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A b s t r a c t 

Admissible heuristics are an important class 
of heuristics worth discovering: they guaran­
tee shortest path solutions in search algorithms 
such as A* and they guarantee less expensively 
produced, but boundedly longer solutions in 
search algorithms such as dynamic weighting. 
Unfortunately, effective (accurate and cheap to 
compute) admissible heuristics can take years 
for people to discover. Several researchers have 
suggested that abstractions of a problem can 
be used to generate admissible heuristics. This 
paper describes and evaluates an implemented 
program (Absolver I I ) that uses a means-ends 
analysis search control strategy to discover ab-
stracted problems that result in effective ad­
missible heuristics. Absolver II discovered sev­
eral well-known and novel admissible heuristics, 
including the first known effective one for Ru-
bik's Cube, thus concretely demonstrating that 
effective admissible heuristics can be tractably 
discovered by a machine. 

1 I n t r o d u c t i o n 
Admissible heuristics are an important class of heuris-
tics worth discovering: they guarantee shortest path so­
lutions in search algorithms such as A* and they guar­
antee less expensively produced, but boundedly longer 
solutions in search algorithms such as dynamic weight­
ing [Pohl, 1973] and A; [Pearl, 1984]. Unfortunately, 
heuristics that are both admissible and effective (accu­
rate and cheap to compute) often take years for people 
to discover. For example, although the Traveling Sales­
person problem was introduced in mathematical circles 
as early as 1931 [Lawler and Lenstra, 1984], it was not 
unt i l 1971 that the Min imal Spanning Tree heuristic for 
it was discovered. The ul t imate goal of this research 
is to develop a system for discovering effective admis-
sible heuristics automatically, thereby shift ing some of 
the burden of discovery f rom humans to machines. This 
paper describes and evaluates an implemented program 
(Absolver I I ) that can tractably discover effective admis­
sible heuristics. 

Previous proposed, but unimplemented methods to 

generate admissible heuristics for a problem involve find­
ing the length of a shortest path solution to transformed 
version of the problem; the length is the admissible 
heuristic. The transformations include edge supergraphs 
[Guida and Somalvico, 1979; Gaschnig, 1979], opera­
tor precondition dropping [Pearl, 1984], and homomor-
phisms [Kibler, 1985]. Analyt ic results show that for 
such heuristics to be effective, the transformed prob­
lems that generate them should be easier to solve and 
close to the original problem [Valtorta, 1984; Mostow 
and Prieditis, 1989]. One suggested way to make a trans­
formed problem easier to solve is to factor it into in­
dependently solvable subproblems when possible [Pearl, 
1984]. The only implemented program to generate ad­
missible heuristics by searching for easy-to-solve trans­
formed problems (Absolver I) uses an exhaustive gen­
erator [Mostow and Prieditis, 1989]. Because the space 
of transformed problems is generally too large to search 
exhaustively, a smarter method of search control is re­
quired. 

This paper extends previous work in three ways. First, 
it extends and unifies previous definitions of transfor­
mations that generate admissible heuristics (Section 2). 
Second, it extends Absolver I's transformation catalogs 
(Section 3). Final ly and most important , it describes 
and evaluates a new search control mechanism as imple­
mented in Absolver II (Sections 4 and 5). 

2 A b s t r a c t i n g T rans fo rmat ions 

Intuit ively, an abstracting transformation removes de­
tails. To formalize this intui t ive definition requires a few 
preliminary definitions. Let a state space search prob­
lem be a 3-tuple < S , c , P > , where S is a set of states 
describing situations o f the world; c : S x S - - > R i s a 
total positive cost function that returns the length of 
a directed arc from one state to another; and P is a 
predicate that characterizes a class of goal states. For 
example, in the Eight Puzzle problem, the set of states 
consists of all ti le permutations; the cost function on a 
pair of states returns 1 if one state is reachable from the 
other by swapping the blank wi th an adjacent t i le, and 
oo otherwise. A goal predicate might specify that the 
tiles are to be in a particular order. Problem solving 
involves finding a finite sequence of states leading from 
the in i t ia l state to a state that satisfies the goal predi-
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cate. T h e cost f u n c t i o n can be speci f ied e x p l i c i t l y w i t h 
a m a t r i x or i m p l i c i t l y , re la t i ve to a set of parameter ized 
ac t ions ca l led operators. S i m i l a r l y , the goa l pred ica te 
can be speci f ied e x p l i c i t l y by e n u m e r a t i n g a l l goa l states 
or i m p l i c i t l y , re la t i ve to a goa l statement t h a t defines a 
class of s tates. 

