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Abstract Autocla88 III, the most recent released version, com-

The task of inferring a set of classes and class
descriptions most likely to explain a given
data set can be placed on a firm theoretical
foundation using Bayesian statistics. Within
this framework, and using various mathemat-
ical and algorithmic approximations, the Au-
toClass system searches for the most proba-
ble classifications, automatically choosing the
number of classes and complexity of class de-
scriptions. Simpler versions of AutoClass have
been applied to many large real data sets, have
discovered new independently-verified phenom-
ena, and have been released as a robust soft-
ware package. Recent extensions allow at-
tributes to be selectively correlated within par-
ticular classes, and allow classes to inherit, or
share, model parameters though a class hierar-
chy.

1 Introduction

The task of supervised classification - i.e., learning to pre-
dict class memberships of test cases given labeled train-
ing cases - is a familiar machine learning problem. A re-
lated problem is unsupervised classification, where train-
ing cases are also unlabeled. Here one tries to predict all
features of new cases; the best classification is the least
"surprised" by new cases. This type of classification,
related to clustering, is often very useful in exploratory
data analysis, where one has few preconceptions about
what structures new data may hold.

We have previously developed and reported on Au-
toClass [Cheeseman et al, 1988a; Cheeseman et a/.,
1988b], an unsupervised classification system based on
Bayesian theory. Rather than just partitioning cases,
as most clustering techniques do, the Bayesian approach
searches in a model space for the "best" class descrip-
tions. A best classification optimally trades off predic-
tive accuracy against the complexity of the classes, and
so does not "overfit" the data. Such classes are also
"fuzzy"; instead of each case being assigned to a class, a
case has a probability of being a member of each of the
different classes.
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bines real and discrete data, allows some data to be miss-
ing, and automatically chooses the number of classes
from first principles. Extensive testing has indicated
that it generally produces significant and useful results,
but is primarily limited by the simplicity of the mod-
els it uses, rather than, for example, inadequate search
heuristics. AutoClass Il assumes that all attributes are
relevant, that they are independent of each other within
each class, and that classes are mutually exclusive. Re-
cent extensions, embodied in Autoclass IV, let us relax
two of these assumptions, allowing attributes to be se-
lectively correlated and to have more or less relevance
via a class hierarchy.

We begin by describing the Bayesian theory of learn-
ing, and then apply it to increasingly complex classifi-
cation problems, from various single class models up to
hierarchical class mixtures. Finally, we report empirical
results from an implementation of these extensions.

2 Bayesian Learning

Bayesian theory gives a mathematical calculus of degrees
of belief, describing what it means for beliefs to be con-
sistent and how they should change with evidence. This
section briefly reviews that theory, describes an approach
to making it tractable, and comments on the resulting
tradeoffs. In general, a Bayesian agent uses a single real
number to describe its degree of belief in each proposi-
tion of interest.

2.1 Theory

Let E denote some evidence that is known or could po-
tentially be known to an agent; let H denote a hypothesis
specifying that the world is in some particular state; and
let the sets of possible evidence E and possible states of
the world H each be mutually exclusive and exhaustive
sets.

In general, P(ab\cd) denotes a real number describing
an agent's degree of belief in the conjunction of proposi-
tions a and 6, conditional on the assumption that propo-
sitions ¢ and d are true. More specifically, #(H) is a
"prior" describing the agent's belief in H before, or in
the absence of, seeing evidence E, w{H|E) is a "poste-
rior" describing the agent's belief affer observing some
particular evidence E, and L(E\H) is a "likelihood" em-



bodying the agent’s theory of how likely it would be to
see each possible evidence combination E in each possi-
ble world H.

To be consistent, beliefs must be non-negative,
P{alb) > 0, and normalized, so that 3" 4 x(H) = 1 and
3. g L(E|H) = 1. The likelihood and the prior together
give a “Joint™ probability J(EH) = L{E|H)x(H) of both
E and H. Normalizing the joint gives Bayes’ rule, which
telle how beliefs should change with evidence.

