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Abs t rac t 

A recent system, FOIL , constructs Horn clause 
programs from numerous examples. Compu­
tational efficiency is achieved by using greedy 
search guided by an information-based heuris-
tic. Greedy search tends to be myopic but de­
terminate terms, an adaptation of an idea in­
troduced by another new system (GOLEM) , 
has been found to provide many of the bene-
fits of lookahead without substantial increases 
in computation. This paper sketches key ideas 
from FOIL and GOLEM and discusses the use 
of determinate literals in a greedy search con­
text. The efficacy of this approach is illus­
trated on the task of learning the quicksort 
procedure and other small but non-trivial list-
manipulation functions. 

1 I n t r o d u c t i o n 

The learning task of discovering Horn clause programs 
from examples has been studied for some t ime, with 
important contributions from Plotkin [1971], Shapiro 
[1983], Sanimut and Banerji [1986], Muggleton [1987], 
Buntine [1988], and Muggleton and Buntine [1988]. As 
Mitchell [1979] points out, all inductive learning requires 
search of a space of possible hypotheses. Even though 
Horn clause programs are a restricted class of first-order 
formalisms, the hypothesis space is so large that such 
learning programs often required carefully selected ex­
amples and/or hints of one kind or another in order to 
discover useful programs in a reasonable t ime. 

Recent papers [Quinlan, 1990a, 1990b] introduce a 
new system, FOIL , that adapts ideas from attr ibute-
value learning to this task. Specifically, FOIL exploits 
information from large numbers of examples to guide 
the search for a program. Such guidance turns out to be 
so effective that greedy search is usually adequate, per­
mit t ing common benchmark problems to be solved very 
quickly. [Quinlan, 1990a] contains examples drawn from 
six task domains studied previously by Machine Learn­
ing researchers, all of which FOIL handles competently. 
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Algorithms using greedy search, however, tend to suf­
fer from a horizon effect an action that may prove to 
be desirable or even essential from a global perspective 
may appear relatively unpromising at a local level and 
so may be passed over. As a result, even though the 
original FOIL (FOIL.0) performs well on common tasks, 
there are some programs that it wil l not discover. 

An even more recent system, GOLEM [Muggleton and 
Feng, 1990], takes a very different approach to this same 
learning task. Using Plotkin's concept of generalisation 
lattices, GOLEM generates clauses as the least general 
generalisation of two examples in the context of available 
background knowledge. These generalised clauses can be 
unmanageably large and, to restrain their size, GOLEM 
considers only clauses in which all terms are determinate 
in the sense that there is only one binding possible for ex-
istentially quantified variables. Wi th this restriction on 
what can be learned, GOLEM solves some very difficult 
tasks involving complex clauses and numerous examples 
and, like FOIL, does so very efficiently. 

This paper concerns an adaptation of Muggleton's 
determinate terms, called determinate literals. Rather 
than restricting the search space, and thus the class of 
learnable programs, FOIL exploits the idea of determin­
ism to overcome some of the horizon effect of greedy 
search. The effect on learning time is usually negligible 
- in fact, some learning problems are now solved more 
quickly than before. 

After an abbreviated description of some key ideas un­
derlying FOIL and G O L E M , the paper describes deter­
minate literals and their use in a greedy search context. 
The usefulness of these determinate literals is i l lustrated 
on the task of learning the quicksort procedure and other 
small l ist-manipulation programs. 

2 F O I L 

FOIL's input consists of information about one or more 
relations, one of which (the target relation) is to be de­
fined by a Horn clause program. For each relation we are 
given a set of tuples of constants that are in the relation. 
For the target relation we might also be given tuples 
that are known not to belong to the relation; alterna­
tively, the closed world assumption may be invoked to 
state that no tuples, other than those specified, belong 
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to the target relation. Tuples belonging to the target 
relation are labeled those not belonging to it The 
learning task is then to find a set of clauses for the tar­
get relation that account for all the tuples while not 
covering any of the tuples.  

This description is somewhat over-simplified. In many 
real-world situations, noise in the data prevents learning 
exact, complete definitions of this form. To get around 
this problem, FOIL uses encoding-length heuristics to 
l imi t the complexity of clauses and programs; the under­
lying idea is that the number of bits required to represent 
a clause should be less than the number of bits required 
to represent the tuples it covers. The final clauses may 
cover most (rather than all) of the tuples while cover­
ing few (rather than none) of the tuples. See [Quinlan, 
1990a] for details. 

