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A b s t r a c t 
The task of inferr ing a set of classes and class 
descriptions most l ikely to explain a given 
data set can be placed on a firm theoretical 
foundation using Bayesian statistics. W i t h i n 
this framework, and using various mathemat­
ical and algorithmic approximations, the Au -
toClass system searches for the most proba­
ble classifications, automatically choosing the 
number of classes and complexity of class de­
scriptions. Simpler versions of AutoClass have 
been applied to many large real data sets, have 
discovered new independently-verified phenom­
ena, and have been released as a robust soft­
ware package. Recent extensions allow at­
tr ibutes to be selectively correlated wi th in par­
ticular classes, and allow classes to inherit, or 
share, model parameters though a class hierar­
chy. 

1 I n t r o d u c t i o n 
The task of supervised classification - i.e., learning to pre­
dict class memberships of test cases given labeled t ra in­
ing cases - is a famil iar machine learning problem. A re­
lated problem is unsupervised classification, where t ra in­
ing cases are also unlabeled. Here one tries to predict all 
features of new cases; the best classification is the least 
"surprised" by new cases. This type of classification, 
related to clustering, is often very useful in exploratory 
data analysis, where one has few preconceptions about 
what structures new data may hold. 

We have previously developed and reported on Au ­
toClass [Cheeseman et al., 1988a; Cheeseman et a/., 
1988b], an unsupervised classification system based on 
Bayesian theory. Rather than just part i t ioning cases, 
as most clustering techniques do, the Bayesian approach 
searches in a model space for the "best" class descrip­
tions. A best classification opt imal ly trades off predic­
tive accuracy against the complexity of the classes, and 
so does not "overf i t" the data. Such classes are also 
"fuzzy"; instead of each case being assigned to a class, a 
case has a probabi l i ty of being a member of each of the 
different classes. 
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Autocla88 I I I , the most recent released version, com­
bines real and discrete data, allows some data to be miss­
ing, and automatical ly chooses the number of classes 
f rom first principles. Extensive testing has indicated 
that it generally produces significant and useful results, 
but is pr imar i ly l imi ted by the simpl ici ty of the mod­
els it uses, rather than, for example, inadequate search 
heuristics. AutoClass I I I assumes that all attr ibutes are 
relevant, that they are independent of each other wi th in 
each class, and that classes are mutual ly exclusive. Re­
cent extensions, embodied in Autoclass I V , let us relax 
two of these assumptions, al lowing attr ibutes to be se­
lectively correlated and to have more or less relevance 
via a class hierarchy. 

We begin by describing the Bayesian theory of learn­
ing, and then apply it to increasingly complex classifi­
cation problems, f rom various single class models up to 
hierarchical class mixtures. Final ly, we report empirical 
results f rom an implementation of these extensions. 

2 Bayesian Lea rn ing 
Bayesian theory gives a mathematical calculus of degrees 
of belief, describing what it means for beliefs to be con­
sistent and how they should change w i th evidence. This 
section briefly reviews that theory, describes an approach 
to making it tractable, and comments on the resulting 
tradeoffs. In general, a Bayesian agent uses a single real 
number to describe its degree of belief in each proposi­
t ion of interest. 

2.1 T h e o r y 

Let E denote some evidence that is known or could po­
tential ly be known to an agent; let H denote a hypothesis 
specifying that the world is in some part icular state; and 
let the sets of possible evidence E and possible states of 
the world H each be mutual ly exclusive and exhaustive 
sets. 

In general, P(ab\cd) denotes a real number describing 
an agent's degree of belief in the conjunction of proposi­
tions a and 6, conditional on the assumption that propo­
sitions c and d are true. More specifically, ) is a 
"pr ior" describing the agent's belief in H before, or in 
the absence of, seeing evidence E, is a "poste­
r ior" describing the agent's belief after observing some 
particular evidence E, and L(E\H) is a " l ikel ihood" em-
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In theory , a l l an agent needs to do in any g iven s i tua ­
t i o n is to choose a set of s tates H, an associated l i ke l i hood 
f u n c t i o n desc r ib ing w h a t evidence is expected to be ob ­
served in those states, a set of p r i o r expec ta t ions on the 
states, a n d t h e n col lect some evidence. Bayes ' ru le then 
specifies the a p p r o p r i a t e pos ter io r bel iefs a b o u t the s tate 
o f the w o r l d , w h i c h can be used to answer mos t quest ions 
o f i n te res t . 

