
Determinate Literals in Induct ive Logic Programming*

J . R. Qu in lan
Basser Department of Computer Science

University of Sydney
Sydney NSW Australia 2006

Abs t rac t

A recent system, FOIL , constructs Horn clause
programs from numerous examples. Compu­
tational efficiency is achieved by using greedy
search guided by an information-based heuris-
tic. Greedy search tends to be myopic but de­
terminate terms, an adaptation of an idea in­
troduced by another new system (GOLEM) ,
has been found to provide many of the bene-
fits of lookahead without substantial increases
in computation. This paper sketches key ideas
from FOIL and GOLEM and discusses the use
of determinate literals in a greedy search con­
text. The efficacy of this approach is illus­
trated on the task of learning the quicksort
procedure and other small but non-trivial list-
manipulation functions.

1 I n t r o d u c t i o n

The learning task of discovering Horn clause programs
from examples has been studied for some t ime, with
important contributions from Plotkin [1971], Shapiro
[1983], Sanimut and Banerji [1986], Muggleton [1987],
Buntine [1988], and Muggleton and Buntine [1988]. As
Mitchell [1979] points out, all inductive learning requires
search of a space of possible hypotheses. Even though
Horn clause programs are a restricted class of first-order
formalisms, the hypothesis space is so large that such
learning programs often required carefully selected ex­
amples and/or hints of one kind or another in order to
discover useful programs in a reasonable t ime.

Recent papers [Quinlan, 1990a, 1990b] introduce a
new system, FOIL , that adapts ideas from attr ibute-
value learning to this task. Specifically, FOIL exploits
information from large numbers of examples to guide
the search for a program. Such guidance turns out to be
so effective that greedy search is usually adequate, per­
mit t ing common benchmark problems to be solved very
quickly. [Quinlan, 1990a] contains examples drawn from
six task domains studied previously by Machine Learn­
ing researchers, all of which FOIL handles competently.

*The research reported here was supported by a grant
from the Australian Research Council.

Algorithms using greedy search, however, tend to suf­
fer from a horizon effect an action that may prove to
be desirable or even essential from a global perspective
may appear relatively unpromising at a local level and
so may be passed over. As a result, even though the
original FOIL (FOIL.0) performs well on common tasks,
there are some programs that it wil l not discover.

An even more recent system, GOLEM [Muggleton and
Feng, 1990], takes a very different approach to this same
learning task. Using Plotkin's concept of generalisation
lattices, GOLEM generates clauses as the least general
generalisation of two examples in the context of available
background knowledge. These generalised clauses can be
unmanageably large and, to restrain their size, GOLEM
considers only clauses in which all terms are determinate
in the sense that there is only one binding possible for ex-
istentially quantified variables. Wi th this restriction on
what can be learned, GOLEM solves some very difficult
tasks involving complex clauses and numerous examples
and, like FOIL, does so very efficiently.

This paper concerns an adaptation of Muggleton's
determinate terms, called determinate literals. Rather
than restricting the search space, and thus the class of
learnable programs, FOIL exploits the idea of determin­
ism to overcome some of the horizon effect of greedy
search. The effect on learning time is usually negligible
- in fact, some learning problems are now solved more
quickly than before.

After an abbreviated description of some key ideas un­
derlying FOIL and G O L E M , the paper describes deter­
minate literals and their use in a greedy search context.
The usefulness of these determinate literals is i l lustrated
on the task of learning the quicksort procedure and other
small l ist-manipulation programs.

2 F O I L

FOIL's input consists of information about one or more
relations, one of which (the target relation) is to be de­
fined by a Horn clause program. For each relation we are
given a set of tuples of constants that are in the relation.
For the target relation we might also be given tuples
that are known not to belong to the relation; alterna­
tively, the closed world assumption may be invoked to
state that no tuples, other than those specified, belong

746 Learning a n d Knowledge Acquisition

to the target relation. Tuples belonging to the target
relation are labeled those not belonging to it The
learning task is then to find a set of clauses for the tar­
get relation that account for all the tuples while not
covering any of the tuples.

