Inductive Learning from Good Examples

Xiaofeng (Charles) Ling
Department of Computer Science
University of Western Ontario

London, Ontario, Canada

NG6A 5B7

Email: ling@csd.uwoxa

Abstract

We study what kind of data may ease the
computational complexity of learning of Horn
clause theories (in Gold's paradigm) and
Boolean functions (in PAC-learning paradigm).
We give several definitions of good data (ba-
sic and generative representative sets), and de-
velop data-driven algorithms that learn faster
from good examples, and degenerate to learn
in the limit from the "worst" possible exam-
ples. We show that Horn clause theories, k-
term DNF and general DNF Boolean functions
are polynomially learnable from generative rep-
resentative presentations.

1 Introduction

In any inductive learning model, how data of the tar-
get theory are supplied to the learning programs is a
crucial assumption. Identification in the limit [Gold,
1967] assumes that the series of examples is an admis-
sible enumeration of all (positive and/or negative) ex-
amples of the target concept, and requires the learning
algorithm to produce a correct hypothesis in some finite
time. However, the computational time and the number
of examples needed for convergence depend on the ex-
ample series, and can not be specified a priorii Although
there is an enumeration algorithm that identifies any h-
easy [Blum and Blum, 1975] model of first order theories
in the limit, such an algorithm is extremely inefficient in
practice. Shapiro in his seminal work [Shapiro, 1981]
presented an incremental method MIS which searches
the hypothesis space from general to specific. However,
MIS has two major shortcomings. First, the refinement
of the refuted clauses may introduce a large number of
faulty clauses, which need to be removed using a large
number of negative examples. Second, the algorithm is
still very inefficient (exponential).

Approximate identification, or PAC-learning (Prob-
ably Approximately Correct learning) [Valiant, 1984,
Blumer et a/., 1989] assumes that the examples of the
target concept are drawn randomly according to some
fixed distribution for learning and for testing the conjec-
ture. It requires the learner within feasible amount of
time (quickly), to produce, with a high probability (con-
fidently), a hypothesis with a small error (accurately).

However, few things are shown PAC-learnable from ran-
dom examples: many classes of Boolean concepts which
seem simple to human learners (for example, k-term-
DNF) are proved not PAC-learnable (by k-term-DNF)
unless RP = NP. It is still open if general DNF is
PAC-learnable.

Human learning, on the other hand, is efficient, inter-
active, and data-dependent. The study ofthe interaction
between learners and teachers may reveal the essence of
efficient human learning. Learning equipped with teach-
ers answering various types of queries [Angluin, 1988] is
one of such studies. We believe that the current learn-
ing model does not reflects the quality of the examples
in the role of efficient learning. Here we present some re-
sults on what kind of data may ease the computational
complexity of Iearning1.

We start with an attempt to improve the efficiency
of MIS. We first discover a heuristic very useful to im-
prove the efficiency of Shapiro's MIS, while preserving
the property of identification in the limit. Further study
of the heuristic leads us to discover a constructive (or
data-driven) algorithm SIM? for model inference. SIM
opens a way for lis to study what kinds of data are nec-
essary for successful learning. We give precise definition
of "good" examples, and design constructive algorithms
that learn faster from the good data, learn in longer
time when examples become worse, and degenerate to
learn in the limit from the "worst" possible data presen-
tations. However, we believe SIM is not a polynomial
algorithm. This leads us to study the problem in a more
rigorous model of PAC-learning. We provide a stronger
definition of "good" examples (generative representative
sets), and show that k-term DNF and general DNF are
PAC-learning from generative representative sets. Then
we return to model inference problem, and give a similar
stronger definition of "good" examples for polynomial
inference of logic programs (provided enough negative
examples are supplied).

*It may be argued that "good** examples may make learn-
ing arbitrarily fast. But as we will see, the nature of good
data is implicit. That is, what is important is that a initial
series of examples contains a set of good examples (to be de-
fined). The order of examples in the series is irrelevant, and
other examples in the series can be arbitrary. This eliminates
the possibility of coding the target concept by examples.

2SIM is the inverse process of Shapiro's MIS.