2 .2 P r a c t i c e 

In p rac t i ce th i s t heo ry can be d i f f i cu l t to app l y , as the 
sums a n d in teg ra ls i nvo l ved are o f ten m a t h e m a t i c a l l y i n ­
t r ac tab l e . Here is our a p p r o a c h . 

R a t h e r t h a n consider a l l possible states o f the w o r l d , 
we focus on some smal ler space of models, a n d do a l l 
o f our analys is c o n d i t i o n a l on an a s s u m p t i o n S t h a t the 
w o r l d rea l l y i s descr ibed by one o f the mode ls in our 
space. T h i s a s s u m p t i o n is a lmos t ce r t a i n l y false, b u t i t 
makes the analys is t r ac tab l e . 

T h e pa rame te rs w h i c h speci fy a p a r t i c u l a r m o d e l are 
sp l i t i n t o t w o sets. F i r s t , a set of d iscrete paramete rs T 
descr ibe the genera l f o r m o f the m o d e l , usua l l y by spec­
i f y i n g some f u n c t i o n a l f o r m for the l i k e l i h o o d f u n c t i o n . 
For e x a m p l e , T m i g h t speci fy whe the r t w o var iab les are 
cor re la ted or n o t , or h o w m a n y classes are present in a 
c lass i f i ca t ion . Second, free var iab les in th is genera l f o r m , 
such as the m a g n i t u d e o f the co r re la t i on or the re la t i ve 
sizes o f the classes, c o n s t i t u t e the r e m a i n i n g con t inuous 
m o d e l pa ramete rs V. 

We genera l ly prefer a l i k e l i h o o d 1 w h i c h is 
m a t h e m a t i c a l l y s imp le a n d ye t s t i l l embod ies the k inds 
o f c o m p l e x i t y re levan t i n some c o n t e x t . 

S im i l a r l y , we prefer a s imp le p r i o r d i s t r i b u t i o n 
[VT\S) over the m o d e l space, a l l o w i n g the resu l t i ng V 

i n teg ra ls , descr ibed be low , to be a t least a p p r o x i m a t e d . 
We also usua l l y prefer a re l a t i ve l y b road and un in fo r -
m a t i v e p r i o r , a n d one t h a t gives near l y equa l we igh t t o 
d i f fe ren t levels o f m o d e l c o m p l e x i t y , r esu l t i ng in a "s ig ­
n i f icance t e s t " . A d d i n g mo re pa ramete rs to a m o d e l t h e n 
induces a cost , w h i c h m u s t be pa id for by a s ign i f i can t l y 

lA variable l ike V in a probabi l i ty expression stands for 
the proposi t ion that the variable has a part icular value. 

be t te r f i t t o the d a t a before the more c o m p l e x m o d e l can 
be p re fe r red . 

T h e i o i n t can n o w be w r i t t e n as  
a n d , for a reasonab ly -complex 

p r o b l e m , i s usua l l y a ve ry rugged d i s t r i b u t i o n in V T , 
w i t h an immense n u m b e r o f sharp peaks d i s t r i b u t e d 
w ide l y over a huge h igh -d imens iona l space. Because of 
th is we despair o f d i r ec t l y n o r m a l i z i n g the j o i n t , as re­
qu i red by Bayes ' ru le , o r o f c o m m u n i c a t i n g the de ta i led 
shape o f the pos ter io r d i s t r i b u t i o n . 