J(EH) _  L(E|H)x(H)
S J(EH) ~ S, LEH)=(H)

When the gset of possible Hs is continuous, the prior
x({H) becomes a differential dx(H), and the sums over
H are replaced by integrals. Similarly, continuous Es
have a differential likelihood dL(F|H), though any real
evidence AE will have a finite probability AL(E|H) =~
dL(E\H)GE. L .

In theory, all an agent needs to do in any given situa-
tion is to choose a set of states H, an associated likelihood
function describing what evidence is expected to be ob-
served in those states, a set of prior expectations on the
states, and then collect some evidence. Bayes' rule then
specifies the appropriate posterior beliefs about the state
of the world, which can be used to answer most questions
of interest.

r(H|E) =

2.2 Practice

In practice this theory can be difficult to apply, as the
sums and integrals involved are often mathematically in-
tractable. Here is our approach.

Rather than consider all possible states of the world,
we focus on some smaller space of models, and do all
of our analysis conditional on an assumption S that the
world really is described by one of the models in our
space. This assumption is almost certainly false, but it
makes the analysis tractable.

The parameters which specify a particular model are
split into two sets. First, a set of discrete parameters T
describe the general form of the model, usually by spec-
ifying some functional form for the likelihood function.
For example, T might specify whether two variables are
correlated or not, or how many classes are present in a
classification. Second, free variables in this general form,
such as the magnitude of the correlation or the relative
sizes of the classes, constitute the remaining continuous
model parameters V.

We generally prefer a likelihood' L{E[VTS) which is
mathematically simple and yet still embodies the kinds
of complexity relevant in some context.

Similarly, we prefer a simple prior distribution
Im{{VT\S) over the model space, allowing the resulting V
integrals, described below, to be at least approximated.
We also usually prefer a relatively broad and uninfor-
mative prior, and one that gives nearly equal weight to
different levels of model complexity, resulting in a "sig-
nificance test". Adding more parameters to a model then
induces a cost, which must be paid for by a significantly

'A variable like V in a probability expression stands for
the proposition that the variable has a particular value.

better fit to the data before the more complex model can
be preferred.

The joint can now be written as dJ{EVT|S) =
L(E|VTS8)dx(VT|S) and, for a reasonably-complex
problem, is usually a very rugged distribution in VT,
with an immense number of sharp peaks distributed
widely over a huge high-dimensional space. Because of
this we despair of directly normalizing the joint, as re-
quired by Bayes' rule, or of communicating the detailed
shape of the posterior distribution.

Instead we break the continuous V space into regions
R surrounding each sharp peak, and search until we tire
for combinations RT for which the "marginal" joint

M(ERT|S) = _/

dJ(EVT|S)
VeR

is as large as possible. The best few such "models" RT
found are then reported, even though it is usually almost
certain that more probable models remain to be found.

Each model RT is reported by describing its marginal
joint M{ERT\S), its discrete parameters T, and esti-
mates of typical values of V in the region R, such as the
mean estimate of V:

fven V4J(EVT|S)

E(VIERTS) =~ s

or the V for which dJ{EVT|S)is maximum in R. While
these estimates are not invariant under reparameteriza-
tions of the V space, and hence depend on the syntax
with which the likelihood was expressed, the peak is usu-
ally sharp enough that such differences don't matter.

A weighted average of the best few models found is
used to make predictions. Almost all of the weight is
usually in the best few, justifying the neglect of the rest.

Even though the sums and integrals can be difficult,
and large spaces must be searched, Bayesian theory offers
the advantages of being theoretically well-founded and
empirically well-tested [Berger, 1985]; one can almost
"turn the crank", modulo doing integrals and search?,
to deal with any new problem. Disadvantages include
being forced to be explicit about the space of models
one is searching in, and occasional ambiguities regarding
what an appropriate prior is. Also, it is not clear how
one can take the computational cost of doing a Bayesian
analysis into account without a crippling infinite regress.