This description is somewhat over-simplified. In many
real-world situations, noise in the data prevents learning
exact, complete definitions of this form. To get around
this problem, FOIL uses encoding-length heuristics to
l imi t the complexity of clauses and programs; the under­
lying idea is that the number of bits required to represent
a clause should be less than the number of bits required
to represent the tuples it covers. The final clauses may
cover most (rather than all) of the tuples while cover­
ing few (rather than none) of the tuples. See [Quinlan,
1990a] for details.

The basic approach used by FOIL is an AQ-like cover­
ing algorithm [Michalski, 1980]. We start wi th a training
set containing all and tuples, construct a function-
free Horn clause to 'explain7 some of the 0 tuples, remove
the covered 0 tuples from the training set, and continue
wi th the search for the next clause.

This paper focuses on the construction of a single
clause. FOIL starts wi th the left-hand side and extends
the clause by adding literals to the right-hand side, stop­
ping when no tuples are covered by the clause (or when
encoding-length heuristics decide that the clause is too
complex). Although FOIL incorporates a simple backup
mechanism, the clause-building process is essentially a
greedy search; once a literal is added to a clause, alter­
native literals are usually not investigated. We look now
at how this l iteral is chosen at each step.

Consider the partially developed clause

containing variables Each tuple in the
training set T looks like for some constants
{c , } , and represents a ground instance of the variables
in A. Now, consider what happens when a literal Lm of
the form

is added to the right-hand side of A giving a new clause
A'. If the l iteral contains one or more new variables, the
arity of the new training set wil l increase; let x' denote
the number of variables in A'. Then, each tuple in the
new training set T1 wi l l be of the form (d1, d2 • • •, dx') for
constants {cf,}, and wi l l have the following properties:

• {di1, d2l ..., dx) is a tuple in T, and
• (di11d i2 . . . ,d i p) is in the relation P.

That is, each tuple in T' is an extension of one of the
tuples in T, and the ground instance that it represents
satisfies the literal- Every tuple in T thus gives rise to
zero or more tuples in T", the or labels of the new
tuples being the same as their respective ancestors.

Let denote the number of O tuples in T, and sim­
ilarly for The effect of adding a l iteral Lm can be
assessed from an information perspective as follows. The
information conveyed by the knowledge that a tuple in
T is is given by

and similarly for If is less than I(T) we
have 'gained1 information by adding the lit .eral Lin to
the clause and, if s of the tuples in T have extensions in
T', the total information gained about the O tuples in
T is

FOIL explores the space of possible literals that might
be added to a clause at each step, looking for the one
with greatest positive gain. The form of the gain allows
significant pruning of the literal space, so that FOIL can
usually rule out large subspaces without having to ex­
amine any literals in them.

FOIL thus tames the hypothesis space problem by
a stepwise greedy search for clauses. However, some
clauses in reasonable definitions wil l inevitably contain
literals wi th zero (or negative) gain. Suppose, for in­
stance, that all objects have a value for some property
Q, and the literal Q(X,Y) defines the value Y for object
A. Since this literal represents a one-to-one mapping
from X to Y, each tuple in T wil l give rise to exactly
one tuple in T' and so the literal's gain wil l always be
zero. To permit such literals to appear in clauses, FOIL
ascribes a small positive gain to any literal that intro-
duces a new variable. This has the effect of widening
the search space for the next literal - there wil l be more
possible combinations of arguments for the literal - but
also can cause a blow-out in the size of the training set
of tuples. Worse, since there are usually many literals
that would introduce new variables, the choice of one of
them is necessarily arbitrary.