Ins tead we break the con t i nuous V space i n t o regions 
R s u r r o u n d i n g each sharp peak, and search u n t i l we t i re 
for c o m b i n a t i o n s RT for w h i c h the " m a r g i n a l " j o i n t 

is as large as possible. T h e best few such " m o d e l s " RT 
f o u n d are then r e p o r t e d , even t h o u g h i t i s usua l ly a lmost 
ce r ta in t h a t more p robab le mode ls r e m a i n to be f o u n d . 

Each m o d e l RT is repo r ted by descr ib ing i ts m a r g i n a l 
j o i n t M{ERT\S), i t s d iscrete paramete rs T , and est i ­
mates of t y p i c a l values of V in the reg ion R, such as the 
mean es t imate of V: 

or the V for w h i c h is m a x i m u m in R. W h i l e 
these est imates are no t i n v a r i a n t under reparameter iza-
t ions of the V space, and hence depend on the syn tax 
w i t h w h i c h the l i k e l i h o o d was expressed, the peak is usu­
a l l y sharp enough t h a t such dif ferences d o n ' t m a t t e r . 

A we igh ted average of the best few mode ls f o u n d is 
used to make p red i c t i ons . A l m o s t a l l o f the we igh t i s 
usua l l y in the best few, j u s t i f y i n g the neglect o f the rest. 

Even t h o u g h the sums and in tegra ls can be d i f f i cu l t , 
and large spaces m u s t be searched, Bayes ian theo ry offers 
the advantages o f be ing theore t i ca l l y we l l - f ounded and 
emp i r i ca l l y we l l - tes ted [Berger , 1985]; one can a lmost 
" t u r n the c r a n k " , m o d u l o d o i n g in tegra ls a n d search 2 , 
t o deal w i t h a n y new p r o b l e m . D isadvantages inc lude 
be ing fo rced to be exp l i c i t a b o u t the space o f models 
one is searching i n , and occas ional amb igu i t i es regard ing 
w h a t an a p p r o p r i a t e p r i o r is. A l s o , i t i s n o t clear how 
one can take the c o m p u t a t i o n a l cost of d o i n g a Bayes ian 
analys is i n t o account w i t h o u t a c r i p p l i n g i n f i n i t e regress. 

We w i l l n o w i l l u s t r a te th i s genera l app roach by app ly ­
i n g i t t o the p r o b l e m o f unsuperv ised c lass i f ica t ion. 

3 Single Class Mode l s 

For a l l t he mode ls to be considered in th is paper , the 
evidence E w i l l consist of a set of I cases, an associated 
set K of a t t r i b u t e s , of size3 K, a n d case a t t r i b u t e values4 

2 T h e jo in t probabi l i ty provides a good local evaluation 
funct ion for searching though. 

3 We use script letters l ike K to denote sets, and matching 
ordinary letters K to denote their size. 

4 Noth ing in pr inciple prevents a Bayesian analysis of more 
complex model spaces for relat ional data. 
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X i k , which can include "unknown." 5 For example, med­
ical case number 8, described as (age = 23, blood-type — 
A, . . . ) , would have  

In this section and the next we wi l l describe appli­
cations of Bayesian learning theory to various kinds of 
models which could explain this evidence, beginning 
w i th simple model spaces and bui lding more complex 
spaces from them. We begin in this section w i th a sin­
gle class. First, a single at t r ibute is considered, then 
mult iple independent attr ibutes, then ful ly covariant at­
tr ibutes, and finally selective covariance. In the next 
section we combine these single classes into class mix­
tures, first flat then tree-based. 

Table 1: Model Spaces Described 

For each space S we wi l l describe the continuous pa­
rameters V, any discrete model parameters T, normal­
ized likelihoods L(E\VTS), and priors A8 
most spaces have no discrete parameters T, and only one 
region R, we can usually ignore these parameters. Ap­
proximations to the resulting marginals M(ERT\S) and 
estimates wi l l be given, but not derived. 
These wi l l often be given in terms of general functions F 
which are common to various models. As appropriate, 
comments wi l l be made about algorithms and computa­
tional complexity. 