Ling 751

Many data driven algorithms [Banerji, 1988, Ling,
1989, Muggleton and Buntine, 1988, Ishizaka, 1988] have
been studied. However, most of them are heuristic. They
learn faster from some good data, but fail to learn (in
the limit) from "bad" data; little is done to characterize
the "good" data for efficient learning. Some theoreti-
cal studies on learning from "good" examples have been
explored. For example, Angluin [Angluin, 1981] defines
"representatives” for live states as good strings for iden-
tifying a DFA polynomially. Rivest and Sloan [Rivest
and Sloan, 1988] show how to learn an arbitrary concept
by first learning its relevant subconcepts. Freivalds et al
[Freivalds et a/., 1989] study good examples in recursive
theoretic inductive inference.

2 Shapiro's Model Inference System

Shapiro's Model Inference System (MIS) [Shapiro, 198l]
starts with the most general conjecture (a theory with
an empty clause). When the conjecture T proves a nega-
tive example (T is too strong) the backtracing algorithm
is invoked to remove faulty clauses from 7. Removing a
clause may overly specilize T, in which case the refine-
ments of faulty clauses are added into T. However, the
possible refinements of any clause are infinite. So which
refinements of which clauses should be added into T? As
Shapiro pointed out, [Shapiro, 1981], MIS identifies the
theory in the limit "...as long as it [the refinement] is
'exhaustive' in some natural way". Therefore, unless us-
ing "good heuristics [unspecified in the paper] for order-
ing the addition of refinements" an indefinite number of
faulty clauses can be inserted into the conjecture, which
need to be removed using a large number of negative
examples.

For any faulty clause a removed from the conjecture
T it suffices to add a set of most general specialization of
a; in this case, the set of immediate refinements (a finite
number) of a. We define mys(u)— {p{e)} where pis a
refinement operator complete for the theories [Shapiro,
1981]. However, a good rule of thumb (heuristics) is to
add those clauses in mgs(a) that can be used to prove
more (or most: a greedy algorithm) positive examples!
Such a heuristic not only provides a reasonable guideline
on theory revision, but also guarantees to find a solution
ifit exists. The following algorithm is the improved ver-
sion of MIS with the heuristic.

T= {I:l}; ™= {}
repeat
examine the next example
while T proves a negative example
do backtracing, remove a faulty e € T
T =T Umgs(a)
while T fails to prove a positive example b
do find a set & C 7" such that TU S+ b
until T is ?eﬁt?érut 6£{ro=n rn'EorStoo weak
output T
loop {* repeat *}

Now the question is: What examples are necessary for

752 Learning and Knowledge Acquisition

convergence, and what examples are crucial for the con-
jecture to be updated appropriately? It turned out that
the top-down algorithm MIS (driven by negative exam-
ples) is not a good place to study this problem: the over-
generalized clauses are not sensitive to the positive ex-
amples! Since our data-driven algorithm SIM constructs
hypotheses from specific to general, we may characterize
more acutely the properties of "good examples".

3 Intuitions of Good Data

The philosophy of what good examples are necessary for
successful learning is quite simple. Even though the set
of data is infinite (but recursively enumerable), there
must exist some finite characterizations (such as logic
programs) of the data®. If is these finite characteriza-
tions that are sought in inductive learning. To be suc-
cessful in learning, the learner must receive data that
go through (use or exercise) every "live" component of
one of the finite characterizations®. For example, data

that go through all "live" transactions in a DFA (see
[Angluin, 1981]), all "live" production rules in a gram-
mar for a language, or all "live" Horn clauses in a logic

programs. Clearly such a set of data provides a minimum
amount of information about the theory to be identified,
and should be supplied in the early stage of learning.
We call this set a basic representative set. Later we will
provide a stronger definition of "good" examples (called
generative representative set) which go through every
component of a finite characterization several times, and
which can be used to construct the component.

We give appropriate definitions of "good" examples
and study the learnability results using good examples.
The good examples supplied in the early stage of learn-
ing appear in the example series only implicitly. We
assume that the first pfn) ® positive data should contain
good examples (to be defined). In the Gold's model, the
learning algorithm is allowed to ask membership queries;
while in PAC-leaming, more random examples may be
drawn according to the fixed distribution. In both mod-
els, the total sample size and computational complexity
for successful learning is measured by n and the size of
the target theory (and 1/¢,1/6 in PAC). If the total sam-
ple size and computational complexity are polynomial,
we say that the class of theories is polynomially learnable
from good examples. If a class of Boolean functions not
PAC-learnable becomes PAC-learnable with good exam-
ples, it implies that drawing a polynomial sample ran-
domly will not have a high probability of containing good
examples.