We will now illustrate this general approach by apply-
ing it to the problem of unsupervised classification.

3 Single Class Models

For all the models to be considered in this paper, the
evidence E will consist of a set of | cases, an associated
set K of attributes, of size® K, and case attribute values*

2The joint probability provides a good local evaluation
function for searching though.

®We use script letters like K to denote sets, and matching
ordinary letters K to denote their size.

4Nothing in principle prevents a Bayesian analysis of more
complex model spaces for relational data.
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Xix, which can include "unknown."® For example, med-
ical case number 8, described as (age = 23, blood-type —
..), would have Xg,; = 23, Xg.2 = A, etc.

In this section and the next we will describe appli-
cations of Bayesian learning theory to various kinds of
models which could explain this evidence, beginning
with simple model spaces and building more complex
spaces from them. We begin in this section with a sin-
gle class. First, a single attribute is considered, then
multiple independent attributes, then fully covariant at-
tributes, and finally selective covariance. In the next
section we combine these single classes into class mix-
tures, first flat then tree-based.

Space | Descripiion Vv T R
Sp1 | Single Discrete q
Sm Single Real Ho

S Independent Attrs Vi
Sp Covariant Discrete | a4, ..

Sa | Covarianl Real Mk Yokt

Sv Block Covariance Vi BK,

S Flat Class Mixture a.V. C R
Sy Tree Class Mixture a.V, J KT | It

Table 1: Model Spaces Described

For each space S we will describe the continuous pa-
rameters V, any discrete model parameters T, normal-
ized likelihoods L(E\VTS), and priors ®=(VT|8). A8
most spaces have no discrete parameters T, and only one
region R, we can usually ignore these parameters. Ap-
proximations to the resulting marginals M(ERT\S) and
estimates £(V|ERTS) will be given, but not derived.
These will often be given in terms of general functions F
which are common to various models. As appropriate,
comments will be made about algorithms and computa-
tional complexity.

All of the likelihood functions considered here as-
sume the cases are independent, i.e., L(E\WVTS) =
II, L(EA\VTS) so we need only give L{E\VTS) for each
space, where E; = { X1, Xi2, ..., Xik}-

4 Single Class Models
4.1 Single Discrete Attribute - SD1

A discrete attribute k allows only a finite number of
possible values { € [1,2,...,L] for any X. A set of in-
dependent coin tosses, for example, might have L = 3
with /i = heads, [, = tails, and /3 = "unknown*. If
we make the assumption SD\ that there is only one
discrete attribute, then the only parameters are the
continuous V = qi.. gL, consisting of the likelihoods
L(X;|V8Sp1) = gu=x,) for each possible value /. In the
coin example, g1 = .7 would say that the coin had a 70%
of coming up heads each time.

5If the fact that a data value is unknown might be infor-
mative, one can model "unknown" as just another possible
(discrete) data value; otherwise the likelihood for an unknown
value is just a sum over the possible known values.
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There arc only L — 1 free parameters since normal-
ization requires z&, ¢r = 1. For this likelihood, all that
matters from the data for the total L{E|VT Sy ) are the
number of cases with each value® Iy = 3, 6x,;. In the
coin example, I; would be the number of heads. Such
sums are called “sufficient statistics™ since they surmma-
rize all the information relevant to a model.

We choose a prior’
nL)
T(a)t H tdg

d®(V|Sp1) = dB(q: ..
which for a > 0 is a special casc of a beta distribution
[Berger, 1985]. e is a “hyperparameter” which can be set
to different values to apecify different priors. Here we set
a = 1/L. This simple problem has only one maximum,
whose marginal is given by

.qLil) =

TaL) [, T + a)
T(al + )T (a)"

M(EISD1) = Fl(Ij,...,IL,I.L] =

The prior above was chosen becanse it ncales nicely, and
to simnplify the mean estimate of g

hi+a L+
E(@lESp) Il-f-aL =TT

for @ = 1/L. Using a hash table, these results can be
computed in order I numetical steps, independent of L.