A l l of the likelihood functions considered here as­
sume the cases are independent, i.e., L(E\VTS) = 
II, L(Ei\VTS) so we need only give L{Ei\VTS) for each 
space, where  

4 Single Class Mode l s 

4.1 S ing le D i s c r e t e A t t r i b u t e - SD1 
A discrete at t r ibute k allows only a finite number of 
possible values for any Xi. A set of in­
dependent coin tosses, tor example, might have L = 3 
w i th /i = heads, l2 = tails, and /3 = "unknown*. If 
we make the assumption SD\ that there is only one 
discrete at t r ibute, then the only parameters are the 
continuous V = qi... qL, consisting of the likelihoods 

for each possible value I. In the 
coin example, q1 = .7 would say that the coin had a 70% 
of coming up heads each t ime. 

5If the fact that a data value is unknown might be infor-
mat ive, one can model " u n k n o w n " as jus t another possible 
(discrete) data value; otherwise the l ikel ihood for an unknown 
value is jus t a sum over the possible known values. 
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4.3 I n d e p e n d e n t A t t r i b u t e s - S I 

We now introduce some notat ion for collecting sets of 
indexed terms like X ik. A single such term inside a {} 
wi l l denote the set of all such indexed terms collected 

denotes 1 when u — v and 0 otherwise. 
7T(y) is the Gamma function [Spiegel, 1968]. 
8 Actually, log( weight) is more normally distributed. 



a n d es t ima tes 1 2 

9L' can be a very large number! 
1 0 F 1 and F2 are defined in Section 4 . 1 . 
11 At present, we lack a satisfactory way to approximate 

this marginal when some values are unknown. 
1 2 To obtain these formulas, certain free hyperparameters in 

the Wishar t pr ior have been set using simple statistics f rom 
the data . Th is is more robust and simplifies the m a t h , bu t 
is "cheat ing" because pr iors are supposed to be independent 
of the da ta . Similar cheat ing was also done in Section 4.2. 

13 We choose it because it is easy, f i ts wel l w i th our model 
of class hierarchy, and allows fu l l dependence. 
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4.6 B l o c k Co va r iance - Sv 

Rather than just having either fu l l independence or ful l 
dependence of attr ibutes, we prefer a model space Sv 
where some combinations of attr ibutes may covary while 
others remain independent, w i th ful l or no dependence 
as special l imi t ing cases. This allows us to avoid paying 
the cost of specifying covariance parameters when they 
cannot buy us a significantly better fit to the data. 

Our approach to part ial dependence is simply to par­
t i t ion the attr ibutes K into D blocks Kb, each of size Kb, 
w i th ful l covariance wi th in each block and fu l l indepen­
dence between blocks.13 We also currently prohibit reals 
and discretes in the same covariant block. 



5 Class M i x t u r e s 

5.1 F l a t M i x t u r e s - SM 
The above model spaces Sc = Sy or S I c a n be thought 
of as describing a single class, and so can be extended 
by considering a space SM of simple mixtures of such 
classes [D.M.Ti t ter ington et al, 1985]. W i t h Sc = S T , 
this is the model space of AutoClass I I I , and Figure 1 
shows how it can f i t a set of art i f icial real-valued data in 
five dimensions. 

In this model space the l ikelihood  
sums over products of "class 

weights" « c , each giving the probabi l i ty that any case 
would belong to class c of the C classes, and class like­
lihoods describing how members of each class are dis­
t r ibuted. In the l imi t of large C this model space is gen­
eral enough to be able to f i t any distr ibut ion arbi trar i ly 
closely, and hence is "asymtotical ly correct". 

The parameters and  
combine parameters for each class and parameters de­
scribing the mixture. The prior is similarly broken down 

where .The a is treated as if 
the choice of class were another discrete at t r ibute, except 
that a C\ is added because classes are not distinguishable 
a pr ior i . 

