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A b s t r a c t 
We s t u d y w h a t k i n d o f d a t a m a y ease the 
c o m p u t a t i o n a l c o m p l e x i t y o f l ea rn ing o f H o r n 
clause theor ies ( i n Go ld ' s p a r a d i g m ) and 
Boo lean func t i ons ( i n P A C - l e a r n i n g p a r a d i g m ) . 
We give several de f in i t i ons o f good d a t a (ba­
sic and genera t i ve representa t ive sets) , and de­
ve lop d a t a - d r i v e n a l go r i t hms t h a t learn faster 
f r o m g o o d examples , and degenerate to learn 
i n the l i m i t f r o m the " w o r s t " possible exam­
ples. We show t h a t H o r n clause theor ies, k-
t e r m D N F and general D N F Boolean func t ions 
are p o l y n o m i a l l y learnable f r o m generat ive rep­
resenta t ive presenta t ions . 

1 I n t r o d u c t i o n 
I n any i n d u c t i v e lea rn ing m o d e l , how d a t a o f the ta r ­
get t heo ry are supp l ied to the lea rn ing p rograms is a 
c ruc ia l assump t i on . I den t i f i ca t i on i n the l i m i t [Go ld , 
1967] assumes t h a t the series of examples is an admis­
sible e n u m e r a t i o n o f a l l ( pos i t i ve a n d / o r negat ive) ex­
amples o f the ta rge t concept , and requires the learn ing 
a l g o r i t h m to p roduce a cor rect hypothes is in some finite 
t i m e . However , t he c o m p u t a t i o n a l t i m e and the number 
of examples needed fo r convergence depend on the ex­
ample series, and can no t be specif ied a priori. A l t h o u g h 
there is an e n u m e r a t i o n a l g o r i t h m t h a t ident i f ies any h-
easy [ B l u m and B l u m , 1975] m o d e l o f f i rs t order theor ies 
in the l i m i t , such an a l g o r i t h m is ex t reme ly inef f ic ient in 
pract ice. Shap i ro in his semina l w o r k [Shapi ro , 1981] 
presented an incremental m e t h o d M I S w h i c h searches 
the hypothes is space f r o m general to specif ic. However , 
M I S has t w o m a j o r sho r t comings . F i r s t , the re f inement 
o f the re fu ted clauses m a y i n t r oduce a large number o f 
f au l t y clauses, w h i c h need to be removed us ing a large 
number o f negat ive examples . Second, the a l g o r i t h m is 
s t i l l very inef f ic ient ( exponen t i a l ) . 

A p p r o x i m a t e i d e n t i f i c a t i o n , o r P A C - l e a r n i n g ( P r o b ­
ably A p p r o x i m a t e l y Cor rec t learn ing) [Va l i an t , 1984, 
B l u m e r et a/., 1989] assumes t h a t the examples of the 
ta rge t concept are d r a w n r a n d o m l y accord ing to some 
f ixed d i s t r i b u t i o n for l ea rn ing and for tes t ing the conjec­
tu re . I t requires the learner w i t h i n feasible a m o u n t o f 
t ime ( q u i c k l y ) , to p roduce , w i t h a h igh p r o b a b i l i t y (con­
f ident ly), a hypothes is w i t h a sma l l e r ror (accura te l y ) . 

However , few th ings are shown PAC- lea rnab le f r o m ran­
d o m examples: many classes o f Boo lean concepts wh i ch 
seem s imple to h u m a n learners ( for examp le , k - te rm-
D N F ) are proved no t PAC- lea rnab le (by k - t e r m - D N F ) 
unless RP = N P. It is s t i l l open if general D N F is 
PAC- lea rnab le . 

H u m a n learn ing , on the o ther h a n d , i s ef f ic ient , in ter ­
ac t ive , and da ta -dependen t . T h e s t u d y o f the i n te rac t i on 
between learners and teachers m a y reveal the essence of 
ef f ic ient h u m a n lea rn ing . Lea rn ing equ ipped w i t h teach­
ers answer ing var ious types of queries [ A n g l u i n , 1988] is 
one o f such s tud ies. We bel ieve t h a t the cu r ren t learn­
ing mode l does no t ref lects the q u a l i t y o f t he examples 
in the role of eff ic ient l ea rn ing . Here we present some re­
sul ts on w h a t k i n d o f d a t a may ease the c o m p u t a t i o n a l 
comp lex i t y o f l ea rn i ng 1 . 