= Fp() I, L) =

4.2 Single Real Attribute - S,

Real attribute values X; specify a small range of the real
line, with a center z; and a precision, Ax;, assumed to be
mich smaller than other scales of interest. For example,
someone’s weight might be measured as 7041 kilograms.
For Sgy, where there is only one real atiribute, we
assume the likelihood is a standard normal distribu-
tion, where the sufficient statistics are the data mean
¥ o= 3 Zf z;, the geometric mean precision Az =
(Hjr Ax;)t and the standard deviation s given by a2 =
;(zi — )2 V consista of a model mean x4 and stan-
éaxd deviation ¢. For example, people’s weight might be
distributed® with a mean of 80 kilograms and a deviation
of 15.
For brevity we here give only the reasulting marginal

v T(153) 1 o
2 (nD)} log(Ap/minAx;) sT-1Au°

M(E|Sm) =

where Ay = maxz; — min z,, and estimates, which are

simply £(u|ESg1) = %, aud E(0{E) = /7i;s. See

[Hanson et al., 1991] for more details. Computation here
takes order T steps, used to compute the sufficient statis-
tics.

4.3 Independent Attributes - S,

We now introduce some notation for collecting sets of
indexed terms like Xy. A single such term inside a {}
will denote the set of all such indexed terms collected

fﬁ.. denotes 1 when u— v and 0 otherwise.
"T(y) is the Gamma function [Spiegel, 1968].
8 Actually, log( weight) is more normally distributed.



across all of the indices, like i and k in B = {X;} =
{Xix such that i€ [1,...,I],k € X}. To collect across
only some of the indices we use | J, asin E; = | J, X =
{Xa, Xiz,- ..}, all the evidence for a ningle case .

The simplest way to deal with cases having multiple
attributes is to assume Sy that they are all independent,
i.e., treating each attribute as if it were a separate prob-
lem. In this case, the parameter set V partitions into
parameter sets Vi = U, @1, or [t o}, depending on
whether that & is diecrete or real. The likelihood, prior,
and joint for multiple attributes are all simple products
of the results above for one attribute: §; = Sp; or
SRI — i.e., L(E.IVS}) = ni L(X.v.lV.,Sl), d‘l‘(VlSj) =
[1x dx(VeiS1), and M(E|5r} = [}, M(E(k)}|S1) where
E(k) = J; Xix, all the evidence associated with at-
tribute k. The estimates E(Vi|ES;) = £(Vi|E(k)S1) are
exactly the same. Computation takes order IK steps
here.

4.4 Fully Covariant Discretes - Sp

A model space Sp which allows a set X of discrete
attributes to fully covary (i.e, contribute to a likeli-
hood in non-trivial combinations) can be obtained by
treating all combinations of base attribute values as
particular values of one super attribute, which then
has L' = L values® V consists of terms like
g1,1...1x, indexed by all the attributea. I generalizes
to Frag.ax = 3¢ Rk Oxintn- Given thie transformation,
the likelihoods, etc. look the same as before: L(E; |
VSp) = gii1,...ix+ where each & = X, dn(ViSp) =
dﬂ({qlﬂx---'x} | L")! M(EISD) = Fl({fllla---'x } 1, Lr)a
and 10 g(?':':---!x |ESD) = Fz(nlla---lxvl’ L’) Computa-
tion takes order IK ateps here. This model could, for
example, use a single combined hair-color eye-color at-
tribute to allow a correlation between people being blond
and blue-eyed.