Except in very simple problems, the resulting jo in t 
dJ(EVT\S) has many local maxima, and so we must 
now distinguish regions R of the V space. To f ind a 
local maxima we use the " E M " algor i thm [Dempster et 
al.y 1977] which is based on the fact that at a maxima 
the class parameters Vc can be estimated f rom weighted 
sufficient statistics. Relative l ikelihood weights WiC = 

satisfying 
give the probabi l i ty that a particular case i is a member 
of class c. Using these weights we can break each case 
into "fractional cases", assign these to their respective 
classes, and create new "class data" 
w i th new weighted class sufficient statistics obtained by 
using weighted sums instead of sums £V. For ex­
ample and Substi tut ing 
these statistics into any previous class likelihood function 
L(E\VcTcSc) gives a weighted l ikelihood 
and associated new estimates and marginals. 

At the maxima, the weights wic should be consistent 
w i th estimates of f rom  

To reach 
a maxima we start out at a random seed and repeatedly 
use our current best estimates of V to compute the w ic, 
and then use the to re-estimate the V, stopping after 
10 — 100 iterations when they both predict each other. 

Integrating the jo in t in R can't be done directly be­
cause the product of a sum in the ful l l ikelihood is hard 
to decompose, but by using fractional cases to approxi­
mate the l ikelihood  

while holding the wu f ixed, we get an approximate 
marginal: 

j  

Our standard search procedure begins each converging 
t r ia l f rom classes bui l t around C random case pairs. 
The number of classes C is chosen randomly f rom a log-
normal distr ibut ion f i t to the Cs of the 6 — 10 best trials 
seen so far, after t ry ing a fixed range of Cs to start. We 
also have developed alternative search procedures which 
selectively merge and split classes according to various 
heuristics. Whi le these usually do better, they some­
times do much worse. 

The marginal jo ints of the different trials generally 
follow a log-normal d ist r ibut ion, allowing us to estimate 
during the search how much longer it wi l l take on average 
to f ind a better peak, and how much better it is likely 
to be. 

In the simpler model space SMI where Sc = Si the 
computation is order where averages over the 
search trials. N is the number of possible peaks, out 
of the immense number usually present, that a compu­
tat ion actually examines. In the covariant space SMV 
where Sc = Sv this becomes  

5.2 Class H i e r a r c h y a n d I n h e r i t a n c e - SH 
When there are many attr ibutes and each class must 
have its own set of parameters for each of these at­
tr ibutes, mult ip le classes are strongly penalized. At ­
tributes which are irrelevant to the whole classification, 
like a medical patient's favorite color, can be particularly 
costly. To reduce this cost, one can allow classes to share 
the specification of parameters associated wi th some of 
their independent blocks. 

Rather than allow arbi trary combinations of classes 
to share blocks, it is simpler to organize the classes as 
leaves of a tree. Each block can be placed at some node 
in this tree, to be shared by all the leaves below (far­
ther f rom the root than) that node. In this way different 
attr ibutes can be explained at different levels of an ab­
straction hierarchy. For medical patients the tree might 
have viral-infectionsneai the root, predicting fevers, and 
some more specific viral disease near the leaves, predict­
ing more disease specific symptoms. Irrelevant attributes 
like favorite-color would go at the root. To make predic­
tions about a member of a leaf class, one first inherits 
down the at t r ibute descriptions f rom classes above i t . 

Therefore the above class mixture model space SM CAN 
be generalized to a hierarchical space SH by replacing the 
above set of classes w i th a tree of classes, and using the 
tree to inherit specifications of class parameters. From 
the view of the parameters specified at a class, all of the 
classes below that class pool their weight into one big 
class. Figure 3 shows some sample trees, and Figure 2 
shows how a class tree, this t ime w i th Sc — Sv, can 
better f i t the same data as in Figure 1. 