<  

As shown in F i gu re 1 , a heur is t i c fo r a s ta te in p r o b l e m 
is c o m p u t e d by f i r s t abs t rac t i ng the s ta te a n d 

then f ind ing a shor test p a t h so lu t i on in the abs t rac ted 
p r o b l e m (e.g. w i t h A*). T h e l eng th o f t h a t 
shor test p a t h s o l u t i o n is the admiss ib le heur i s t i c . 1 For 
examp le , i f t he requ i remen t t h a t the ad jacent l oca t i on 
need be b l a n k i s d r o p p e d f r o m moves in the E i g h t Puz­
zle p r o b l e m , t hen moves i n the abs t rac ted p r o b l e m w i l l 
resul t in states where t i les are super imposed . T h e l eng th 
of a shortest p a t h s o l u t i o n in th i s t r ans fo rmed space is 
therefore an admiss ib le heur is t i c for the o r i g i n a l p r o b -
l em . In fac t , th is l e n g t h i s the M a n h a t t a n D is tance over 
s u m m e d a l l t i les ( i .e . the rec t i l inear d is tance to each 
t i le 's goa l d e s t i n a t i o n ) . 

generated f r o m an abs t rac ted p r o b l e m is genera l ly t oo 
expensive, we have i m p l e m e n t e d a ca ta log of speedup 
t r ans fo rma t i ons (shown in Tab le 2 a n d hence fo r th ca l led 
speedups), each of w h i c h has been proved to preserve ad ­
m iss i b i l i t y [P r ied i t i s , 1990]. 

Tab le 1 : O u r Cu r ren t C a t a l o g o f A b s t r a c t i n g Trans fo r ­
ma t i ons (* = new) 

F igu re 1 : H o w a Heur i s t i c i s C o m p u t e d in O u r M o d e l 

O u r d e f i n i t i o n o f a b s t r a c t i o n i s suf f ic ient ly general 
to cover edge supe rg raph t r a n s f o r m a t i o n s , p recond i t i on 
d r o p p i n g t r a n s f o r m a t i o n s , h o m o m o r p h i s m s , and o ther 
admiss ib le -heur i s t i c -genera t ing t r ans fo rma t i ons no t cov­
ered by these (e.g. subgoa l d r o p p i n g ) . 

3 E x t e n d e d T r a n s f o r m a t i o n Catalogs 
Tab le 1 shows Abso lve r IPs ca ta log o f a b s t r a c t i n g t rans­
f o r m a t i o n s , w h i c h opera te on the same S T R I P S - s t y l e 
p r o b l e m rep resen ta t i on [Fikes et al, 1972] of Abso lver I . 
Each t r a n s f o r m a t i o n has been p roved to be abs t rac t i ng 
[P r i ed i t i s , 1990], t he reby guaran tee ing t h a t a l l heur is­
t ics generated f r o m the ca ta log are indeed admiss ib le . 
Since us ing b read th - f i r s t search to c o m p u t e a heur is t i c 

Tab le 2 : O u r C u r r e n t C a t a l o g o f Speedup T r a n s f o r m a ­
t ions ( * = new) 

For examp le , a f ter a p p l y i n g d r o p ( B l a n k ) i n the E i g h t 
Puzzle, the resu l t i ng abs t rac ted p r o b l e m can be fac to red 
i n t o a set of i ndependen t l y solvable p rob lems ; then f i n i te 
d i f ferenc ing can be app l i ed to recompu te on l y t h a t fac­
tor 's heur is t i c t h a t requires u p d a t i n g af ter each move 
in the o r i g i n a l space; a n d f i na l l y , a l o o k u p tab le can be 
p r e c o m p i l e d for each fac to r . For n x n puzzles, the 
c o m p l e x i t y r educ t i on is as fo l lows (o r i g i na l p r o b l e m is 
l e f tmos t ) : 