4.5 Fully Covariant Reals - Sgp

If we assumne Sk that a set X of real-valued attributes
follow the standard multivariate normal distribution,
we replace the o} above with a model covariance ma-
trix Xgxs and s} with a data covariance matrix Sy =
%E‘(m.} — TaX@ix' ~ Txr). The inverse Wishart distri-
bution [Mardia et al., 1979] gives an integrable prior on
Txr. We again give only the marginal joint??

K I Hﬂﬂ ;:;‘
o=1 I‘J(E"—‘) Il Sﬁ ko

M(E|Sg) =

I*l’ﬂ!!:ll I(I+6H,f)sk|‘:!' x’_l ‘

and estimates'?

°L' can be a very large number!

'"F, and F, are defined in Section 4.1.

At present, we lack a satisfactory way to approximate
this marginal when some values are unknown.

270 obtain these formulas, certain free hyperparameters in
the Wishart prior have been set using simple statistics from
the data. This is more robust and simplifies the math, but
is "cheating" because priors are supposed to be independent
of the data. Similar cheating was also done in Section 4.2.

E(Ex:|ESr) = 148, See (Hanson et al., 1991]

for details. Computation here takes order (I + K)K?
steps.

4.6 Block Co variance - Sv

Rather than just having either full independence or full
dependence of attributes, we prefer a model space Sv
where some combinations of attributes may covary while
others remain independent, with full or no dependence
as special limiting cases. This allows us to avoid paying
the cost of specifying covariance parameters when they
cannot buy us a significantly better fit to the data.

Our approach to partial dependence is simply to par-
tition the attributes K into D blocks Kb, each of size K,
with full covariance within each block and full indepen-
dence between blocks.'® We also currently prohibit reals
and discretes in the same covariant block.

The evidence E partitione block-wise inte E(Ky)
(using Ei(A) = |pes Xix and E(A) = {E{A)}),
each with its own auf%cient statistics; and the param-
eters V partition into parameters ¥y = {g1,1,...1. ] Or
[{Zax}, {ue}]. Each block is treated as a different
problem, except that we now also have discrete param-
cters T = [B,{K,;}] to specify. Thus the likelihood
L{E;|VTSv) = Hf L{E{(X:)|VsSB) is a simple product
of block terms Sp = Sp or Sg assuming full covariance
within each block, and the estimates £(V,|ETSy) =
E(V,|E(Kp)Sp) are the same as before.

We choose a
prier dx(VT|Sv) = x(B {Ks}|Sv)[]; @x(Vs|Sp) which
predicts the block structure B {p} independently of
the parameters Vj within each independent block result-
ing in & gimilarly decomposed marginal M(ET|Sv) =
x(B{K}|5v)]], M(E(K,)|Sp). We choose a block

structure prior

#(B{Ks}|[Sv)=1/KprZ(Knr,Br)KpZ(Kp, Bp),

where Xgp 18 the met of real attributes and Bpg
ie the number of real blocks (and similarly for
Kp and Bp}). It is npormalized using Z{A,U) =

POMIPY O § iy m—_(g—;l':ﬁ%énr, the number of ways one

can partition a set with A elements inte U subseta.
Thie prior prefers the special cases of full covariance and
full independence, and thus includes a significance test.
For example, in comparing the hypothesis that each at-
tribute is in a separate block (i.e., all independent} with
the hypothesis that only one particular pair of attributes
covary together in a block of size two, this prior penalizes
the covariance hypothesis in proportion to the number
of such pairs possible.

Computation here takes order NK(IK; + K}) stepe,
where N is the number of search trials done before quit-
ting, which would be around (X — 1)} for a complete
search of the space. K, is an average, over both the
gsearch trials and the attributes, of the block sise of real
attributes (and unity for discrete attributes).

3 We choose it because it is easy, fits well with our model
of class hierarchy, and allows full dependence.
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5 Class Mixtures
5.1 Flat Mixtures - SM

The above model spaces Sc = Sy or s,can be thought
of as describing a single class, and so can be extended
by considering a space SM of simple mixtures of such
classes [D.M.Titterington et al, 1985]. With S, = ST,
this is the model space of AutoClass Ill, and Figure 1
shows how it can fit a set of artificial real-valued data in
five dimensions.