A tree of classes has one root class r. Every other 
class c has one parent class Pc , and every class has Jc 
child classes given by Ccj, where the index j ranges over 
the children of a class. Each child class has a weight 
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relative to its siblings, w i th and an 
absolute weight w i th  

Each class has an associated set of attr ibutes 
which it predicts independently through a l ikelihood 

and which no class above or below 
it predicts. To avoid having redundant trees which 
describe the same l ikel ihood funct ion, only can be 
empty, and non-leaves must have  

We need to ensure that al l attr ibutes are predicted 
somewhere at or above each leaf class. So we call 
the set of attr ibutes which are predicted at or below 
each class, start w i th and then recursively par­
t i t ion each Ac in to attr ibutes Kc "kept" at that class, 
and hence predicted directly by i t , and the remaining 
attr ibutes to be predicted at or below each child 
For leaves Ac = Kc. 

Expressed in terms of the leaves the l ikelihood is again 
a mixture  

al lowing the same EM procedure as before to f ind local 
max imas The case weights here wci (wi th 
w r i 1) sum like in the f lat mixture case and define 
class statistics  

We also choose a similar prior, though it must now 
specify the Kc as well :  

Searching in this most complex space SHV is challeng­
ing. There are a great many search dimensions where one 
can trade off simpl ici ty and fit to the data, and we have 
only begun to explore possible heuristics. Blocks can be 
merged or spl i t , classes can be merged or split, blocks 
can be promoted or demoted in the class tree, EM itera­
tions can be continued farther, and one can t ry a random 
restart to seek a new peak. But even the simplest ap­
proaches to searching a more general model space seem 
to do better than smarter searches of simpler spaces. 

6 Results 

for al l subsets Kc of Ac of size in the range 
except that is replaced b y w h e n Ac = Kc. 
Note that this prior is recursive, as tfte prior for each 
class depends on the what attr ibutes have been chosen 
for i ts parent class. 

This prior says that each possible number of attr ibutes 
kept is equally likely, and given the number to be kept 
each particular combination is equally likely. This prior 
prefers the simpler cases of Kc = Ac and Kc = 1 and 
so again offers a significance test. In comparing the hy­
pothesis that all attr ibutes are kept at a class w i th the 
hypothesis that all but one part icular at t r ibute is kept at 
that class, this prior penalizes the al l -but-one hypothe­
sis in proport ion to the number of attr ibutes that could 
have been kept instead. 

The marginal j o in t becomes  

and estimates are and 
again. 

In the general case of SHV , where Sc = Sv, computa­
t ion again takes except that the is 
now also an average of, for each k the number of classes 
in the hierarchy which use that k (i.e., have 
Since this is usually less than the number of leaves, the 
model SH is typical ly cheaper to compute than SM for 
the same number of leaves. 

Figure 1: AutoClass I I I Finds Three Classes 
We plot attributes 1 vs. 2, and 3 vs. 4 for an artificial data 
set. One deviation ovals are drawn around the centers of 
the three classes. 

Figure 2: AutoClass IV Finds Class Tree x 10120 Better 
Lists of attribute numbers denote covariant blocks within 
each class, and the ovals now indicate the leaf classes. 

We have bui l t a robust software package, AutoClass I I I , 
around the flat independent model SMI, w i th uti l i t ies 
for reading data, control l ing search, and viewing results, 
and have released it for general use. It is wr i t ten in Com-
monLisp, and runs on many different machines. We, 
and others, have applied this system to many large and 
real databases. When applied to infrared stellar data we 
found new, independently verified, phenomena [Goebel 
et a/., 1989]. Others have successfully applied it to pro-
tein structure [Hunter and States, 1991]. 
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We axe n o w deve lop ing Au toc lass IV a r o u n d the f u l l 
h ie ra rch ica l b l ock cova r ian t m o d e l space SHV • As h o p e d , 
i t gives a s ign i f i can t i m p r o v e m e n t over the p rev ious ver­
s ion w h e n app l i ed to rea l d a t a , t h o u g h we have on ly t r i e d 
i t on sma l l p rob lems so far . On the s t a n d a r d I R I S f lowers 
d a t a (150 cases, 4 a t t r i b u t e s ) we f i n d a m o d e l over 10 6 8 

t imes more p robab le t h a n the independen t m o d e l , i.e., 
w i t h a m a r g i n a l j o i n t (abso lu te va lue 10~ 9 1 3 ) t h a t m u c h 
la rge r . 1 4 T h i s compares w i t h t y p i c a l i m p r o v e m e n t s o f 
102 for d o u b l i n g the search t i m e or for us ing a smar te r 
m e r g i n g search. 