Obviously, p measures the quality of the data (or the
teacher): as p increases, the learning algorithm gradu-
ally degrades to be identification "in the limit". Thus,

3In model inference of Horn clause theories, if such a fi-
nite characterization does not exist, theoretical terms may be
needed. This is outside the scope of the paper.

*We assume that the components are of disjunctive nature
in this paper.

5Something is "live" means it has to be used in deriving
some data.

6p is a polynomial function and n is the maximum of the
problem sizes.

our learnability model unifies efficient learning and iden-
tification in the limit based on the quality of the data
presentation.

4 Basic Representative Sets

Given a language L, a logic program LP for L is any
finite set of Horn clauses of L. The model of a logic
program is its least Herbrand model, i.e., the set of all
ground atoms of L derivable from LP. A complete data
presentation of a model is an admissible enumeration of
all positive and negative examples from the Herbrand
base. The class of models of logic programs of L is the
set of least Herbrand models of all logic programs of L.
The model inference problem is: given language L and a
data presentation of a unknown model M from the class
of models of logic programs of L, find a logic program
whose least Herbrand model is M.

Definitions. A basic representative set of a model M
is a basic representative set of any logic program LPM
with least Herbrand model M. A basic representative*
set of a logic program LP is a set S of ground atoms
obtained by taking, for each clause p = P - Q\, . . ., Q,
of LP, all ground atoms in a true instantiation of p (all
atoms are true in the model).

Basic representative sets for a model can be very small;
the size of a basic representative set is no more than the
number of occurrences of atoms used in the correspond-
ing LP. For example, a model about list reverse has a
logic program:

rev{{].0)
rev([X|Y]), Z2) - rev(Y, Y1), conc(Yy, X, Z).

A basic representative set for the model may contain:
rev([],[]), rev([a, b], Ib, a]}, rev({b],[8]). conc([b], a, [b, a]}).

Notice that for any model to be inferred, there may
exist more than one logic program whose least model is
the target model. For example, there are several sorting
programs to sort a list of integers. Depending on which
logic program whose basic representative set is given,
that logic program will be inferred.

Definition. A basic representative presentation of a
model M is an admissible data presentation whose initial
portion (size p(n) for a polynomial function p) contains
a basic representative set of M.

5 Abstraction Operators and SIM

Our data-driven algorithm SIM is the inverse process
of MIS. SIM starts with the most specific conjecture
and makes it more general by adding generalizations of
clauses in the current conjecture obtained by applying
abstraction operators, guided by good examples. On the
other hand, we prove completeness for the abstraction
operators, showing that SIM identifies h-easy models in
the limit.

Let size be a total recursive function from clauses
to positive integers that gives a measurement of
the complexity of clauses. The only requirement
on size is that for any integer n, the set {pl\p
is a Horn clause with size(p} < n } is finite.

Definition. An abstraction operator A is a mapping

from clauses to sets of clauses, such that
Alp) = {pyu A’

where A’ C {¢|q p and size\p) > size(q)}.

Any such operator A induces an operator (also de-
noted A) which takes sets of clauses to sets of clauses;
for a set S of clauses,

A(S) =S5 v [} A@).

pPES

Note that this operator is monotonic, i.e. §C &' im-
plies A{S) € A(S’). As usual, we define the operator A"
by induction: .41(8) = A(S), and A™*+!(S) = A(A"(S)).
One important difference between refinement and ab-
straction operators is that for any abstraction operator
A and any finite set S of clauses, there is a finite "least
fixed point", the closure of S under A.

Lemma 5.1 For any (finite set S of Horn clauses. there
is an integer n with A"*"(S) = A™(S) for anyr > 07,

For convenience we will often use a (finite) set A of
abstraction operators. The closure of S under A will be
denoted .4(5).

5.1 Completeness and Convergence

Definition. A set A of abstraction operators is com-
plete if for every logic program LP and every basic rep-
resentative set S of LP, A(S) contains every clause of
LP (up to possible renaming of variables in clauses).

Since abstraction operators are monotonic, we observe
that if A is complete, and S contains a basic representa-
tive set of LP, then A(S) contains every clause of LP.

