Machine Discovery of Effective Admissible Heuristics

Armand E. Prieditis
Division of Computer Science
University of California
Davis, CA 95616
(prieditis@iris.\icdavis.edu)

Abstract

Admissible heuristics are an important class
of heuristics worth discovering: they guaran-
tee shortest path solutions in search algorithms
such as A* and they guarantee less expensively
produced, but boundedly longer solutions in
search algorithms such as dynamic weighting.
Unfortunately, effective (accurate and cheap to
compute) admissible heuristics can take years
for people to discover. Several researchers have
suggested that abstractions of a problem can
be used to generate admissible heuristics. This
paper describes and evaluates an implemented
program (Absolver IlI) that uses a means-ends
analysis search control strategy to discover ab-
stracted problems that result in effective ad-
missible heuristics. Absolver Il discovered sev-
eral well-known and novel admissible heuristics,
including the first known effective one for Ru-
bik's Cube, thus concretely demonstrating that
effective admissible heuristics can be tractably
discovered by a machine.

1 Introduction

Admissible heuristics are an important class of heuris-
tics worth discovering: they guarantee shortest path so-
lutions in search algorithms such as A* and they guar-
antee less expensively produced, but boundedly longer
solutions in search algorithms such as dynamic weight-
ing [Pohl, 1973] and A; [Pearl, 1984]. Unfortunately,
heuristics that are both admissible and effective (accu-
rate and cheap to compute) often take years for people
to discover. For example, although the Traveling Sales-
person problem was introduced in mathematical circles
as early as 1931 [Lawler and Lenstra, 1984], it was not
until 1971 that the Minimal Spanning Tree heuristic for
it was discovered. The ultimate goal of this research
is to develop a system for discovering effective admis-
sible heuristics automatically, thereby shifting some of
the burden of discovery from humans to machines. This
paper describes and evaluates an implemented program
(Absolver Il) that can tractably discover effective admis-
sible heuristics.

Previous proposed, but unimplemented methods to

720 Learning and Knowledge Acquisition

generate admissible heuristics for a problem involve find-
ing the length of a shortest path solution to transformed
version of the problem; the length is the admissible
heuristic. The transformations include edge supergraphs
[Guida and Somalvico, 1979; Gaschnig, 1979], opera-
tor precondition dropping [Pearl, 1984], and homomor-
phisms [Kibler, 1985]. Analytic results show that for
such heuristics to be effective, the transformed prob-
lems that generate them should be easier to solve and
close to the original problem [Valtorta, 1984; Mostow
and Prieditis, 1989]. One suggested way to make a trans-
formed problem easier to solve is to factor it into in-
dependently solvable subproblems when possible [Pearl,
1984]. The only implemented program to generate ad-
missible heuristics by searching for easy-to-solve trans-
formed problems (Absolver |) uses an exhaustive gen-
erator [Mostow and Prieditis, 1989]. Because the space
of transformed problems is generally too large to search
exhaustively, a smarter method of search control is re-
quired.

This paper extends previous work in three ways. First,
it extends and unifies previous definitions of transfor-
mations that generate admissible heuristics (Section 2).
Second, it extends Absolver I's transformation catalogs
(Section 3). Finally and most important, it describes
and evaluates a new search control mechanism as imple-
mented in Absolver Il (Sections 4 and 5).

2 Abstracting Transformations

Intuitively, an abstracting transformation removes de-
tails. To formalize this intuitive definition requires a few
preliminary definitions. Let a state space search prob-
lem be a 3-tuple <S,c,P>, where S is a set of states
describing situations of the world; c: SxS--> R isa
total positive cost function that returns the length of
a directed arc from one state to another; and P is a
predicate that characterizes a class of goal states. For
example, in the Eight Puzzle problem, the set of states
consists of all tile permutations; the cost function on a
pair of states returns 1 if one state is reachable from the
other by swapping the blank with an adjacent tile, and
oo otherwise. A goal predicate might specify that the
tiles are to be in a particular order. Problem solving
involves finding a finite sequence of states leading from
the initial state to a state that satisfies the goal predi-

cate. The cost function can be specified explicitly with
a matrix or implicitly, relative to a set of parameterized
actions called operators. Similarly, the goal predicate
can be specified explicitly by enumerating all goal states
or implicitly, relative to a goal statement that defines a
class of states.