1 Admiss ib i l i ty , composabi l i ty, par t ia l ordering, and other 
results are proved in [Pr iedi t is , 1990]. 

F igu re 2 summar izes our m o d e l fo r d iscover ing ad ­
miss ib le heur is t ics . An abs t rac ted vers ion o f the o r i g ­
i na l p r o b l e m is sped up a n d then used as an admiss i ­
ble heur is t ic for a l l p r o b l e m instances ( p r o b l e m + i n i t i a l 
s ta te ) . No t i ce t h a t the ef for t to discover a heur is t ic for 
a p r o b l e m is a m o r t i z e d over a l l instances of a p r o b l e m 
because the der ived heur is t ic is no t instance-speci f ic . 

4 Abso lver I I 
Abso lver I I uses a tab le (Tab le 3) of p laus ib le abs t rac t i ng 
t r ans fo rma t i ons for each i m p l e m e n t e d speedup to iden­
t i f y and e l im ina te obstacles t o a p p l y i n g speedups.2 An 
"x" in a pa r t i cu l a r r o w / c o l u m n en t r y of th is tab le means 
t h a t the row 's abs t r ac t i ng t r a n s f o r m a t i o n i s l i ke l y to lead 
to sa t i s fy ing the c o l u m n ' s speedup t r a n s f o r m a t i o n , g iven 
our exper ience in a p p l y i n g the m o d e l by h a n d . 

2 F in i te Differencing is not shown because it is imp l i c i t l y 
part of Factor; Precompute is not shown because it depends 
on hard-to-predict in format ion such as search space size. 
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Figure 2 : O u r M o d e l for D iscover ing Adm iss i b l e Heur is­
t ics 

Tab le 3 : P laus ib le A b s t r a c t i o n s for Each Speedup T rans ­
f o r m a t i o n 

Us ing th i s tab le , Abso lve r I I o u t p u t s the f i r s t heur is t ic 
i t f inds , w h i c h i t assumes to be the best one, sub ject 
to the f o l l o w i n g eva lua t i on c r i t e r i a i m p l i c i t i n i ts search 
mechan ism: 

• T h e less i n f o r m a t i o n d r o p p e d to der ive the heur is t i c 
the be t te r (e.g. d r o p fewer p recond i t i ons ) . 

• A heur is t ic mus t be der ived f r o m an abs t rac ted 
p r o b l e m t h a t can be sped up . To avo id generat­
i n g useless heur is t ics , Abso lve r I I incorpora tes nec­
essary cond i t i ons for speedup i n t o i ts generator o f 
abs t rac t ions . 

Abso lver I I i s a c t u a l l y compr i sed o f three subprog rams : 
Composer , D r o p p e r , a n d Summar i ze r . Us ing several 
meta -heur i s t i cs , Composer searches t h r o u g h the space 
of c o m p o s i t i o n abs t rac t i ons (e.g. sum) for those abst rac­
t ions t h a t lead to the remova l o f subsumed opera to rs . 
D r o p p e r a t t e m p t s to fac to r a p r o b l e m i n t o independent 
subprob lems b y a p p l y i n g d r o p - p r e a n d d r o p - g o a l ( i r ­
re levant ope ra to rs are i m p l i c i t l y removed ; d r o p i s m o d ­
eled in t e rms o f these t w o t r a n s f o r m a t i o n s ) . D roppe r 
f i rs t bu i l ds a set o f p recond i t ions a n d subgoals to d r o p 
t h a t are suf f ic ient to make a pa i r o f subgoals indepen­
dent . N e x t , us ing several meta-heur is t i cs a n d a s t anda rd 
search a l g o r i t h m for c o m b i n i n g these drops , i t t r ies to 
f ind a m i n i m a l set o f d rops t h a t a l lows f a c t o r i n g . S u m ­
mar izer a t t e m p t s to o b t a i n a p r o b l e m in w h i c h subsumed 
opera tors can be removed by a p p l y i n g c o u n t ( t o every 
p red ica te ) . F a i l i n g t h a t , S u m m a r i z e r appl ies p a r i t y ( t o 
every in teger ) i n an a t t e m p t to o b t a i n a p r o b l e m in w h i c h 