A simple version of the constructive algorithm SIM
works as follows: from any finite set. of positive data
5, A(S) can be calculated. If A(S) cannot prove some
positive data, they are added to S and A(S) is recal-
culated. Eventually the basic representative set of the
model will be contained in S, and with a complete set
of abstraction operators, A(S) will contain all clauses
in the logic program of the model. A(S) may contain
faulty clauses, which are removed by Shapiro's contra-
dictory backtracing algorithm when a negative example
is proved to be true. Unlike Shapiro's MIS, the removal
of a faulty clause does not introduce any more clauses
into the conjecture. Clearly, this simple algorithm iden-
tifies any h-easy models in the limit.

Theorem 5.1 |If a set of abstraction operators A for the
class of theories is complete, then the constructive algo-
rithm above identifies any h-easy model® of that class in
the limit given an enumeration of positive and negative
examples of the model.

"Most proofs of the paper are omitted and can be supplied
from [Ling and Dawes, 1990, Ling, 199I].

8The attempted derivation of an atom from T may not
halt. A total recursive function h is used to bound the
resources in proving. For more details see [Shapiro, 1981,
Blum an d Blum, 1975].

Ling 753

Read a set S of positive data
T = initial(S)
1: read more examples.
let F+ be positive examples, F— be negative
2: repeat
if f € F+ is not provable in T then
if 3f is provable in A(T"} but not in T
then T=TU{p|p€ A(T)-T}
where p is used in the proof of f
else T = A(T)
while a € F— is proved true in T
do call backtracing algorithm
until T proves all in F+ or A(T) =T
Tl feF+thenT=TuU{f}, goto 2
output T

goto ! {* loop forever*}

FIGURE 1: THE SIM ALGORITHM

However, even if S is small, A(S) can be huge (expo-
nential). We use the same heuristic for MIS to improve
the efficiency of the algorithm while retaining the prop-
erty of identification in the limit.

5.2 Using Good Data

In general, from the current conjecture set T, only a
small number of clauses in A(T) will be useful in fur-
ther generalizations (via abstraction operators). These
clauses may be identified by some "simple" positive data
that can be proved using these clauses. If F+ in the
following algorithm contains positive examples ranging
from "simple" to "complex" with respect to applications
ofabstraction operators, SIM will be much more efficient
and need much fewer negative data than Shapiro's MIS.

In practice what good examples should be supplied to
SIM? First of all, a small set of basic representative set
should be supplied. Then, simple examples are those
positive examples similar to the examples in the rep-
resentative set, and more complex examples are those
less similar ones. For example, rev([a),[a]), rev(]c].[c])
are close to rev{[b].[6]}: rev([a,c], [c.a]). rev([c.b]. [&, €]}
are similar to rev{[a, b), [b, a]); while rev{]e, d}, [d,¢]) and
rev{{a,b,c}, [¢, b, a]) are less similar.

Also we notice that for a given set T containing a
representative set, A(T) will be calculated. The size
of A(T) may be exponentially larger than size(a) for
a€ ‘T. Thus, examples in S of SIM must be small (i.e.,
size(a) must be small). This verifies our intuition that
in learning list reverse for instance, the examples that
reverse very long lists are not good examples (while in
PAC-learning, examples drawn randomly may have an
indefinite size).

Figure 1 gives an improved version of SIM. The con-
jecture T starts with the set initial(S), which is the
most specific conjecture from S in the representational
language of the theory (See Section 6 for details). The
algorithm identifies any A-easy models in the limit, and
learns faster given a good set of data.

754 Learning and Knowledge Acquisition

6 Various Abstraction Operators

We design abstraction operators for various sub-classes
of clauses, similar to Shapiro's refinement operators for
sub-classes of clauses [Shapiro, 1981]. Thus, the algo-
rithm is more efficient if the class of models to be inferred
is known.

6.1 Abstraction Operators for Atoms

We first discuss the simplest class of models, which
have logic programs containing only unit clauses. Here
initia/(S) in the algorithm SIM is just the set of all posi-
tive examples in 5. The set of abstraction operators Az
for the atom p contains two operators A; and A, defined
as follows:

* A4p) is the set of atoms obtained from p by replac-
ing some or all occurrences of a constant in p by a
variable not in p.