A function ¢ : 5 — S in abstracling from problem
<8,¢, P> to problem <« 5, ¢/, P’ > iff for all a,t € S:

1. ¢ is tolal @(s) €S’

s RoRTeaETeg a5 Teduces otk S L8l (B S Himd
<8, ¢, P >sicrvempaonlsd Piajirst R ¢{m)ting the state and
then finding a shortest path solution in the abstracted
problem <« 8, ¢’,P'> (e.g. with A*. The length of that
shortest path solution is the admissible heuristic." For
example, if the requirement that the adjacent location
need be blank is dropped from moves in the Eight Puz-
zle problem, then moves in the abstracted problem will
result in states where tiles are superimposed. The length
of a shortest path solution in this transformed space is
therefore an admissible heuristic for the original prob-
lem. In fact, this length is the Manhattan Distance over
summed all tiles (i.e. the rectilinear distance to each
tile's goal destination).

(Abstracted Problem

e

®

Original Problem

Figure 1: How a Heuristic is Computed in Our Model

Our definition of abstraction is sufficiently general
to cover edge supergraph transformations, precondition
dropping transformations, homomorphisms, and other
admissible-heuristic-generating transformations not cov-
ered by these (e.g. subgoal dropping).

3 Extended Transformation Catalogs

Table 1 shows Absolver IPs catalog of abstracting trans-
formations, which operate on the same STRIPS-style
problem representation [Fikes et al, 1972] of Absolver I.
Each transformation has been proved to be abstracting
[Prieditis, 1990], thereby guaranteeing that all heuris-
tics generated from the catalog are indeed admissible.
Since using breadth-first search to compute a heuristic

1Admissibi|ity, composability, partial ordering, and other
results are proved in [Prieditis, 1990].

generated from an abstracted problem is generally too
expensive, we have implemented a catalog of speedup
transformations (shown in Table 2 and henceforth called
speedups), each of which has been proved to preserve ad-
missibility [Prieditis, 1990].

Type Numa Engliah Faraphrass
Information | drop.pre(p,0) | drop precondition p of op o
Dropping drop-goal{p) drop p {rom goal
drop(g) drop p everywhere
Mapping conntfp) replace p by number of p(x)
parity(i) replace i'" integer by ita parity
Compo- sutu(i,j) replace two integers by their sum
sition bagsumii))" replace two Lags by their union
Table 1: Our Current Catalog of Abstracting Transfor-

mations (* = new)

ame English Paraphrase
move remove an operator that applies less often and

Subsumed*® reaults in the snme atate as another operator
'_“emon remove an operator that cannot
Irrelevant® be on a shortest solution path
Factor lactor a problem intn
independent sub:problems
Finite mcramentilly update the heurstic
Differencing” as a result of a base-level mave

store the distance from goal
o every reachiable state

Precompute
Loukup Table®

ollapue to collapac non-branching search te
Closed Form cloacd form of shortest path length
Table 2: Our Current Catalog of Speedup Transforma-

tions (* = new)

For example, after applying drop(Blank) in the Eight
Puzzle, the resulting abstracted problem can be factored
into a set ofindependently solvable problems; then finite
differencing can be applied to recompute only that fac-
tor's heuristic that requires updating after each move
in the original space; and finally, a lookup table can be
precompiled for each factor. For n x n puzzles, the
complexity reduction is as follows (original problem is
leftmost):

fimite
O(at) lh.l-lal"nﬂ 0{‘3-3_2} l'g;l’ol Oll'] dile;:;ciag 0[12) plec::pule o)

Figure 2 summarizes our model for discovering ad-
missible heuristics. An abstracted version of the orig-
inal problem is sped up and then used as an admissi-
ble heuristic for all problem instances (problem + initial
state). Notice that the effort to discover a heuristic for
a problem is amortized over all instances of a problem
because the derived heuristic is not instance-specific.