subsumed opera to rs can be removed . 3 

Abso lve r IPs overa l l search s t ra tegy is as fo l lows. 
F i r s t , i t cal ls Composer . I f Composer fa i ls to f i n d a 
p r o b l e m in w h i c h a ce r ta in percentage o f subsumed op­
era tors can be co l lapsed, then Abso lve r I I cal ls D roppe r . 
I f D r o p p e r canno t fac to r the p r o b l e m i n t o t w o o r more 
independen t subprob lems, then Abso lve r I I cal ls S u m ­
mar izer as a last resort . A f t e r Abso lve r I I succeeds in 
a p p l y i n g a speedup t r a n s f o r m a t i o n w i t h i n e i ther C o m ­
poser, D r o p p e r , or Summar i ze r , i t cal ls i tse l f recurs ively 
on the resu l t i ng p r o b l e m , thus resu l t i ng in a h ie rarchy 
of abs t rac t ions , w h i c h generates a h ie ra rchy of heur is-
t ics, each of w h i c h is used to more ef f ic ient ly c o m p u t e 
heur is t ics lower in the h ie rarchy . T h e rest o f t h i s sect ion 
describes Composer and D r o p p e r ; S u m m a r i z e r is no t de­
scr ibed since i t is re la t i ve l y s t r a i g h t f o r w a r d . 

4 . 1 C o m p o s e r : T h e S e a r c h f o r S u b s u m a b i l i t y 

Composer ' s goa l i s to f ind an abs t rac ted p r o b l e m in 
w h i c h subsumed opera to rs can be removed. I t t r ies 
to reach th is goal by searching t h r o u g h the space of 
pa i r -w ise compos i t i ons w i t h a s t a n d a r d h i l l - c l i m b i n g a l ­
g o r i t h m and a me ta -heur i s t i c in the f o r m of a " s i m i ­
l a r i t y " coeff icient on each cand ida te c o m p o s i t i o n . T h e 
s i m i l a r i t y coeff ic ient re tu rns the number o f pa i rs o f op­
erators in wh i ch the c o m p o s i t i o n resul ts in the same 
va lue. T h e larger the s i m i l a r i t y coef f ic ient , the more 
l i ke ly t h a t a p a r t i c u l a r c o m p o s i t i o n w i l l lead to opera to r 
s u b s u m p t i o n . Composer appl ies the s i m i l a r i t y coeff icient 
to each pa i r -w ise cand ida te c o m p o s i t i o n and then p ro ­
ceeds in the d i r ec t i on o f t h a t pa i r -w ise c o m p o s i t i o n w i t h 
the largest s i m i l a r i t y coeff ic ient ( t ies are b roken a r b i t r a r -

i iy)-
W h e n the number o f u n i n s t a n t i a t e d opera tors af ter 

subsumed opera tors are removed is 7 5 % of the number 
o f o r i g i na l opera tors , Composer cal ls i tse l f recurs ively to 
b u i l d a h ierarchy o f heur is t ics . T h e 7 5 % va lue, wh i ch we 
chose i n i t i a l l y and have no t had to change, is a rough 
i nd i ca to r t h a t the b ranch ing fac to r o f the abs t rac ted 
p r o b l e m is suf f ic ient ly reduced such t h a t search w i l l be 
cheaper t h a n in the o r i g i n a l space, b u t no t reduced so 
much t h a t inaccura te t h o u g h cheap- to -compu te heur is­
t ics resu l t . 

For examp le , in the Fool 's D isk p r o b l e m (shown in 
F igu re 3) , where the ob jec t is to r o t a te each o f the con­
cent r ic disks u n t i l the numbers on each rad ius ( labeled 
r 1 - r s ) s u m to 12, Composer generates the h ie ra rchy o f 
p rob lems shown in F igu re 4 , each o f w h i c h generates an 
admiss ib le heur is t ic . 