« A2(p) is the set obtained by replacing some or all
occurrences of a compound ground term in p by a
variable not in p.

Theorem 6.1 Ag is a set of abstraction operators com-
pletc for atomic Horn clauses.

6.2 Abstraction Operators for Horn Clauses

Skipping other subclasses, we now study abstraction op-
erators for general Horn clause theories. The most spe-
cific conjec-
ture (initial(S)) contains n most specific clauses, each
in the form of Q¢ - Q1,...,Q%—-1,Q%41,...,Qn Where
21,Q,...,Q, are ground atoms in S. The set A, of
abstraction operators for general Horn clauses contains
three operators A;A, and As

« A; and A, are the same as in A; except that they
now apply to occurrences of a constant or term in a
whole clause rather than in one atom.

« if pis any Horn clause with at least one atom in its
body, As(p) is the set of clauses formed by removing
any one atom from the body of p.

Theorem 6.2 Ayt is a set of abstraction operators
complete for general Horn clauses.

If the class of models is a sub-class of models of general
Horn clauses, then more efficient abstraction operators
are possible. For example, we might consider only Horn
clauses with no variable occurring only once in a clause,
or with the length of body bounded by a small constant.
It is easy to modify the abstraction operators for these
and other syntactically restricted classes.

7 Implementation of SIM

We have developed SIM in Quintus Prolog. SIM learns
faster with a small set of good examples containing a
representative set. However, in learning various logic
programs, SIM does not have a consistent good perfor-
mance. The major reason is that there may not exist
any new positive examples (besides those in S of SIM)
that can be proved in A(7) but not in T (see algorithm
SIM in figure 1). In this case abstraction operators have
to be applied to the current conjecture (T = A(T) in

the algorithm). This makes the conjecture to grow too
fast to be manageable. In general, we believe SIM is not
a polynomial algorithm. In fact, there is no polynomial
algorithm that identifies any Horn clause theory from
basic representative presentations if the conjecture must
contain the same number of clauses as the target theory
(see next section).

8 PAC-Learning Boolean Functions
from Good Examples

Definition. A class of concepts is PAC-learnable from
good examples if for any / in the class, there exists a
learning algorithm A such that given any set S of posi-
tive examples of / that contains the good examples, and
|S| = p(n, size(f}) where p is a polynomial function and
n is the number of variables, A PAC-identifies /. Notice
that A may draw more random examples from the fixed
distribution.

Similar to the good examples in the model inference
discussed in the previous sections, we may define good
examples in PAC-learning as a set of examples that go
through every term of the DNF function once (basic rep-
resentative set). However, a little more thoughts reveal
that such definition is insufficient for polynomial learn-
ing of k-term DNF. Assume that such a polynomial al-
gorithm (denoted as A) existed, then k-term DNF would
be PAC-learnable (by k-term DNF) without basic repre-
sentative sets as follows: First a sample of a polynomial
size is drawn such that with a high probability each term
in the target function is sampled. Choose at most A: data
from the sample as basic representative sets in A. Ap-
ply A on all sets (since there is a polynomial number of
the sets, the sample size A would draw would be polyno-
mially larger). Clearly this polynomial algorithm PAC-
identifies any k-term DNF. This is contradictory to k-
teYm DNF is not PAC-learnable by k-term DNF (unless
RP = NP). Essentially it is NP hard to find a k-term
DNF that is consistent with a set of examples even when
a set of basic representative set is provided. Since any
k-term DNF can be transferred to a propositional Horn
clause theory with k clauses, therefore, even with a ba-
sic representative set, there is no polynomial algorithm
that identifies the theory if the conjecture must contain
the same number of clauses as in the target theory. It is
unknown to us if basic representative set is sufficient for
polynomial inference of general DNF formulas (by pro-
ducing a DNF with a size at most polynomially larger).

8.1 Polynomial Learning of DNF from
Generative Examples

We provide a stronger definition of good examples where
k-term DNF and genera) DNF are polynomially learn-
able.

A Boolean function in DNF consists of terms. We first
define generative sets for a term. Let a be an instance
{0,1}*. Let < be a term, and t(a) be the truth value of
t with a as the assignment of the variables in t.

Definitions. For a set S of instances, /lgg(S) (least gen-
eral generalization) is a term t such that for all a € S,
t(a) is true; and for any other term t', if for alla € S,

t(a) is true, then t b ¢'. S is a generative set of t if for
alla € 8,t(a) =1, and Igg(S) = t.