4 Absolver Il

Absolver |l uses a table (Table 3) of plausible abstracting
transformations for each implemented speedup to iden-
tify and eliminate obstacles to applying speedups.2 An
"x" in a particular row/column entry of this table means
that the row's abstracting transformation is likely to lead
to satisfying the column's speedup transformation, given

our experience in applying the model by hand.

2Finite Differencing is not shown because it is implicitly
part of Factor; Precompute is not shown because it depends
on hard-to-predict information such as search space size.

Prieditis 721

Problem
[Abstract o —- Ahc'rm::n

il

Speed Up —— Speedup

Catalog
Admissible Heuristic
Problem Search Problem
— ——
Instance Algorithm Solution
{Problem + Initial State)

Figure 2: Our Model for Discovering Admissible Heuris-
tics

Spesdup Transiormation
ABatraction | fnctor F&mou TRemove Collapse to
Subsumed | Irrelevant | Closed Form
rop-pre(p.c) x X
drop_gonl{p) X x
rop{p x X
suinf,j) X x
agsum(i,j) x x
count(p) X x
parity(i) X

Table 3: Plausible Abstractions for Each Speedup Trans-
formation

Using this table, Absolver Il outputs the first heuristic
it finds, which it assumes to be the best one, subject
to the following evaluation criteria implicit in its search
mechanism:

* The less information dropped to derive the heuristic
the better (e.g. drop fewer preconditions).

* A heuristic must be derived from an abstracted
problem that can be sped up. To avoid generat-
ing useless heuristics, Absolver Il incorporates nec-
essary conditions for speedup into its generator of
abstractions.

Absolver Il is actually comprised of three subprograms:
Composer, Dropper, and Summarizer. Using several
meta-heuristics, Composer searches through the space
of composition abstractions (e.g. sum) for those abstrac-
tions that lead to the removal of subsumed operators.
Dropper attempts to factor a problem into independent
subproblems by applying drop-pre and drop-goal (ir-
relevant operators are implicitly removed; drop is mod-
eled in terms of these two transformations). Dropper
first builds a set of preconditions and subgoals to drop
that are sufficient to make a pair of subgoals indepen-
dent. Next, using several meta-heuristics and a standard
search algorithm for combining these drops, it tries to
find a minimal set of drops that allows factoring. Sum-
marizer attempts to obtain a problem in which subsumed
operators can be removed by applying count (to every
predicate). Failing that, Summarizer applies parity (to
every integer) in an attempt to obtain a problem in which

722 Learning and Knowledge Acquisition

subsumed operators can be removed.®

Absolver IPs overall search strategy is as follows.
First, it calls Composer. |If Composer fails to find a
problem in which a certain percentage of subsumed op-
erators can be collapsed, then Absolver Il calls Dropper.
If Dropper cannot factor the problem into two or more
independent subproblems, then Absolver Il calls Sum-
marizer as a last resort. After Absolver |l succeeds in
applying a speedup transformation within either Com-
poser, Dropper, or Summarizer, it calls itself recursively
on the resulting problem, thus resulting in a hierarchy
of abstractions, which generates a hierarchy of heuris-
tics, each of which is used to more efficiently compute
heuristics lower in the hierarchy. The rest of this section
describes Composer and Dropper; Summarizer is not de-
scribed since it is relatively straightforward.

4.1 Composer: The Search for Subsumability

Composer's goal is to find an abstracted problem in
which subsumed operators can be removed. It tries
to reach this goal by searching through the space of
pair-wise compositions with a standard hill-climbing al-
gorithm and a meta-heuristic in the form of a "simi-
larity" coefficient on each candidate composition. The
similarity coefficient returns the number of pairs of op-
erators in which the composition results in the same
value. The larger the similarity coefficient, the more
likely that a particular composition will lead to operator
subsumption. Composer applies the similarity coefficient
to each pair-wise candidate composition and then pro-
ceeds in the direction of that pair-wise composition with
the largest similarity coefficient (ties are broken arbitrar-
iy)-

When the number of uninstantiated operators after
subsumed operators are removed is 75% of the number
of original operators, Composer calls itself recursively to
build a hierarchy of heuristics. The 75% value, which we
chose initially and have not had to change, is a rough
indicator that the branching factor of the abstracted
problem is sufficiently reduced such that search will be
cheaper than in the original space, but not reduced so
much that inaccurate though cheap-to-compute heuris-
tics result.