T h e D iamete rs p r o b l e m is a t r a n s f o r m a t i o n o f the o r i g ­
i n a l Fool 's D isk p r o b l e m where the f o l l o w i n g pa i rs o f 
r a d i i are s u m m e d us ing the sum t r a n s f o r m a t i o n : r1 and 
r5 , r2 a n d r6 , r3 a n d r7 , a n d r4 a n d r8 . T h e Perpen­
d i cu la r D iamete rs p r o b l e m is a t r a n s f o r m a t i o n of the 
D iamete rs p r o b l e m where pe rpend i cu la r d iameters are 
s u m m e d . For examp le , i n the Perpend icu la r D iamete rs 
p r o b l e m , the compos i te r 1 a n d r 5 i s s u m m e d w i t h the 
compos i te r 3 and r 7 . T h e A l l N u m b e r s p r o b l e m is a 
t r a n s f o r m a t i o n o f the Perpend icu la r D iame te rs p r o b l e m : 

3 Current ly, Absolver II collapses problems to closed form 
only opportunist ical ly. 
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Figure 3: The Fool's Disk Problem 

Figure 4: The Hierarchy of Discovered Heuristics for the 
Fool's Disk Problem 

all the numbers are summed. To compute, for exam­
ple, the Diameters problem heuristic for any state in the 
original Fool's Disk problem, the state is abstracted (by 
summing opposite radii) and then the search algori thm 
(e.g. A*) is called recursively wi th the Diameters prob­
lem and the abstracted state. If this heuristic returns oo 
for a state at any level of abstraction, then the state can 
be pruned. In sum, to prune states that cannot reach 
the goal, the original Fool's Disk relies on the Diameters 
problem, which in turn relies on the Perpendicular D i ­
ameters problem, which finally relies on the A l l Numbers 
problem.4 

The complexity of Composer is dominated by the com­
plexity of computing the similari ty coefficient, whose 
complexity is for m operators. For each non-
recursive call of Composer, the similari ty coefficient wi l l 
be computed times for n integers since only 
integer pairs (or bags) are processed. Thus the total 
complexity of Composer is since Composer wi l l 
call itself recursively at most 0(n) times. 

4 . 2 D r o p p e r : T h e Search f o r F a c t o r a b i l i t y 

Dropper is actually composed of two subprograms: Pair-
wise and Combine. Over each pair of subgoals, Pairwise 
finds a set of precondition and subgoal drops sufficient 

4 These admissible heuristics are not to be confused with 
the Fool's Disk problem-solving strategy described in [Ernst 
and Goldstein, 1982]. 

to make the pair of subgoals independent. For exam­
ple, Figure 5 shows that given a subgoal A t ( l , A ) and 
a subgoal A t ( 2 , B ) in the Eight Puzzle, an operator of 
the form Move(1, - ,A) directly adds A t ( l ,A) and an op-
erator of the form Move(2, - ,B) directly adds A t ( 2 , B ) . 
Since M o v e d , . , A ) places the blank in some location 
(possibly location B) and Move(2,_,B) places the blank 
in some location (possibly location A), these operators 
might interact through Blank of both operator's pre­
conditions. Dropping Blank from the precondition of 
the Move operator eliminates this interaction. To test 
if the entire goal is factorable into at least two parts, 
the drop sets f rom each pair of subgoals must be com­
bined somehow. Combine uses an iterative deepening 
search algori thm wi th the meta-heuristic of focusing on 
the most frequently occurring drops first. This search 
algori thm tends to minimize the number of drops to ob­
tain a problem that can be factored into two or more 
subproblems. In our Eight Puzzle example, which only 

Figure 5: Dropping the Blank Enables Factoring (Ar­
rows are Potential Interactions) 

has a single drop set (dropping Blank f rom the operator 
and the goal), Combine converges to a factorable set af­
ter one i teration. Combine is then called recursively on 
each of the factors. It then terminates successfully since 
no other factorings can be obtained wi th in each factor 
and produces the A N D tree of factors shown in Figure 
6, which is used to compute the Manhattan Distance 
heuristic. 