3 G O L E M and De te rm ina te Terms

G O L E M uses the same information as FOIL, namely
constant tuples that belong to one or more relations,
but regards each tuple as a ground assertion. If a tuple

is a member of relation R, this is equivalent
to the ground assertion

Let e1 and e2 be two terms. Plotkin's least general
generalisation of e1 and e2, denoted lgg(e1,e2), is defined
as follows [Muggleton and Feng, 1990]:

Now, suppose we have two ground examples of the
target relation, R(c1, c2, .., cn) and R(d\y d2)..., dn), say,
and a number of other relations representing background
knowledge. The least general generalisation of these two
examples relative to the background knowledge, the ?rl-
ativc least general generalisation (rlgg), is a clause

Quinlan 747

for every pair x1, x2 of ground assertions taken from each
relation. The right-hand side of this clause is equivalent
to true if the examples cannot be covered by a single
clause, or, if they can, consists of a (usually very large)
number of literals. The basic operation of GOLEM can
be thought of as choosing a pair of examples in the target
relation and forming their rlgg, successively expanding
the right-hand side unti l the clause covers only positive
examples of the target relation. If the resulting clause is
not vacuous it is refined by removing unnecessary literals
and added to the developing program in a manner similar
to FOIL .

Consider now the clause

and suppose t is a term in Lm. Denote by {Y} the set
of variables that occur only in t and by {Z} the other
variables in the clause. Term t is determinate wrt Lm
if, for every ground substitution for variables in {Z},
there is at most one ground substitution for variables
in {Y) so that the clause is satisfied. Intuitively, the
values of variables in {Y} are determined by the values
of variables that appear earlier in the clause.

G O L E M uses this idea to eliminate most literals that
might be added to the right-hand side of a clause by in-
sisting that, in a new l i teral, every term containing a new
variable must be determinate wrt that literal. Although
this rules out some potential clauses, the reduction in
the number of literals in the rlgg of two examples is so
substantial that rlgg's can be constructed feasibly and
efficiently.

4 De te rm ina te L i tera ls

The key idea in determinate terms is that new variables
have a value forced by previous variables. Determinate
literals employ the same intui t ion, but also insist on com­
prehensive coverage of the O tuples in the current train­
ing set.

Suppose that we have an incomplete clause

wi th an associated training set T as before. A literal 'Lm
is determinate with respect to this partial clause if Lm
contains new variables and there is exactly one extension
of each O tuple in T, and no more than one extension of
each 0 tuple, that satisfies Lm. The idea is that, if Lm
is added to the clause, no tuple wil l be eliminated and
the new training set T' wi l l be no bigger than T.

FOIL notes determinate literals found while exploring
possible literals to add to the clause. The maximum pos­
sible gain is given by a literal that excludes all tuples
and no tuples; in the notation used before, this gain is

Unless a literal is found whose gain is close to
the maximum possible gain, FOIL adds all

determinate literals to the clause and tries again. This
may seem rather extravagant, since it is unlikely that all
such literals wi l l be useful. However, FOIL incorporates
clause-refining mechanisms that remove unnecessary l i t­
erals as each clause is completed, so there is no ult imate

penalty for this all-in approach. Since no 0 tuples are
eliminated and the training set does not grow, the only
computational cost is associated with the introduction
of new variables and the corresponding increase in the
space of possible next literals. It is precisely the en­
largement of this space that the addition of determinate
literals is intended to achieve.

There is, of course, a potential runaway situation in
which determinate literals found at one cycle give rise
to further determinate literals at the next ad infinitum.
To circumvent this problem, FOIL borrows another idea
from G O L E M . The depth of a variable is determined by
its first occurrence in the clause. A l l variables in the
left-hand side of the clause have depth 0; a variable that
first occurs in some literal has depth one greater than
the greatest depth of any previously-occurring variable
in that l i teral. By placing an upper l imit on the depth
of any variable introduced by a determinate l i teral, we
ensure that there are a finite number of them and so
rule out indefinite runaway. This l imi t does reduce the
class of learnable programs. However, the stringent re­
quirement that a determinate literal must be uniquely
satisfied by all 0 tuples means that this runaway situa-
tion is very unlikely and FOIL's default depth l imi t (5)
is hardly ever reached.