For example, in the Fool's Disk problem (shown in
Figure 3), where the object is to rotate each of the con-
centric disks until the numbers on each radius (labeled
ri-rs) sum to 12, Composer generates the hierarchy of
problems shown in Figure 4, each of which generates an
admissible heuristic.

The Diameters problem is a transformation of the orig-
inal Fool's Disk problem where the following pairs of
radii are summed using the sum transformation: ry and
rs. r; and rg, rz and r7;, and ry, and rg. The Perpen-
dicular Diameters problem is a transformation of the
Diameters problem where perpendicular diameters are
summed. For example, in the Perpendicular Diameters
problem, the composite ry and rs is summed with the
composite r3 and r;. The AIl Numbers problem is a
transformation of the Perpendicular Diameters problem:

3Current|y, Absolver |l collapses problems to closed form
only opportunistically.

Figure 3: The Fool's Disk Problem

AN Numbars
Problem
{& Oparators)

[

Porpendicular Diawwiors
Froblam
(8 Opursiors)

waer af 8 houristic

I Diamelers Problem
{14 Operators}

MARE ms & hemristic

Urlgtnsd Poo's Disk Probiem
{32 Oparators)

Figure 4: The Hierarchy of Discovered Heuristics for the
Fool's Disk Problem

all the numbers are summed. To compute, for exam-
ple, the Diameters problem heuristic for any state in the
original Fool's Disk problem, the state is abstracted (by
summing opposite radii) and then the search algorithm
(e.g. A¥) is called recursively with the Diameters prob-
lem and the abstracted state. If this heuristic returns oo
for a state at any level of abstraction, then the state can
be pruned. In sum, to prune states that cannot reach
the goal, the original Fool's Disk relies on the Diameters
problem, which in turn relies on the Perpendicular Di-
ameters problem, which finally relies on the All Numbers
problem.*

The complexity of Composer is dominated by the com-
plexity of computing the similarity coefficient, whose
complexity is O(mz) for m operators. For each non-
recursive call of Composer, the similarity coefficient will
be computed n{n — 1)/2 times for n integers since only
integer pairs (or bagsj are processed. Thus the total
complexity of Composer is O(mgns) since Composer will
call itself recursively at most 0(n) times.

4.2 Dropper: The Search for Factorability

Dropper is actually composed of two subprograms: Pair-
wise and Combine. Over each pair of subgoals, Pairwise
finds a set of precondition and subgoal drops sufficient

*These admissible heuristics are not to be confused with
the Fool's Disk problem-solving strategy described in [Ernst
and Goldstein, 1982].

to make the pair of subgoals independent. For exam-
ple, Figure 5 shows that given a subgoal At(l,A) and
a subgoal At(2,B) in the Eight Puzzle, an operator of
the form Move(1,-,A) directly adds At(l ,A) and an op-
erator of the form Move(2,-,B) directly adds At(2,B).
Since Moved,.,A) places the blank in some location
(possibly location B) and Move(2,_,B) places the blank
in some location (possibly location A), these operators
might interact through Blank of both operator's pre-
conditions. Dropping Blank from the precondition of
the Move operator eliminates this interaction. To test
if the entire goal is factorable into at least two parts,
the drop sets from each pair of subgoals must be com-
bined somehow. Combine uses an iterative deepening
search algorithm with the meta-heuristic of focusing on
the most frequently occurring drops first. This search
algorithm tends to minimize the number of drops to ob-
tain a problem that can be factored into two or more
subproblems. In our Eight Puzzle example, which only

Mava(ia B

Pre; {ANZ,x), AdHa, A yRisnk{B]
Delz {AK2,2), Mank(B]]

A (a2 k()

Prat {Al(1,z), AL
Del: (A K120, Bimni{a)}

Mova(iz A)
Add: [ALA) I

AL AY AVLE)

Figure 5: Dropping the Blank Enables Factoring (Ar-
rows are Potential Interactions)

has a single drop set (dropping Blank from the operator
and the goal), Combine converges to a factorable set af-
ter one iteration. Combine is then called recursively on
each of the factors. It then terminates successfully since
no other factorings can be obtained within each factor
and produces the AND tree of factors shown in Figure
6, which is used to compute the Manhattan Distance
heuristic.

