Politakis, 1988] that could modify a 

theory, i.e. an expert-specified rule base, to improve its 
performance. These systems were restricted to minor 
refinements that would assure the preservation of the 
expert's knowledge base close to its original form. A more 
radical "theory revision" approach uses the theory, i.e the 
expert knowledge base, as a starting point and allows 
massive changes to the rule set. Such an approach was taken 
in [Ginsberg, 1990] where these same data were used to 
evaluate a theory revision method (RTLS). There, it was 
reported that that the leaving-one-out estimate of the error 
rate for the five class problem is zero. Because this new rule 
set is radically different from the expert's knowledge base, 
it is worthwhile considering how well a pure empirical 
learning system might do. 

10The estimate of .176 is the average of three 3-fold cross-validations. 
The estimate for a 10-fold cross-validation is .168. 

11 In [Towell , Shavlik, and Noordeweir, 1990] a human assisted solution 
was estimated at an error-rate of 0.038. 

12During leaving-one-out estimation, feature selection was repeated (at a 
10 significance level) for each of the 106 train-and-test cycles. 
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Figure 8: Comparison of Best Reported, Decision Tree and Swap-1 Results 

From a purely empirical learning perspective, the 
previous (RTLS) solution is far too complex with 600 rules 
to provide a good complexity fit to the data.13 The true 
error rate of RTLS is also higher than cited because error 
rates were measured in a non-traditional manner. Some ties 
were scored as correct, and answers were marked correct 
when they agreed with the output of a second refinement 
program, SEEK2. However, the output of SEEK2 had a 
leaving-one-out error rate estimate of .074, so the true error 
rate of RTLS is >.074. 

Most empirical learning systems cannot handle this 
dataset because almost half the feature values are missing. 
Using CART to induce a decision tree, with its surrogate 
strategy for handling missing values, yields a high error rate 
of .405. Yet with Swap-1, a 6-rule, 7-component solution 
can be found that has a leaving-one out estimate of .074. 
Even with the missing values, the covering of the 121 cases 
is quite compact. With so many missing values, the 
advantage of the rule-based solution over the decision tree 
can be traced to the non-mutual exclusivity of the rules.14 

4 Discussion 
We have presented better solutions than those previously 
reported for four significant classification applications. 
These solutions are superior in terms of estimated error 
rates, but equally important are far less complex than the 
previously reported solutions. We were particularly 
interested in these applications because decision trees 
performed relatively poorly compared to competitive 
learning models. The reduced complexity rule induction 
approach was readily able to to exceed the performance of 
the decision trees. However, in two instances, the pure rule-

13The rule get had 600 rules. We approximated 5 components per rule 
and 3000 total components. In the ground-form, with no intermediate 
hypotheses, there were 34,522 rule components. 

"Although the results are quite good, caution is still warranted. With 
missing values, there is always the question of whether the prediction is 
made based on a feature value or on the event that a value is missing. 

based solution was still not competitive with alternative 
methods. By combining the results of the stepwise 
parametric linear discriminant with the original feature set, 
we were able to exceed previous results, at the expense of a 
mixed model solution. Interestingly, in two applications the 
method indicated to use solely the linear discriminant In 
other applications, the rules can exhibit much interplay 
between the discriminant functions and the original features. 
We showed how a traditional classifier model can be 
incorporated into a rule-based solution, and a method was 
presented that arbitrates between the two models. There are 
many applications were pure rule-based solutions are a 
priori preferred by humans, and some applications where 
linear classifiers do not yield good results [Weiss and 
Kapouleas, 1989]. 

The central theme of the learning methods we have 
described is the reduction of rule complexity. We have 
presented an architecture for minimizing complexity of 
rules by reducing the number of rules and components and 
maximizing rule coverage of cases by iteratively swapping 
rule components. The goal of minimizing rule complexity is 
entirely consistent with the goal of maximizing predictive 
accuracy. To accomplish this task we have also borrowed 
many techniques, including weakest link pruning and 
resampling, that have proven effective in other applied 
learning systems. 

While our approach is directed towards a rule-based 
solution, the notion of minimizing complexity is not 
restricted to any particular model. Neural net solutions that 
are compact and minimize the number of weights are also 
likely to increase predictive accuracy. For the applications 
we cited, similar simplifications to other models may yield 
improved results. For example, the previously used 
NETTALK neural net model might benefit from a reduced 
number of weights. The limiting factor is not only the 
specific model, but also the effectiveness of the learning 
technique and computational time. While the Swap-1 
approach may appear computationally overwhelming, it is 
highly bounded For instance, when the number of errors for 
a candidate swap exceeds those for the current best swap, 
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that candidate can be immediately dropped. For all 
applications except NETTALK, a 10-fold cross-validation 
required only several minutes of Sparcstation-1 time. The 
NETTALK application required on the order of 5 days. 
Stil l , with steadily increasing available compuiationai 
power, we can look forward to more computationally 
intensive attempts to extract the maximum amount of 
information from sample data. 
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