Igg(S) is easy to calculate: check /" bits of all in-
stances in S. Ifthey are all 1, then x; isin t; ifall 0, then
X;- is in t; otherwise neither x- nor Xx; is in t. In another
word, if { does not contain a variable x nor x (i.e. x is an
irrelevant variable in t), there are at least two instances
in a generative set of { whose bits on x are different.
Intuitively the generative set of { contains positive ex-
amples showing contrast information. Notice however,
these examples may not constitute a "near-miss" [Win-
ston, 1984].

For any term t, there exists a smallest generative set S
of t with |S} < r, where » > 2 is a constant throughout
the paper. This is the set of positive examples with a
constant size showing all contrast information of a term.

Definition. S is a generative representative set for a
term ¢t if S is a generative set oft with |S| < r. A genera-
tive representative set for a Boolean formula fin DNF is
the union of generative representative sets for all terms
in an equivalent DNF formula with a smaller or equal
size. A generative representative presentation R for [is
a set of positive examples that contains a generative rep-
resentative set of / with {R| < p{n,size(f)}, where p is
a polynomial function and n is the number of variables.
Using generative representative presentations, we
show that many classes of DNF formulas are PAC-
learnable. Basically, from a generative representative
presentation, we can form all possible terms by apply-
ing igg on at most r examples, and form all possible
Boolean formulas in the hypothesis space (i.e., form
all k-term DNF formulas in learning k-term DNF and
form one disjunction of all terms in learning general
DNF). Draw enough random examples according to a
simple and important theorem due to [Valiant, 1984,
Blumer et a/., 1989]: If C contains a finite number of
Boolean functions, then any polynomial algorithm that
requests sample size at ieast l/eIn(lCl/8) and outputs
any consistent function in C PAC-identifies C. For
proofs of the following theorems, see [Ling, 199l].

Theorem 8.1 k-term-DNF is PAC-learnable (by k-
term DNF) from generative representative presentations
with a sample size Of{e~YkrIn(p(n)/8)); and time com-
plexity O(e~'k%ra p(n)r+E+D) In(p(n)/§)).

Theorem 8.2 Any DNF f is PAC-learnable (by
DNF with at most p(n, size{f))"*V) terms) from
generative representative presentations with sample
size O(e~'rIn{p(n, size(f)}/6)); and time complexity

Ofe~'rn p(n,size(f))"* V n(p(n, size(£))/6)).

Is the definition of generative representative set too
strong? In some sense it is not. In the worst cases it is
necessary to enumerate all terms formed by applying Igg
on subsets of data from initial portion of p(n) data. For
(fE:g) to be polynomial, #(n) (when r(n) < p(n)/2} can
only be a constant. Of course, generative representative
set is not a necessary condition for polynomial learning
of DNF formulas: there are other spacial cases where

DNF is PAC-learnable.

Ling 755

9 Model Inference from Generative
Examples

The definitions of generative examples for the model in-
ference can be given in a similar way as for PAC-learning
DNF. The least general generalization (lgg) of a set of
clauses is taken from Protkin's work [Plotkin, 1970]. We
define a set of ground atoms as a generative represen-
tative set for a logic program LP if it is the union of
generative representative sets for all clauses in LP. A set
S of ground atoms is a generative representative set for
a clause A :- By,...,B, if there are at most r true in-
stances of the clause in the form of A; - Biivooo Hai
{t < i < r)such that all Ai, Byi,...,Bni are in S,
and fgg;g.‘s,-(A.- - B14, ..., Bni) contains the clause A :-
B4 s, Bn- The resulting clauses can be very long. Some
techniques of logical reduction of clauses [Buntine, 1988,
Muggleton and Feng, 1990] and syntactic restriction
(such as ij-determination [Muggleton and Feng, 1990])
may be applied. Clearly the total number of possible
clauses from the Igg of at most r most specific clauses is
polynomial, so is the maximum number of faulty clauses
in the conjecture. Thus the model inference problem can
be solved in polynomial time from a generative repre-
sentative presentation if a proper set (with a polynomial
size) of negative examples is provided. This is, as we
believe, the condition for other constructive algorithms
based on least general generalization to learn in polyno-
mial time.