We s t a r t w i t h an a t t e m p t to i m p r o v e the eff iciency 
o f M I S . We f i rs t discover a heur is t ic very useful to i m ­
prove the eff ic iency o f Shap i ro 's M I S , wh i le preserv ing 
the p r o p e r t y o f i den t i f i ca t i on in the l i m i t . Fu r t he r s tudy 
of t he heur is t ic leads us to discover a constructive (or 
data-driven) a l g o r i t h m S I M 2 for mode l inference. S I M 
opens a way for lis to s t u d y w h a t k inds of d a t a are nec­
essary for successful l ea rn ing . We give precise de f in i t i on 
o f " g o o d " examples , and design cons t ruc t i ve a lgo r i t hms 
t h a t learn faster f r o m the good d a t a , learn in longer 
t ime when examples become worse, and degenerate to 
learn in the l i m i t f r o m the " w o r s t " possible d a t a presen­
ta t ions . However , we bel ieve S I M is not a p o l y n o m i a l 
a l g o r i t h m . T h i s leads us to s t u d y the p r o b l e m in a more 
r igorous mode l o f P A C - l e a r n i n g . We p rov ide a s t ronger 
de f in i t i on o f " g o o d " examples (generat ive representa t ive 
sets), and show t h a t k - t e r m D N F and general D N F are 
P A C - l e a r n i n g f r o m genera t ive representa t ive sets. T h e n 
we r e t u r n to mode l inference p r o b l e m , and give a s im i la r 
s t ronger de f in i t i on o f " g o o d " examples for p o l y n o m i a l 
inference of logic p rog rams (p rov ided enough negat ive 
examples are supp l i ed ) . 

* l t may be argued that "good** examples may make learn­
ing arb i t rar i ly fast. But as we wi l l see, the nature of good 
data is implicit. Tha t is, what is impor tant is that a in i t ia l 
series of examples contains a set of good examples ( to be de­
fined). The order of examples in the series is irrelevant, and 
other examples in the series can be arbi t rary. Th is eliminates 
the possibil i ty of coding the target concept by examples. 

2 S I M is the inverse process of Shapiro's MIS. 
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Many data driven algorithms [Banerji, 1988, L ing, 
1989, Muggleton and Buntine, 1988, Ishizaka, 1988] have 
been studied. However, most of them are heuristic. They 
learn faster from some good data, but fail to learn (in 
the l imi t ) f rom "bad" data; l i t t le is done to characterize 
the "good" data for efficient learning. Some theoreti­
cal studies on learning from "good" examples have been 
explored. For example, Angluin [Angluin, 1981] defines 
"representatives" for live states as good strings for iden­
t i fy ing a DFA polynomially. Rivest and Sloan [Rivest 
and Sloan, 1988] show how to learn an arbitrary concept 
by first learning its relevant subconcepts. Freivalds et al 
[Freivalds et a/., 1989] study good examples in recursive 
theoretic inductive inference. 

2 Shapi ro 's M o d e l In ference Sys tem 
Shapiro's Model Inference System (MIS) [Shapiro, 198l] 
starts wi th the most general conjecture (a theory wi th 
an empty clause). When the conjecture T proves a nega­
tive example (T is too strong) the backtracing algorithm 
is invoked to remove faulty clauses from T. Removing a 
clause may overly specilize T, in which case the refine­
ments of faulty clauses are added into T. However, the 
possible refinements of any clause are infinite. So which 
refinements of which clauses should be added into T? As 
Shapiro pointed out, [Shapiro, 1981], MIS identifies the 
theory in the l imi t "...as long as it [the refinement] is 
'exhaustive' in some natural way". Therefore, unless us­
ing "good heuristics [unspecified in the paper] for order­
ing the addition of refinements" an indefinite number of 
faulty clauses can be inserted into the conjecture, which 
need to be removed using a large number of negative 
examples. 

For any faulty clause a removed from the conjecture 
T it suffices to add a set of most general specialization of 
a; in this case, the set of immediate refinements (a finite 
number) of We define rnys( — where p is a 
refinement operator complete for the theories [Shapiro, 
1981]. However, a good rule of thumb (heuristics) is to 
add those clauses in mgs that can be used to prove 
more (or most: a greedy algorithm) positive examples! 
Such a heuristic not only provides a reasonable guideline 
on theory revision, but also guarantees to find a solution 
if it exists. The following algorithm is the improved ver­
sion of MIS wi th the heuristic. 

repeat 
examine the next example 
w h i l e T proves a negative example 

do backtracing, remove a faulty  

w h i l e T fails to prove a positive example b 
do find a set such that  

u n t i l T is neither too strong nor too weak 
output T 
loop  

Now the question is: What examples are necessary for 
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convergence, and what examples are crucial for the con­
jecture to be updated appropriately? It turned out that 
the top-down algori thm MIS (driven by negative exam­
ples) is not a good place to study this problem: the over-
generalized clauses are not sensitive to the positive ex­
amples! Since our data-driven algori thm SIM constructs 
hypotheses from specific to general, we may characterize 
more acutely the properties of "good examples". 