Figure 6: Independently Solvable Factors Used to Com­
pute Manhattan Distance 

The complexity of Dropper is dominated by Pairwise, 
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w h i c h cons t ruc ts a t r ans i t i ve closure of the set o f op ­
erators t h a t can poss ib ly lead to ach iev ing a goa l . T h e 
worst-case c o m p l e x i t y o f cons t ruc t i ng th i s t r ans i t i ve c lo­
sure is , where bb is the backward branching factor 
( the average n u m b e r of opera to r instances t h a t adds a 
given p red ica te ) and db is the backward depth ( the l eng th 
o f the longest cha in o f opera to rs in the set o f re levant 
opera tors fo r a g iven subgoa l ) . T h a t is, t he n u m b e r o f 
p recond i t i ons t h a t Pa i rw ise examines i s p r o p o r t i o n a l to 
the n u m b e r o f pa ths f r o m a subgoa l to each opera to r in 
the cha in . 

5 E x p e r i m e n t a l Resul ts 

Tab le 4 presents the resul ts o f a p p l y i n g Abso lve r I I to 
several we l l -de f ined search d o m a i n s , each of w h i c h is suf­
f i c ien t ly comp lex to requ i re heur is t ics . T h e tab le l is ts the 
d o m a i n , the name o f the heur is t i c , and the percentage 
o f the space t h a t was exp lo red ( t o t w o s ign i f i cant d i g ­
i t s ) . T h e percentage i s c o m p u t e d by d i v i d i n g the n u m ­
ber of heur is t ics generated before the named one was 
f o u n d by the n u m b e r o f abs t rac t ions w i t h respect to our 
ca ta log o f a b s t r a c t i n g t r a n s f o r m a t i o n s and m u l t i p l y i n g 
by 100.5 T h e space size is a conservat ive es t ima te in 
t h a t i t inc ludes o n l y those abs t rac t ions t h a t Abso lve r I I 
ac tua l l y used. For examp le , the space size for d e r i v i n g 
the M a n h a t t a n D is tance i s 4096, since Abso lver I I on l y 
d rops ope ra to r p recond i t i ons and subgoals to der ive the 
heur is t ic a n d there are 9 subgoals a n d 3 p recond i t i ons 
( 2 9 + 3 = 4096) . Since integers are no t p a r t o f the p rob ­
l em spec i f i ca t ion for the E i g h t Puzz le , Abso lve r I I does 
no t a p p l y t r a n s f o r m a t i o n s such as sum. In con t ras t , to 
der ive the Foo l 's D i sk heur is t i c , Abso lve r I I on l y appl ies 
sum ( t o the 8 r a d i i ) a n d n o t o ther t r ans fo rma t i ons ; i t 
therefore searches a space of size 28 (= 256) . 

T h e resul ts o f th is tab le can be s u m m a r i z e d as fo l lows. 
Abso lver I I d iscovered effect ive admiss ib le heur is t ics in 6 
ou t o f the 13 doma ins by e x p l o r i n g on l y a f r ac t i on o f the 
space o f heur is t ics der ivab le by the abs t rac t i ng t ransfor ­
m a t i o n s in our ca ta log . Abso lve r I I d iscovered 8 novel 
heur is t ics , 5 o f w h i c h t u r n e d o u t to be effect ive. T h e 
novel effect ive heur is t ics inc lude the f i rs t k n o w n (non -
t r i v i a l ) admiss ib le heur is t i c fo r the 3 x 3 x 3 R u b i k ' s 
Cube ( p a r t i a l l y p r e c o m p u t e d Cen te r -Co rne r ) , w h i c h re­
su l ted in r o u g h l y 8 orders o f m a g n i t u d e speedup w i t h A* 
over b l i n d search for l ong so lu t ions ; the best admiss ib le 
heur is t i c fo r t he E i g h t Puzz le ( p recompu ted X - Y ) , w h i c h 
expanded 1.8 t imes fewer states t h a n the L inear C o n ­
f l ict heur i s t i c [Hansson et a/., 1989], an ad jus ted more 
i n f o r m e d vers ion o f the M a n h a t t a n D is tance heur is t i c ; a 
heur is t ic i n the R o o m s W o r l d p r o b l e m (search-computed 
B o x D is tance ) , w h i c h counts the m i n i m u m number o f 
rooms each b o x m u s t pass t h r o u g h to reach i t s goa l des­
t i n a t i o n a n d w h i c h expanded 267 t imes fewer states t h a n 
b l i n d search; the D iame te rs Foo l 's D isk heur is t i c , wh i ch 
expanded 45.41 t imes fewer states t h a n b l i n d search; and 
an Ins tance I n s a n i t y heur is t i c , wh i ch is analogous to the 
D iame te r ' s heur is t i c in t h a t oppos i te side colors are corn-

5 Problem formulat ions, methods for choosing good formu­
lat ions, derivations, and performance of the result ing heuris­
tics are detailed in [Pr iedi t is, 1990]. 