In this model space the likelihood L{E;|VTSx) =

Ef o L(E;|V.T.Sc) sums over products of "class
weights" «., each giving the probability that any case
would belong to class ¢ of the C classes, and class like-
lihoods describing how members of each class are dis-
tributed. In the limit of large C this model space is gen-
eral enough to be able to fit any distribution arbitrarily
closely, and hence is "asymtotically correct".

The parameters T = [C,{T.}]} and V = [{a.},{V.}]
combine parameters for each class and parameters de-
scribing the mixture. The prior is similarly broken down

dr(VTiSm) = F5(C)C! dB({a} |C) [] dr(V.T.|Sc),

where F3(C) = =y for C > 0.The a is treated as if
the choice of class were another discrete attribute, except
that a C\ is added because classes are not distinguishable
a priori.

Except in very simple problems, the resulting joint
dJ(EVT\S) has many local maxima, and so we must
now distinguish regions R of the V space. To find a
local maxima we use the "EM" algorithm [Dempster et
al., 1977] which is based on the fact that at a maxima
the class parameters V., can be estimated from weighted
sufficient statistics. Relative likelihood weights Wiz =
a L(EAV.T.Sc )/ I(EilVTSn ), satisfying 3, wie = 1
give the probability that a particular case i is a member
of class c. Using these weights we can break each case
into "fractional cases", assign these to their respective
classes, and create new "class data" E¢ = | J,, [Xix, wic]
with new weighted class sufficient statistics obtained by
using weighted sums 2,» wj. instead of sums £V. For ex-
ample I; = 3, Wic and Eze = 7‘: 3 WieTix- Substituting
these statistics into any previous class likelihood function
L(E\V,T,Sc) gives a weighted likelihood L'{E*{V.T.5¢)
and associated new estimates and marginals.

At the maxima, the weights w; should be consistent
with estimates of V' == {[a¢, Ce]} from E(V|ERSy) =
E(V.|E¢5¢) and E(a.|ERSy) = Fa(I.,I,C). To reach
a maxima we start out at a random seed and repeatedly
use our current best estimates of V to compute the  wj.
and then use the wy. to re-estimate the V, stopping after
10 — 100 iterations when they both predict each other.

Integrating the joint in R can't be done directly be-
cause the product of a sum in the full likelihood is hard

to decompose, but by using fractional cases to approxi-
mate the likelihood L{E;|VTRSy,) =

c
Y a L(Ei|V.T.Sc) & [] (acL(E:V.T.Sc))*
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while holding the wu fixed, we get an approximate
marginal:

M(ERT|Sx) = F5(C)C! Fi({L.} , I,C) [] M"(E°T1Sc)

Our standard search procedure begins each converging
trial from classes built around C random case pairs.
The number of classes C is chosen randomly from a log-
normal distribution fit to the Cs of the 6 — 10 best trials
seen so far, after trying a fixed range of Cs to start. We
also have developed alternative search procedures which
selectively merge and split classes according to various
heuristics. While these usually do better, they some-
times do much worse.

The marginal joints of the different trials generally
follow a log-normal distribution, allowing us to estimate
during the search how much longer it will take on average
to find a better peak, and how much better it is likely
to be.

In the simpler model space SMI where Sc = Si the
computation is order NIC K, where (' averages over the
search trials. N is the number of possible peaks, out
of the immense number usually present, that a compu-
tation actually examines. In the covariant_space SMV
where Sc = Sv this becomes NKC(IK, + K?)

5.2 Class Hierarchy and Inheritance - SH

When there are many attributes and each class must
have its own set of parameters for each of these at-
tributes, multiple classes are strongly penalized. At-
tributes which are irrelevant to the whole classification,
like a medical patient's favorite color, can be particularly
costly. To reduce this cost, one can allow classes to share
the specification of parameters associated with some of
their independent blocks.