5 An Examp le : Quicksor t

One difficult task investigated by Muggieton is learn-
ing the quicksort procedure for sorting lists of numbers.
There are six relations:

sort(U,S)
part i t ion(V,U,L,H)

components(L,H ,T)
append (A,B,C)

nul l(L)
el t(V)

Following Muggleton, the examples provided for the sort
relation cover all lists of length up to three containing
non-repeated numbers in {0 ,1 ,2 } . There are 16 such
lists, giving 16 O and 240 tuples. The other relations
are defined over this same vocabulary.

The definition found by FOIL in 10.3 seconds (on a
DECstation 3100) is

The first four literals of the second clause have negligible
or zero gain. However, all these (and the f i f th literal) are
determinate literals, as can be seen by observing that

748 Learning and Knowledge Acquisition

Table 1: Results on Quicksort Experiments

• in components (A, C,D), C and D are determined by
A-

• in partition(C,D,E,F), E and F are determined by
C and D;

• in sort(E,G), E determines G\
• in sort(F,H), F determines H,
• in append(G,l,B), I is determined by G and B.

Consequently, all these are included in the develop­
ing clause. (Two further determinate literals, compo-
nents(B,X,Y) and sort(Y,Z), were also added as the
search progressed, and were discarded as unnecessary
when the clause was completed.)

The effect of the determinate literals above is to intro-
duce new variables that possess a useful relationship to
the variables A and B in the left-hand side of the clause.
Only when these variables are in place can FOIL 'see'
the importance of the last couple of literals. Wi thout
determinate literals, FOIL does not discover the second
recursive clause, but instead develops a swatch of less
general clauses covering special cases (e.g., for lists of
length one, for lists that are already sorted, and so on).

To illustrate FOIL's computational economy, the ex-
periment was repeated using larger numbers of examples
of the sort relation. Three additional data sets were de­
fined by increasing the allowable set of elements of a
list and by increasing the maximum length of the lists.
As Table 1 shows, there are more lists and much larger
numbers of tuples in these training sets, with a corre­
sponding increase in the size of the other relations. The
same definition for sort was found in each case and the
time required grew approximately linearly with the size
of the training set. On this task, FOIL does not suffer
from a combinatorial increase in computation time as the
number of training examples grows; the same finding has
been made in other domains.

6 Summary of Other Results
FOIL has been applied to more than twenty tasks from
ten domains ranging from learning approximate rules for
a small chess task to discovering an unknown dealer's
rule in Eleusis; several are discussed in [Quinlan, 1990a].

Here, we give results on several domains akin to quick­
sort, viz. that require the system to learn exact, recur­
sive definitions. Many of these datasets were provided by
Stephen Muggleton. A brief description of each follows:

• member, f ind whether a list or element is a mem­
ber of another list, given a few examples. Other

relations were components and null.

• append: find how to append one list to another. Ex­
amples covered all lists of length up to three wi th
non-repeating elements drawn from {a, 6, c}; a sam­
ple of about, 10K negative examples was provided-
Other relations were components, null, list and re­
verse - note that the last two of these were not re­
quired for the definition of append.

• reverse, find how to reverse a list. Examples were
the same as for the append relation above.

• combinations: find a recurrence relation for the
number of combinations of r objects chosen from
n, given all values wi th Other relations
were multiply, zero and one.

• multiply: find a recurrence relation for multiplica­
tion given the table of values up to 6x6. Other
relations were predecessor, plus, zero and one.

Results on these domains are presented in Table 2,
first using determinate literals and then with this feature
disabled. As before, times are for a DECstation 3100.

In two cases when determinate literals were not used,
the definitions found by FOIL were imperfect in that
they did not cover the whole training set, or covered it
in a non-general way. In reverse and multiply the learn­
ing time was actually reduced by the use of determinate
literals. In the case of append, on the other hand, there
was a three-fold increase in time required. As this last
example represents the downside of using determinate
literals, let us have a closer look at i t .