Tab le 4 : Tab le o f A d m i s s i b l e Heur is t ics Discovered by 
Abso lver I I (* = nove l ; + = effect ive) 

b ined and w h i c h expanded 2.61 t imes fewer states t h a n 
b l i n d search. 

Abso lver I I der ived several k n o w n admiss ib le heur is­
t ics i n c l u d i n g the M a n h a t t a n D is tance heur is t i c o f the 
E i g h t Puzzle (us ing a d i f ferent f o r m u l a t i o n t han for the 
X - Y heur i s t i c ) , the N u m b e r o f M isp laced Disks heur is­
t ic o f the Towers o f H a n o i , the M u t i l a t e d Checkerboard 
heur is t i c , and the N u m b e r o f M isp laced B locks heur is­
t i c . A l l except the M a n h a t t a n D is tance heur is t i c were 
o f the same c o m p l e x i t y as the o r i g i n a l s — t h e M a n h a t t a n 
D is tance heur is t ic is slower by O(n) for n x n puzzles 
because the der ived heur is t ic uses search to c o m p u t e the 
number o f moves needed to get each t i l e f r o m i ts cur ren t 
l oca t i on to i ts goa l l o c a t i o n . 6 

Abso lver I I de r i ved several i n fe r io r heur is t ics . I n the 
2 -D R o u t i n g d o m a i n , Abso lve r I I der ived the " U n v i s i t e d 
S igna ls" heur is t i c , w h i c h re tu rns a coun t o f the number 
o f non-reached s igna l l oca t ions , ins tead o f the more i n ­
f o rmed Steiner Tree heur is t i c , w h i c h re tu rns the l eng th 
o f a m i n i m u m rec t i l i near spann ing tree and w h i c h we 
der ived by h a n d [P r ied i t i s , 1990], because i t d r o p p e d a 
re la t i on t h a t was too sal ient for the p r o b l e m . In the 
T rave l i ng Salesperson P r o b l e m , Abso lve r I I der ived the 
" U n v i s i t e d C i t i es * heur is t i c , w h i c h computes the sum 
of the least cost edges lead ing to an unv i s i t ed c i t y over 
a l l unv i s i t ed c i t ies, ins tead o f the more i n f o r m e d M i n i ­
m a l Spann ing Tree heur is t i c , wh i ch we der ived by h a n d 
[Pr ied i t i s , 1990], because we have n o t i m p l e m e n t e d the 
speedup requ i red to der ive the M i n i m a l Spann ing Tree 
heur is t i c . 

Abso lver I I f a i l ed t o f i n d an ef fect ive admiss ib le heur is­
t ic fo r the T h i n k - A - D o t , E i g h t Queens, a n d Schedu l ing 
p rob lems for the same reason we fa i l ed to f i n d one by 

6Assuming finite differencing and ignor ing a one t ime 
0(n4) i n i t ia l computat ion. 
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h a n d [P r i ed i t i s , 1990]: a l l abs t rac t ions t h a t cou ld be 
sped up removed t o o m a n y i m p o r t a n t de ta i ls and there-
fore resu l ted in re l a t i ve l y u n i n f o r m e d heur is t ics . For ex­
a m p l e , t o o b t a i n the fac to rab le abs t rac ted p r o b l e m t h a t 
resul ts in the Unass igned Jobs heur is t i c for the Schedul ­
i ng d o m a i n , t he t i m e a n d ser ia l i t y cons t ra in ts mus t be 
d r o p p e d . T h e resu l t i ng heur i s t i c , wh i ch re tu rns the m i n ­
i m u m costs o f unass igned j o b s , i s p o o r l y i n f o r m e d . O u r 
approach to d iscover ing admiss ib le heur is t ics appears to 
be unsu i tab le when the o r i g i n a l p r o b l e m is character ized 
by h i g h goa l o r opera to r " in ter ference" ( m a n y opera tors 
d i r ec t l y change a large p r o p o r t i o n of subgoals in the o r ig ­
i na l p r o b l e m or m a k e a large p r o p o r t i o n o f opera tors 
subsequent ly i napp l i cab le ) and a l l abs t rac ted p rob lems 
are charac ter ized by low goa l or opera to r " in ter fe rence" 
(few opera to rs d i r ec t l y change a large p r o p o r t i o n of sub-
goals o r make opera to rs i napp l i cab le ) . O f course, i t may 
be t h a t to der ive effect ive admiss ib le heur is t ics for such 
doma ins requires abs t rac t ions a n d speedups beyond our 
m o d e l or t h a t we were no t able to f i n d a " g o o d " f o r m u ­
l a t i o n i n w h i c h t o der ive heur is t ics . 