Rather than allow arbitrary combinations of classes
to share blocks, it is simpler to organize the classes as
leaves of a tree. Each block can be placed at some node
in this tree, to be shared by all the leaves below (far-
ther from the root than) that node. In this way different
attributes can be explained at different levels of an ab-
straction hierarchy. For medical patients the tree might
have viral-infectionsneai the root, predicting fevers, and
some more specific viral disease near the leaves, predict-
ing more disease specific symptoms. Irrelevant attributes
like favorite-color would go at the root. To make predic-
tions about a member of a leaf class, one first inherits
down the attribute descriptions from classes above it.

Therefore the above class mixture model space SM CAN
be generalized to a hierarchical space SH by replacing the
above set of classes with a tree of classes, and using the
tree to inherit specifications of class parameters. From
the view of the parameters specified at a class, all of the
classes below that class pool their weight into one big
class. Figure 3 shows some sample trees, and Figure 2
shows how a class tree, this time with Sc — Sv, can
better fit the same data as in Figure 1.

A tree of classes has one root class r. Every other
class ¢ has one parent class P.;, and every class has J;
child classes given by C4, where the index j ranges over
the children of a class. Each child class has a weight



o.; relative to its siblings, with Ej'a,_._,- = 1, and an
absolute weight a¢,; = aejae, with a, = 1.

Each class has an associated set of attributes K,
which it predicts independently through a likelihood
L(E:(X)V.T.Sc) and which no class above or below
it predicts. To avoid having redundant trees which
describe the same likelihood function, only K, can be
empty, and non-leaves must have J. > 2

We need to ensure that all attributes are predicted
somewhere at or above each leaf class. So we call A,
the set of attributes which are predicted at or below
each class, start with .4, = K, and then recursively par-
tition each A; into attributes K, "kept" at that class,
and hence predicted directly by it, and the remaining
attributes to be predicted at or below each child Ac,;.
For leaves A, = K.

Expressed in terms of the leaves the likelihood is again
a mixture L{E;|[VT8py) =

> ]I

e:J.=0 [LE-T I N R ]

L(E{(X )| VT Sc)

allowing the same EM procedure as before to find local
maximas The case weights here wci E:‘ we i (with

w.; 1) sum like in the flat mixture case and define
class statistics E¢(K.) = Upex..i [Xix, weil-

We also choose a similar prior, though it must now
specify the K, as well: do{VT|Sg) =

I drZek. | AcSu )Tt dB(|) coj|Je) dx(VeTe | KeSe)
[ ¥

_ KA. - K )
dx(J.K. | A Sg) = F3(J. - 1) Goi6oAd
for all subsets K. of Ac of size in the range [1 = éer, Ac],
except that Fa(J.—1)is replaced b égy.h en A, ="K,
Note that this prior is recursive, as tfte prior for each
class depends on the what attributes have been chosen
for its parent class.

This prior says that each possible number of attributes
kept is equally likely, and given the number to be kept
each particular combination is equally likely. This prior
prefers the simpler cases of K, = Ac and K. = 1 and
so again offers a significance test. In comparing the hy-
pothesis that all attributes are kept at a class with the
hypothesis that all but one particular attribute is kept at
that class, this prior penalizes the all-but-one hypothe-
sis in proportion to the number of attributes that could
have been kept instead.

The marginal joint becomes M(ERT|Sy) ==

[ éxr(Gcke | AcSu)Tt Fa(l ) Ie s ey T )M (BE(Ke)Te| Sc )

)

and estimates are E(V.|ERSy) = E'(V | E*(X )5c) and
E(ac;|ERSy) = Fo(les, Iy Jc) again.