Recall that the relations defined for append include
the (unrelated) relation reverse. When determinate l i t­
erals are employed, the development of a clause for ap-
pend(A,B,C) immediately gives three determinate liter­
als:

reverse (A,D)
reverse(B,E)
reverse (C,F)

(since each argument has a unique reverse). Now, in­
stead of three bound variables, there are six! If we con­
tinue by examining possible literals based on the compo-
nents relation, wi th three arguments, there are 42 pos­
sible literals that need to be looked at. On the other
hand, if the determinate (but unhelpful) literals are not
added, there are only 12 components literals that must be
assessed. A scale-up of the same kind occurs for other
literals. Thus, while the search for clauses in the two

Quinlan 749

Table 2: Times for Other Domains (' - ' means imperfect definition)

cases follows somewhat similar paths, the introduction
of additional, red-herring variables by the determinate
literals leads to more literal evaluations. The increased
learning time is a direct result.

In many cases, the use of determinate literals produces
no noticeable effect on the time required to find a set of
clauses, and only occasionally increases the time required
to find a solution. On the other hand, the introduction
of new variables can materially increase FOIL's abil ity
to find a solution when long, recursive clauses must be
generated.

7 Conclusion

This paper has presented some highlights of two new
systems for learning Horn clause programs from exam­
ples. One of them, FOIL, uses a greedy search to ex­
plore the very large hypothesis spaces involved, while the
other, G O L E M , employs an interesting semantic concept
to l imit this space.

An adaptation of this concept, determinate literals,
has been shown to overcome some of the horizon prob­
lems associated wi th greedy search. The application of
this idea does not appreciably l imit the class of programs
that can be learned; instead, it has the effect of intro­
ducing a kind of low-cost lookahead in situations where
there is not a very clear indication of what to do next.

GOLEM and FOIL are both young systems that are
sti l l evolving, so it is perhaps premature to compare
them. However, informal trials have revealed a surpris­
ing degree of similarity in many of the solutions found
by these systems and the computational effort required,
despite the very different approaches that they embody.

Acknowledgement s

I have benefited greatly from discussions with many
colleagues, particularly Stephen Muggleton and Donald
Michie. Stephen Muggleton provided some of the exam­
ples used in this paper. Some of this work was carried
out while I was visit ing the Knowledge Systems Labora­
tory, Stanford University.

References
Buntine, W. (1988). Generalised subsumption and its
applications to induction and redundancy. Artificial In­
telligence 36, 149-176.

Michalski, R.S. (1980). Pattern recognition as rule-
guided inductive inference. IEEE Transactions on Pat­
tern Analysis and Machine Intelligence 2, 349-361.

Mitchel l , T . M . (1979). An analysis of generalization as a
search problem, in Proceedings of the Sixth International
Joint Conference on Artificial Intelligence, Tokyo, pp.
577-582. San Mateo: Morgan Kaufmann.

Muggleton, S.H. (1987). Duce, an oracle-based approach
to constructive induction. In Proceedings of the Tenth
International Joint Conference on Artificial Intelligence,
Milan, pp. 287-292. San Mateo: Morgan Kaufmann.

Muggleton, S., and Buntine, W. (1988). Machine inven­
tion of first-order predicates by inverting resolution. In
Proceedings of the Fifth International Conference Ma­
chine Learning, Ann Arbor, pp. 339-352. San Mateo:
Morgan Kaufmann.

Muggleton, S., and Feng, C. (1990). Efficient induction
of logic programs. In Proceedings of the First Conference
on Algorithmic Learning Theory, Tokyo: Ohmsha.

Quinlan, J R . (1990a). Learning logical definitions from
relations. Machine Learning 5, 239-266.

Quinlan, J.R. (1990b). Learning from relational data.
In Proceedings of the Fourth Australian Joint Conference
on Artificial Intelligence, Perth, pp. 38-47. Singapore:
World Scientific.

Sammut, C.A., and Banerji, R.B, (1986). Learning con­
cepts by asking questions. In R.S. Michalski, J.G. Car-
bonell and T . M . Mitchell (Eds) , Machine Learning: An
artificial intelligence approach (Vol 2). Los Altos: Mor­
gan Kaufmann.

Shapiro, E.Y. (1983). Algorithmic program debugging.
Cambridge, MA : M I T Press.

750 Learning and Knowledge Acquisition