6 Conclusions and Fu tu re W o r k 
Abso lve r I I t r a c t a b l y d iscovered m a n y k n o w n admiss i ­
ble heur is t ics ( t h o u g h w i t h v a r y i n g eff iciency re la t ive to 
the o r i g i na l versions) a n d some novel effective admis­
sible heur is t ics by us ing a means-ends analysis search 
s t ra tegy. Some of these heur is t ics were s t i l l effective 
even t h o u g h they are c o m p u t e d by search. Such search-
c o m p u t e d heur is t ics m i g h t be i m p o r t a n t i n doma ins 
where effect ive c losed- fo rm heur is t ics cannot be f ound 
(e.g. R o o m s W o r l d ) . 

As Abso lve r I I i s an expe r imen ta l sys tem, i t has sev­
eral sho r t com ings , each o f w h i c h suggests in te res t ing d i ­
rect ions for f u t u r e research. F i r s t , because i t somet imes 
drops sal ient re la t ions of a p r o b l e m , i t m i g h t be enhanced 
by a t heo ry t h a t l i n ks i n f o r m a t i o n loss v i a abs t rac t i on to 
accuracy o f the resu l t i ng heur is t ics . T h i s theory m i g h t 
a l l ow Abso lve r I I t o p red ic t the effectiveness o f heur is t ics 
w i t h o u t tes t ing t h e m , w h i c h i s cu r ren t l y lef t up to the 
user. Second, n o n - a b s t r a c t i n g t r ans fo rma t i ons m i g h t be 
requ i red to der ive ef fect ive heur is t ics in ce r ta in doma ins 
(e.g. E igh t -Queens ) . T h i r d , Abso lver I I m i g h t be ab le 
to boost the in formedness o f ce r ta in admiss ib le heur is­
t ics by t a k i n g i n t o account in te rac t ions in the base level 
between i ndependen t l y solvable fac to red subproblerns in 
the abs t rac t level . For examp le , the LC heur is t i c m i g h t 
be der ivab le by i n c r e m e n t i n g the M a n h a t t a n D is tance 
heur is t ic by 1 fo r each base-level i n te rac t i on f o u n d be­
tween independent fac tors w i t h o n l y one shortest p a t h 
so lu t i on . F i n a l l y , Abso lve r I I somet imes derives in fe­
r io r heur is t ics because i t overest imates the number o f 
re la t ions to d r o p to remove in te rac t i ons ; examples cou ld 
he lp i t focus on those in te rac t i ons t h a t ac tua l l y occur. 
For examp le , Abso lve r I I cou ld assume (a t the cost o f 
a d m i s s i b i l i t y ) t h a t a p r o b l e m is fac to rab le u n t i l an i n ­
te rac t i on i s detec ted a m o n g i ts fac tors w h e n c o m p u t i n g 
a heur is t i c fo r a p a r t i c u l a r p r o b l e m instance. Once such 
an i n t e r a c t i o n is de tec ted , i t s cause cou ld be loca ted and 
e l i m i n a t e d b y a b s t r a c t i o n . 

Desp i te i t s sho r t com ings , Abso lve r I I concrete ly 

demonst ra tes t h a t effective admiss ib le heur is t ics can be 
t r a c t a b l y discovered by a mach ine . 
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