The 1 Furior T T4 Pasber Thls &s Facler
Mam{taz} Maw{1a.s} Maveibnr)
Pro: (AL} AaKE)} + Frut { AN} AR F— Fre; | Ad(BlAdiin gl
Dz {As(1,2)} Da: { AT)} Dol fAS{8a)}
Al (AM01,YH Add: (AT,)} Add: {ALBYY

Gond: { ANE A Cooak: |ASHE); Gaak | AR}

Mawdtar)

Pre: | st) Ay Pumkr))
Dall: {AN14) Masbir))

A fALT

Dok { AA(LA)AKE)y AL LI and (X))

Figure 6: Independently Solvable Factors Used to Com-
pute Manhattan Distance

The complexity of Dropper is dominated by Pairwise,

Priedttis 723

which constructs a transitive closure of the set of op-
erators that can possibly lead to achieving a goal. The
worst-case complexity of constructing this transitive clo-
sure is O(b:‘), where by, is the backward branching factor
(the average number of operator instances that adds a
given predicate) and d, is the backward depth (the length
of the longest chain of operators in the set of relevant
operators for a given subgoal). That is, the number of
preconditions that Pairwise examines is proportional to
the number of paths from a subgoal to each operator in
the chain.

5 Experimental Results

Table 4 presents the results of applying Absolver Il to
several well-defined search domains, each of which is suf-
ficiently complex to require heuristics. The table lists the
domain, the name of the heuristic, and the percentage
of the space that was explored (to two significant dig-
its). The percentage is computed by dividing the num-
ber of heuristics generated before the named one was
found by the number of abstractions with respect to our
catalog of abstracting transformations and multiplying
by 100.° The space size is a conservative estimate in
that it includes only those abstractions that Absolver Il
actually used. For example, the space size for deriving
the Manhattan Distance is 4096, since Absolver Il only
drops operator preconditions and subgoals to derive the
heuristic and there are 9 subgoals and 3 preconditions
(2°+® = 4096). Since integers are not part of the prob-
lem specification for the Eight Puzzle, Absolver |l does
not apply transformations such as sum. In contrast, to
derive the Fool's Disk heuristic, Absolver Il only applies
sum (to the 8 radii) and not other transformations; it
therefore searches a space of size 2% (= 256).

The results of this table can be summarized as follows.
Absolver |l discovered effective admissible heuristics in 6
out of the 13 domains by exploring only a fraction of the
space of heuristics derivable by the abstracting transfor-
mations in our catalog. Absolver Il discovered 8 novel
heuristics, 5 of which turned out to be effective. The
novel effective heuristics include the first known (non-
trivial) admissible heuristic for the 3 x 3 x 3 Rubik's
Cube (partially precomputed Center-Corner), which re-
sulted in roughly 8 orders of magnitude speedup with A*
over blind search for long solutions; the best admissible
heuristic for the Eight Puzzle (precomputed X-Y), which
expanded 1.8 times fewer states than the Linear Con-
flict heuristic [Hansson et a/., 1989], an adjusted more
informed version of the Manhattan Distance heuristic; a
heuristic in the Rooms World problem (search-computed
Box Distance), which counts the minimum number of
rooms each box must pass through to reach its goal des-
tination and which expanded 267 times fewer states than
blind search; the Diameters Fool's Disk heuristic, which
expanded 45.41 times fewer states than blind search; and
an Instance Insanity heuristic, which is analogous to the
Diameter's heuristic in that opposite side colors are corn-

®Problem formulations, methods for choosing good formu-
lations, derivations, and performance of the resulting heuris-
tics are detailed in [Prieditis, 1990].