10 Conclusions and Further Research

A new learning model that learns faster if the initial por-
tion of the examples contains a set of good data is de-
veloped. The model captures the quality of the data (or
teacher) in the role of the speed of the learning. Thus,
the model provides a new approach to study human
learning, which is efficient, interactive and data-driven.
Currently we are studying the use of "negative repre-
sentative sets", and the appropriate definitions of good
examples for theories with non-disjunctive components
(such as M-formulas). We hope to investigate language
learning from good sentences in the near future.

Acknowledgement

The author gratefully thanks referees for their thoughtful
and valuable comments, and Mike Dawes, Bob Webber
for helpful discussions on various aspects of the topics.
The author also acknowledges the support from NSERC
Operating Grant OGP0046392, the Internal NSERC
grants, and the New Faculty Start-up grant.

References

A note on the number of
Infor-

[Angluin, 1981] D. Angluin.
queries needed to identify regular languages.
mation and Control, 51, 1981.

[Angluin, 1988] D. Angluin. Queries and concept learn-
ing. Machine Learning, 2(4), 1988.

[Banerji, 1988] R.B. Banerji. Learning theories in a sub-
set of a polyadic logic. In Proceedings of First Work-
shop on Computational Learning Theory, 1988.

756 Learning and Knowledge Acquisition

[Blum and Blum, 1975] L. Blum and M. Blum. Toward
a mathematical theory of inductive inference. Infor-
mation and Control, 28:125-155, 1975.

[Blumer et ai, 1989] A. Blumer, A. Ehren-
feucht, D. Haussler, and M. Warmuth. Learn abil-
ity and the vapnik-chervonenkis dimension. J ACM,
36(4):929 965, 1989.

[Buntine, 1988] W.L. Buntine. Generalized subsump-
tion and its applications to induction and redundancy.
Artificial Intelligence, 36(2):149-176, 1988.

[Freivalds et ai, 1989] R. Freivalds, E.B. Kinber, and
R. Wiehagen. Inductive inference from good examples.

In Proceedings of International Workshop of Analogi-
cal and Inductive Inference, 1989.

[Gold, 1967] E. Gold. Language identification in the
limit. Information and Control, 10:47-474, 1967.

[Ishizaka, 1988] H. Ishizaka. Model inference incorporat-

ing generalization. Journal of Information Processing,
11(3), 1988.

[Ling and Dawes, 1990] X.C. Ling and M. Dawes.
Learning with representative presentations the in-

verse of shapiro's mis. Technical Report 263, Depart-
ment of Computer Science, University of Western On-
tario, 1990.

[Ling, 1989] X.C. Ling. Learning and inventing of horn
clause theories - a constructive method. In Z.W. Ras,
editor, Methodologies for Intelligent Systems, 4, pages
323-331. North-Holland, 1989. *

[Ling, 1991] X.C. Ling. |Inductive learning from good
examples. Technical report, Department of Computer
Science, University of Western Ontario, 1991. Forth-
coming.

[Muggleton and Buntine, 1988] S. Muggle-
ton and W. Buntine. Machine invention of first-order
predicates by inverting resolution. In Proceedings of
the fifth international conference on Machine Learn-
ing, 1988.

[Muggleton and Feng, 1990] S. Muggleton and C. Feng.
Efficient induction of logic programs. In Proceedings of
first International Conference on Algorithmic Learn-
ing Theory. OHMSUA Tokyo, 1990.

[Plotkin, 1970] G.D. Plotkin. A note on inductive gen-
eralization. In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence 5, pages 153-163. Elsevier North-
Holland, 1970.

[Rivest and Sloan, 1988] R.L. Rivest and R. Sloan.
Learning complicated concepts reliably and usefully.
In Proceedings of the 1988 Workshop on Computa-
tional Learning Theory (COLT-88). Morgan Kauf-
mann, 1988.

[Shapiro, 1981] E. Shapiro. Inductive inference of theo-
ries from facts. Technical Report TR 192, Computer
Science Department, Yale University, 1981.

[Valiant, 1984] L.G. Valiant. A theory of the learnable.
Comm. ACM, 27(11):1134-1142, 1984.

[Winston, 1984] P.H. Winston. Artificial Intelligence.
MA: Addison-Wisley, 2 edition, 1984.