In the general case of SHV, where Sc = Sv, computa-
tion again takes NKU(I-I'(_;,-%Kf). except that the T is
now also an average of, for each k the number of classes
in the hierarchy which use that k (i.e., have k¥ € X.).
Since this is usually less than the number of leaves, the
model Sy is typically cheaper to compute than Sy for
the same number of leaves.

Searching in this most complex space SHV is challeng-
ing. There are a great many search dimensions where one
can trade off simplicity and fit to the data, and we have
only begun to explore possible heuristics. Blocks can be
merged or split, classes can be merged or split, blocks
can be promoted or demoted in the class tree, EM itera-
tions can be continued farther, and one can try a random
restart to seek a new peak. But even the simplest ap-
proaches to searching a more general model space seem
to do better than smarter searches of simpler spaces.

6 Results
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Figure 1: AutoClass Ill Finds Three Classes

We plot attributes 1 vs. 2, and 3 vs. 4 for an artificial data
set. One o deviation ovals are drawn around the centers of
the three classes.

Figure 2: AutoClass IV Finds Class Tree x 10'® Better
Lists of attribute numbers denote covariant blocks within
each class, and the ovals now indicate the leaf classes.

We have built a robust software package, AutoClass |11,
around the flat independent model SMI, with utilities
for reading data, controlling search, and viewing results,
and have released it for general use. It is written in Com-
monLisp, and runs on many different machines. We,
and others, have applied this system to many large and
real databases. When applied to infrared stellar data we
found new, independently verified, phenomena [Goebel
et al., 1989]. Others have successfully applied it to pro-
tein structure [Hunter and States, 1991].
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We axe now developing Autoclass IV around the full
hierarchical block covariant model space SHV + As hoped,
it gives a significant improvement over the previous ver-
sion when applied to real data, though we have only tried
it on small problems so far. On the standard IRIS flowers
data (150 cases, 4 attributes) we find a model over 10°®
times more probable than the independent model, i.e.,
with a marginal joint (absolute value 10~°'®) that much
larger. This compares with typical improvements of
102 for doubling the search time or for using a smarter
merging search.

Marginal = 1071477

Figure 3: Each New Feature Allows a Better Model

The marginal probabilities improve by large factors as we fit
each new class tree.

Figures 1, 2, and 3 illustrate a similar gain on an artifi-
cial data set with 400 cases and 5 real attributes. Figure
1 shows how the data is distributed in attributes #1 and
#2, and in attributes #3 and #4 (attribute #5 is not
shown). Superimposed upon this is the best result found
with Autoclass I11.

Since the data is dominated by a covariance between
attributes #1 and #2, the independent model tries to
model this by stringing classes along the 1 — 2 covari-
ance axis. There is too little data to justify any more
structure in this model class, so the #3, #4 and #5
axes are basically ignored. The

Figure 3 shows a progression of models between this
model and the current best answer from Autoclass IV,
given in Figure 2. Each new model adding one new fea-
ture and gains an improved marginal joint. Moving from
a flat independent model to a flat fully covariant model,
the best model found is over 108" times more probable,
with 4 classes each of which have significant covariances
in 2 pairs of attributes. This large gain comes from com-
bining a much better fit to the data, despite extra costs
paid for the added class and covariance parameters. But,

'“Cross-validation would probably be a better test here,
since our priors are fairly crude.
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on inspection one finds that the four covariant classes are
virtually the same in the 1 — 2 projection and show little
correlation with the other attributes. We therefore split
the covariance blocks and raise the (12) block to the
common root for another relative increase of 10°°. This
process can be repeated on pairs of the (3 4 5) blocks to
get the 3 level tree shown in Figure 2, gaining another
10° in relative probability. We have thus gained a to-
tal factor of over 10'° in relative marginal probability
over the best classification found using the independent
model. Of that total, about 10°° comes from the fact
that the tree now requires fewer parameters to specify a
similar likelihood.

These preliminary results support previous indications
that the ability to represent various kinds of structures
in the data is the major limiting factor of such a system.
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