The basic approach used by FOIL is an AQ-like cover­
ing algorithm [Michalski, 1980]. We start wi th a training 
set containing all and tuples, construct a function-
free Horn clause to 'explain7 some of the 0 tuples, remove 
the covered 0 tuples from the training set, and continue 
wi th the search for the next clause. 

This paper focuses on the construction of a single 
clause. FOIL starts wi th the left-hand side and extends 
the clause by adding literals to the right-hand side, stop­
ping when no tuples are covered by the clause (or when 
encoding-length heuristics decide that the clause is too 
complex). Although FOIL incorporates a simple backup 
mechanism, the clause-building process is essentially a 
greedy search; once a literal is added to a clause, alter­
native literals are usually not investigated. We look now 
at how this l iteral is chosen at each step. 

Consider the partially developed clause 

containing variables Each tuple in the 
training set T looks like for some constants 
{c , } , and represents a ground instance of the variables 
in A. Now, consider what happens when a literal Lm of 
the form  

is added to the right-hand side of A giving a new clause 
A'. If the l iteral contains one or more new variables, the 
arity of the new training set wil l increase; let x' denote 
the number of variables in A'. Then, each tuple in the 
new training set T1 wi l l be of the form (d1, d2 • • •, dx') for 
constants {cf,}, and wi l l have the following properties: 

• {di1, d2l ..., dx) is a tuple in T, and 
• (di11d i2 . . . ,d i p) is in the relation P. 

That is, each tuple in T' is an extension of one of the 
tuples in T, and the ground instance that it represents 
satisfies the literal- Every tuple in T thus gives rise to 
zero or more tuples in T", the or labels of the new 
tuples being the same as their respective ancestors. 

Let denote the number of O tuples in T, and sim­
ilarly for The effect of adding a l iteral Lm can be 
assessed from an information perspective as follows. The 
information conveyed by the knowledge that a tuple in 
T is is given by 

and similarly for If is less than I(T) we 
have 'gained1 information by adding the lit .eral Lin to 
the clause and, if s of the tuples in T have extensions in 
T', the total information gained about the O tuples in 
T is 

FOIL explores the space of possible literals that might 
be added to a clause at each step, looking for the one 
with greatest positive gain. The form of the gain allows 
significant pruning of the literal space, so that FOIL can 
usually rule out large subspaces without having to ex­
amine any literals in them. 

FOIL thus tames the hypothesis space problem by 
a stepwise greedy search for clauses. However, some 
clauses in reasonable definitions wil l inevitably contain 
literals wi th zero (or negative) gain. Suppose, for in­
stance, that all objects have a value for some property 
Q, and the literal Q(X,Y) defines the value Y for object 
A. Since this literal represents a one-to-one mapping 
from X to Y, each tuple in T wil l give rise to exactly 
one tuple in T' and so the literal's gain wil l always be 
zero. To permit such literals to appear in clauses, FOIL 
ascribes a small positive gain to any literal that intro-
duces a new variable. This has the effect of widening 
the search space for the next literal - there wil l be more 
possible combinations of arguments for the literal - but 
also can cause a blow-out in the size of the training set 
of tuples. Worse, since there are usually many literals 
that would introduce new variables, the choice of one of 
them is necessarily arbitrary. 

3 G O L E M and De te rm ina te Terms 

G O L E M uses the same information as FOIL, namely 
constant tuples that belong to one or more relations, 
but regards each tuple as a ground assertion. If a tuple 

is a member of relation R, this is equivalent 
to the ground assertion  

Let e1 and e2 be two terms. Plotkin's least general 
generalisation of e1 and e2, denoted lgg(e1,e2), is defined 
as follows [Muggleton and Feng, 1990]: 

Now, suppose we have two ground examples of the 
target relation, R(c1, c2, .., cn) and R(d\y d2)..., dn), say, 
and a number of other relations representing background 
knowledge. The least general generalisation of these two 
examples relative to the background knowledge, the ?rl-
ativc least general generalisation (rlgg), is a clause 
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for every pair x1, x2 of ground assertions taken from each 
relation. The right-hand side of this clause is equivalent 
to true if the examples cannot be covered by a single 
clause, or, if they can, consists of a (usually very large) 
number of literals. The basic operation of GOLEM can 
be thought of as choosing a pair of examples in the target 
relation and forming their rlgg, successively expanding 
the right-hand side unti l the clause covers only positive 
examples of the target relation. If the resulting clause is 
not vacuous it is refined by removing unnecessary literals 
and added to the developing program in a manner similar 
to FOIL . 