F igu re 3 : Each N e w Fea tu re A l l o w s a B e t t e r M o d e l 
The marginal probabi l i t ies improve by large factors as we f i t 
each new class tree. 

F igures 1, 2, a n d 3 i l l u s t r a te a s im i la r ga in on an a r t i f i ­
c ia l d a t a set w i t h 400 cases a n d 5 real a t t r i b u t e s . F igu re 
1 shows h o w the d a t a i s d i s t r i b u t e d i n a t t r i b u t e s #1 and 
# 2 , a n d i n a t t r i b u t e s # 3 a n d # 4 ( a t t r i b u t e # 5 i s no t 
s h o w n ) . Supe r imposed u p o n th i s i s the best resu l t f o u n d 
w i t h Au toc lass I I I . 

Since the d a t a is d o m i n a t e d by a covar iance be tween 
a t t r i b u t e s # 1 a n d # 2 , the i ndependen t m o d e l t r ies t o 
m o d e l th is by s t r i n g i n g classes a long the 1 — 2 cova r i ­
ance ax is . T h e r e i s t o o l i t t l e d a t a to j u s t i f y any more 
s t r u c t u r e i n th i s m o d e l class, s o the # 3 , # 4 and # 5 
axes are bas ica l ly i gno red . T h e 

F i g u r e 3 shows a progress ion of mode ls be tween th i s 
m o d e l a n d the cu r ren t best answer f r o m Au toc lass I V , 
g i ven in F igu re 2 . Each new m o d e l a d d i n g one new fea­
tu re a n d gains a n i m p r o v e d m a r g i n a l j o i n t . M o v i n g f r o m 
a f la t i ndependen t m o d e l to a f la t f u l l y covar ian t m o d e l , 
the best m o d e l f o u n d i s over 1 0 8 1 t imes mo re p robab le , 
w i t h 4 classes each of w h i c h have s ign i f i can t covar iances 
in 2 pa i rs o f a t t r i b u t e s . T h i s large ga in comes f r o m c o m ­
b i n i n g a m u c h be t t e r f i t t o the d a t a , despi te e x t r a costs 
p a i d for the added class a n d covar iance pa ramete rs . B u t , 

1 4Cross-val idat ion would probably be a better test here, 
since our priors are fa i r ly crude. 

on i nspec t ion one f inds t h a t the fou r covar ian t classes are 
v i r t u a l l y the same in the 1 — 2 p r o j e c t i o n a n d show l i t t l e 
co r re la t i on w i t h the o ther a t t r i b u t e s . W e therefore sp l i t 
the covar iance b locks a n d raise the ( 1 2 ) b l ock t o the 
c o m m o n roo t for ano the r re la t i ve increase o f 10 3 0 . T h i s 
process can be repeated on pa i rs of the (3 4 5) b locks to 
get the 3 level t ree s h o w n in F i gu re 2, ga i n i ng another 
10 9 i n re la t i ve p r o b a b i l i t y . We have thus ga ined a t o ­
t a l fac to r o f over 10 1 2 0 i n re la t i ve m a r g i n a l p r o b a b i l i t y 
over the best c lass i f ica t ion f o u n d us ing the independent 
m o d e l . O f t h a t t o t a l , a b o u t 10 3 9 comes f r o m the fac t 
t h a t the t ree now requi res fewer pa ramete rs to specify a 
s im i la r l i k e l i h o o d . 

These p r e l i m i n a r y resu l ts s u p p o r t p rev ious ind ica t ions 
t h a t t he a b i l i t y t o represent var ious k i nds o f s t ruc tu res 
in the d a t a is the m a j o r l i m i t i n g fac to r o f such a sys tem. 
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