724 Learning and Knowledge Acquisition

Domain Heuristic % Space
Explored

[Eight Manhattan Distance™ | .0024
Pugzzle X-Y'r 000045

TSP Unvisited Cities 78
Towers of # Misplaced Diska KiCTEY]
Hanai
Mutilated Colored Squares”™ 25
Checkerboard
2.D Unvisited 0097
Routing Si&nals'
Rubik's Center- 10~1"°
Cube Corner*t

o
Fool’s Disk Diameters*” 2.7
Inatant Nearly Opposite 18
Insanity Sides*t
Think-A-Dot | Dropped Gates® 2.7 % 10™°
Rooms World | Box Distance™ 25
Blocks World | # Misplaced Blocks .0025

[Eight Queens | # Unplaced Queens 2
Uniprocessor | Unassigned 8.7 x 10"
Scheduling Jobs*

Table 4: Table of Admissible Heuristics Discovered by

Absolver Il (* = novel; + = effective)

bined and which expanded 2.61 times fewer states than
blind search.

Absolver |l derived several known admissible heuris-
tics including the Manhattan Distance heuristic of the
Eight Puzzle (using a different formulation than for the
X-Y heuristic), the Number of Misplaced Disks heuris-
tic of the Towers of Hanoi, the Mutilated Checkerboard
heuristic, and the Number of Misplaced Blocks heuris-
tic. All except the Manhattan Distance heuristic were
of the same complexity as the originals—the Manhattan
Distance heuristic is slower by O(n) for n x n puzzles
because the derived heuristic uses search to compute the
number of moves needed to get each tile from its current
location to its goal location.®

Absolver Il derived several inferior heuristics. In the
2-D Routing domain, Absolver Il derived the "Unvisited
Signals" heuristic, which returns a count of the number
of non-reached signal locations, instead of the more in-
formed Steiner Tree heuristic, which returns the length
of a minimum rectilinear spanning tree and which we
derived by hand [Prieditis, 1990], because it dropped a
relation that was too salient for the problem. In the
Traveling Salesperson Problem, Absolver Il derived the
"Unvisited Cities* heuristic, which computes the sum
of the least cost edges leading to an unvisited city over
all unvisited cities, instead of the more informed Mini-
mal Spanning Tree heuristic, which we derived by hand
[Prieditis, 1990], because we have not implemented the
speedup required to derive the Minimal Spanning Tree
heuristic.

Absolver Il failed to find an effective admissible heuris-
tic for the Think-A-Dot, Eight Queens, and Scheduling
problems for the same reason we failed to find one by

®Assuming finite differencing and ignoring a one time
0(n*) initial computation.

hand [Prieditis, 1990]: all abstractions that could be
sped up removed too many important details and there-
fore resulted in relatively uninformed heuristics. For ex-
ample, to obtain the factorable abstracted problem that
results in the Unassigned Jobs heuristic for the Schedul-
ing domain, the time and seriality constraints must be
dropped. The resulting heuristic, which returns the min-
imum costs of unassigned jobs, is poorly informed. Our
approach to discovering admissible heuristics appears to
be unsuitable when the original problem is characterized
by high goal or operator "interference" (many operators
directly change a large proportion of subgoals in the orig-
inal problem or make a large proportion of operators
subsequently inapplicable) and all abstracted problems
are characterized by low goal or operator "interference"
(few operators directly change a large proportion of sub-
goals or make operators inapplicable). Of course, it may
be that to derive effective admissible heuristics for such
domains requires abstractions and speedups beyond our
model or that we were not able to find a "good" formu-
lation in which to derive heuristics.

6 Conclusions and Future Work

Absolver Il tractably discovered many known admissi-
ble heuristics (though with varying efficiency relative to
the original versions) and some novel effective admis-
sible heuristics by using a means-ends analysis search
strategy. Some of these heuristics were still effective
even though they are computed by search. Such search-
computed heuristics might be important in domains
where effective closed-form heuristics cannot be found
(e.g. Rooms World).