Consider now the clause 

and suppose t is a term in Lm. Denote by {Y} the set 
of variables that occur only in t and by {Z} the other 
variables in the clause. Term t is determinate wrt Lm 
if, for every ground substitution for variables in {Z}, 
there is at most one ground substitution for variables 
in {Y) so that the clause is satisfied. Intuitively, the 
values of variables in {Y} are determined by the values 
of variables that appear earlier in the clause. 

G O L E M uses this idea to eliminate most literals that 
might be added to the right-hand side of a clause by in-
sisting that, in a new l i teral, every term containing a new 
variable must be determinate wrt that literal. Although 
this rules out some potential clauses, the reduction in 
the number of literals in the rlgg of two examples is so 
substantial that rlgg's can be constructed feasibly and 
efficiently. 

4 De te rm ina te L i tera ls 

The key idea in determinate terms is that new variables 
have a value forced by previous variables. Determinate 
literals employ the same intui t ion, but also insist on com­
prehensive coverage of the O tuples in the current train­
ing set. 

Suppose that we have an incomplete clause 

wi th an associated training set T as before. A literal 'Lm 
is determinate with respect to this partial clause if Lm 
contains new variables and there is exactly one extension 
of each O tuple in T, and no more than one extension of 
each 0 tuple, that satisfies Lm. The idea is that, if Lm 
is added to the clause, no tuple wil l be eliminated and 
the new training set T' wi l l be no bigger than T. 

FOIL notes determinate literals found while exploring 
possible literals to add to the clause. The maximum pos­
sible gain is given by a literal that excludes all tuples 
and no tuples; in the notation used before, this gain is 

Unless a literal is found whose gain is close to 
the maximum possible gain, FOIL adds all 

determinate literals to the clause and tries again. This 
may seem rather extravagant, since it is unlikely that all 
such literals wi l l be useful. However, FOIL incorporates 
clause-refining mechanisms that remove unnecessary l i t­
erals as each clause is completed, so there is no ult imate 

penalty for this all-in approach. Since no 0 tuples are 
eliminated and the training set does not grow, the only 
computational cost is associated with the introduction 
of new variables and the corresponding increase in the 
space of possible next literals. It is precisely the en­
largement of this space that the addition of determinate 
literals is intended to achieve. 

There is, of course, a potential runaway situation in 
which determinate literals found at one cycle give rise 
to further determinate literals at the next ad infinitum. 
To circumvent this problem, FOIL borrows another idea 
from G O L E M . The depth of a variable is determined by 
its first occurrence in the clause. A l l variables in the 
left-hand side of the clause have depth 0; a variable that 
first occurs in some literal has depth one greater than 
the greatest depth of any previously-occurring variable 
in that l i teral. By placing an upper l imit on the depth 
of any variable introduced by a determinate l i teral, we 
ensure that there are a finite number of them and so 
rule out indefinite runaway. This l imi t does reduce the 
class of learnable programs. However, the stringent re­
quirement that a determinate literal must be uniquely 
satisfied by all 0 tuples means that this runaway situa-
tion is very unlikely and FOIL's default depth l imi t (5) 
is hardly ever reached. 

5 An Examp le : Quicksor t 

One difficult task investigated by Muggieton is learn-
ing the quicksort procedure for sorting lists of numbers. 
There are six relations: 

sort(U,S) 
part i t ion(V,U,L,H) 

components(L,H ,T) 
append (A,B,C) 

nul l(L) 
el t(V) 

Following Muggleton, the examples provided for the sort 
relation cover all lists of length up to three containing 
non-repeated numbers in {0 ,1 ,2 } . There are 16 such 
lists, giving 16 O and 240 tuples. The other relations 
are defined over this same vocabulary. 

The definition found by FOIL in 10.3 seconds (on a 
DECstation 3100) is 

The first four literals of the second clause have negligible 
or zero gain. However, all these (and the f i f th literal) are 
determinate literals, as can be seen by observing that 
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Table 1: Results on Quicksort Experiments 

• in components (A, C,D), C and D are determined by 
A-

• in partition( C,D,E,F), E and F are determined by 
C and D; 

• in sort(E,G), E determines G\ 
• in sort(F,H), F determines H, 
• in append(G,l,B), I is determined by G and B. 

Consequently, all these are included in the develop­
ing clause. (Two further determinate literals, compo-
nents(B,X,Y) and sort(Y,Z), were also added as the 
search progressed, and were discarded as unnecessary 
when the clause was completed.) 

The effect of the determinate literals above is to intro-
duce new variables that possess a useful relationship to 
the variables A and B in the left-hand side of the clause. 
Only when these variables are in place can FOIL 'see' 
the importance of the last couple of literals. Wi thout 
determinate literals, FOIL does not discover the second 
recursive clause, but instead develops a swatch of less 
general clauses covering special cases (e.g., for lists of 
length one, for lists that are already sorted, and so on). 