As Absolver Il is an experimental system, it has sev-
eral shortcomings, each of which suggests interesting di-
rections for future research. First, because it sometimes
drops salient relations of a problem, it might be enhanced
by a theory that links information loss via abstraction to
accuracy of the resulting heuristics. This theory might
allow Absolver Il to predict the effectiveness of heuristics
without testing them, which is currently left up to the
user. Second, non-abstracting transformations might be
required to derive effective heuristics in certain domains
(e.g. Eight-Queens). Third, Absolver Il might be able
to boost the informedness of certain admissible heuris-
tics by taking into account interactions in the base level
between independently solvable factored subproblerns in
the abstract level. For example, the LC heuristic might
be derivable by incrementing the Manhattan Distance
heuristic by 1 for each base-level interaction found be-
tween independent factors with only one shortest path
solution. Finally, Absolver Il sometimes derives infe-
rior heuristics because it overestimates the number of
relations to drop to remove interactions; examples could
help it focus on those interactions that actually occur.
For example, Absolver Il could assume (at the cost of
admissibility) that a problem is factorable until an in-
teraction is detected among its factors when computing
a heuristic for a particular problem instance. Once such
an interaction is detected, its cause could be located and
eliminated by abstraction.

Despite its shortcomings,

Absolver Il concretely

demonstrates that effective admissible heuristics can be
tractably discovered by a machine.

Acknowledgements

Thanks go to Jack Mostow, Tom Mitchell, Alex
Borgida, Saul Amarel, Haym Hirsh, Christina Chang,
Mukesh Dalai, Sridhar Mahadcvan, and Prasad Tade-
palli. Thanks also go to Rich Cooperman for testing the
Rubik's Cube heuristics and to Rich Korf for supplying
the IDA* program used to collect data for the Manhat-
tan Distance heuristic.

References

[Ernst and Goldstein, 1982] G. Ernst and M. Goldstein. Me-
chanical discovery of classes of problem-solving strategies.
J A CM, 29(1):1 23, 1982.

[Fikes et al, 1972] R. Fikes, P. Hart, and N. J. Nilsson.
Learning and executing generalized robot plans. Artifi-
cial Intelligence, 3(4):251-288, 1972. Also in Readings in
Artificial Intelligence, Webber, B. L. and Nilsson, N. J.,

(Eds.).
[Gaschnig, 1979] J. Gaschnig. A problem-similarity ap-
proach to devising heuristics. In Proceedings IJCAI-6,

pages 301 307, Tokyo, Japan, 1979. International Joint
Conferences on Artificial Intelligence.

[Guida and Somalvico, 1979] G. Guida and M. Somalvico. A
method for computing heuristics in problem solving. In-
formation Sciences, 19:251 259, 1979.

[Hansson et al., 1989] O. Hansson, A. Mayer, and M. Yung.
Criticizing solutions to relaxed models yields powerful ad-
missible heuristics, 1989. Unpublished document: for-
warded by the authors.

[Kibler, 1985] D. Kibler. Natural generation of heuristics by
transforming the problem representation. Technical Re-
port TR-85-20, Computer Science Department, UC-Irvine,
1985.

[Lawler and Lenstra, 1984] E. Lawler and L. Lenstra. The
Traveling Salesman Problem. John Wiley and Sons, New
York, 1984.

[Mostow and Prieditis, 1989] J. Mostow and A. Prieditis.
Discovering admissible heuristics by abstracting and op-
timizing. In Proceedings [ICAI-11, Detroit, MI, August
1989. International Joint Conferences on Artificial Intelli-
gence.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strate-
gies for Computer Problem-Solving. Addison-Wesley,
Reading, MA, 1984.

[Pohl, 1973] |. Pohl. The avoidance of (relative) catastro-

phe, heuristic competence, genuine dynamic weighting and
computational issues in heuristic problem solving. In
Proceedings IJCAI-3, pages 20-23, Stanford, CA, August
1973. International Joint Conferences on Artificial Intelli-
gence.

[Prieditis, 1990] A. Prieditis. Discovering Effective Admissi-

ble Heuristics by Abstraction and Speedup: A Transforma-
tional Approach. PhD thesis, Rutgers University, 1990.

[Valtorta, 1984] M. Valtorta. A result on the computational
complexity of heuristic estimates for the A* algorithm. In-
formation Sciences, 34:47-59, 1984.

Prieditis 725