To illustrate FOIL's computational economy, the ex-
periment was repeated using larger numbers of examples 
of the sort relation. Three additional data sets were de­
fined by increasing the allowable set of elements of a 
list and by increasing the maximum length of the lists. 
As Table 1 shows, there are more lists and much larger 
numbers of tuples in these training sets, with a corre­
sponding increase in the size of the other relations. The 
same definition for sort was found in each case and the 
time required grew approximately linearly with the size 
of the training set. On this task, FOIL does not suffer 
from a combinatorial increase in computation time as the 
number of training examples grows; the same finding has 
been made in other domains. 

6 Summary of Other Results 
FOIL has been applied to more than twenty tasks from 
ten domains ranging from learning approximate rules for 
a small chess task to discovering an unknown dealer's 
rule in Eleusis; several are discussed in [Quinlan, 1990a]. 

Here, we give results on several domains akin to quick­
sort, viz. that require the system to learn exact, recur­
sive definitions. Many of these datasets were provided by 
Stephen Muggleton. A brief description of each follows: 

• member, f ind whether a list or element is a mem­
ber of another list, given a few examples. Other 

relations were components and null. 

• append: find how to append one list to another. Ex­
amples covered all lists of length up to three wi th 
non-repeating elements drawn from {a, 6, c}; a sam­
ple of about, 10K negative examples was provided-
Other relations were components, null, list and re­
verse - note that the last two of these were not re­
quired for the definition of append. 

• reverse, find how to reverse a list. Examples were 
the same as for the append relation above. 

• combinations: find a recurrence relation for the 
number of combinations of r objects chosen from 
n, given all values wi th Other relations 
were multiply, zero and one. 

• multiply: find a recurrence relation for multiplica­
tion given the table of values up to 6x6. Other 
relations were predecessor, plus, zero and one. 

Results on these domains are presented in Table 2, 
first using determinate literals and then with this feature 
disabled. As before, times are for a DECstation 3100. 

In two cases when determinate literals were not used, 
the definitions found by FOIL were imperfect in that 
they did not cover the whole training set, or covered it 
in a non-general way. In reverse and multiply the learn­
ing time was actually reduced by the use of determinate 
literals. In the case of append, on the other hand, there 
was a three-fold increase in time required. As this last 
example represents the downside of using determinate 
literals, let us have a closer look at i t . 

Recall that the relations defined for append include 
the (unrelated) relation reverse. When determinate l i t­
erals are employed, the development of a clause for ap-
pend(A,B,C) immediately gives three determinate liter­
als: 

reverse (A,D) 
reverse(B,E) 
reverse (C,F) 

(since each argument has a unique reverse). Now, in­
stead of three bound variables, there are six! If we con­
tinue by examining possible literals based on the compo-
nents relation, wi th three arguments, there are 42 pos­
sible literals that need to be looked at. On the other 
hand, if the determinate (but unhelpful) literals are not 
added, there are only 12 components literals that must be 
assessed. A scale-up of the same kind occurs for other 
literals. Thus, while the search for clauses in the two 
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Table 2: Times for Other Domains ( ' - ' means imperfect definition) 

cases follows somewhat similar paths, the introduction 
of additional, red-herring variables by the determinate 
literals leads to more literal evaluations. The increased 
learning time is a direct result. 

In many cases, the use of determinate literals produces 
no noticeable effect on the time required to find a set of 
clauses, and only occasionally increases the time required 
to find a solution. On the other hand, the introduction 
of new variables can materially increase FOIL's abil ity 
to find a solution when long, recursive clauses must be 
generated. 

7 Conclusion 

This paper has presented some highlights of two new 
systems for learning Horn clause programs from exam­
ples. One of them, FOIL, uses a greedy search to ex­
plore the very large hypothesis spaces involved, while the 
other, G O L E M , employs an interesting semantic concept 
to l imit this space. 

An adaptation of this concept, determinate literals, 
has been shown to overcome some of the horizon prob­
lems associated wi th greedy search. The application of 
this idea does not appreciably l imit the class of programs 
that can be learned; instead, it has the effect of intro­
ducing a kind of low-cost lookahead in situations where 
there is not a very clear indication of what to do next. 

GOLEM and FOIL are both young systems that are 
sti l l evolving, so it is perhaps premature to compare 
them. However, informal trials have revealed a surpris­
ing degree of similarity in many of the solutions found 
by these systems and the computational effort required, 
despite the very different approaches that they embody. 
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