3 I n t u i t i o n s of G o o d D a t a 
The philosophy of what good examples are necessary for 
successful learning is quite simple. Even though the set 
of data is infinite (but recursively enumerable), there 
must exist some finite characterizations (such as logic 
programs) of the data3 . If is these finite characteriza­
tions that are sought in inductive learning. To be suc­
cessful in learning, the learner must receive data that 
go through (use or exercise) every " l ive" component of 
one of the finite characterizations4. For example, data 
that go through all " l ive" transactions in a DFA (see 
[Angluin, 1981]), all " l ive" production rules in a gram­
mar for a language, or all " l ive" Horn clauses in a logic 
program5 . Clearly such a set of data provides a minimum 
amount of information about the theory to be identified, 
and should be supplied in the early stage of learning. 
We call this set a basic representative set. Later we wil l 
provide a stronger definition of "good" examples (called 
generative representative set) which go through every 
component of a finite characterization several times, and 
which can be used to construct the component. 

We give appropriate definitions of "good" examples 
and study the learnability results using good examples. 
The good examples supplied in the early stage of learn­
ing appear in the example series only implici t ly. We 
assume that the first p{n) 6 positive data should contain 
good examples (to be defined). In the Gold's model, the 
learning algorithm is allowed to ask membership queries; 
while in PAC-leaming, more random examples may be 
drawn according to the fixed distr ibut ion. In both mod­
els, the total sample size and computational complexity 
for successful learning is measured by n and the size of 
the target theory If the total sam­
ple size and computational complexity are polynomial, 
we say that the class of theories is polynomially learnable 
from good examples. If a class of Boolean functions not 
PAC-learnable becomes PAC-learnable w i th good exam­
ples, it implies that drawing a polynomial sample ran­
domly wi l l not have a high probability of containing good 
examples. 

Obviously, p measures the quality of the data (or the 
teacher): as p increases, the learning algorithm gradu­
ally degrades to be identification "in the l im i t " . Thus, 

3In model inference of Horn clause theories, if such a fi­
nite characterization does not exist, theoretical terms may be 
needed. This is outside the scope of the paper. 

4 We assume that the components are of disjunctive nature 
in this paper. 

5Something is "live" means it has to be used in deriving 
some data. 

6p is a polynomial function and n is the maximum of the 
problem sizes. 



our l e a r n a b i l i t y m o d e l un i f ies ef f ic ient l ea rn ing and i d e n ­
t i f i ca t i on i n t h e l i m i t based on the q u a l i t y o f t h e d a t a 
p resen ta t i on . 

4 Basic Representa t ive Sets 
G i v e n a language L, a logic p r o g r a m LP for L is any 
f i n i t e set of H o r n clauses of L. T h e mode l of a logic 
p r o g r a m is i t s least H e r b r a n d m o d e l , i.e., t he set o f a l l 
g r o u n d a toms of L de r i vab le f r o m LP. A complete data 
presentation of a model is an admiss ib le e n u m e r a t i o n of 
a l l pos i t i ve and negat i ve examples f r o m the H e r b r a n d 
base. T h e class of models of logic programs of L is the 
set o f least H e r b r a n d mode ls of a l l logic p rog rams of L . 
T h e model inference problem is: g i ven language L and a 
d a t a p resen ta t i on of a u n k n o w n m o d e l M f r o m the class 
o f mode ls o f logic p rog rams o f L , f i n d a logic p r o g r a m 
whose least H e r b r a n d m o d e l is M. 

D e f i n i t i o n s . A basic representa t ive set of a mode l M 
is a basic representa t ive set of any logic p r o g r a m LPM 
w i t h least H e r b r a n d mode l M. A basic representative* 
set of a logic p r o g r a m LP is a set S of g round a toms 
ob ta ined by t a k i n g , for each clause p = P :- Q\, . . ., Qn 

of LP, a l l g round a toms in a t rue i ns tan t i a t i on of p (a l l 
a toms are t r ue in the m o d e l ) . 

Basic representa t ive sets for a mode l can be very sma l l ; 
the size of a basic representa t ive set is no more t h a n the 
number o f occurrences o f a toms used in the cor respond­
ing LP. For examp le , a m o d e l a b o u t l is t reverse has a 
logic p r o g r a m : 

A basic representat ive set for the mode l may con ta in : 
J  

Not ice t h a t for any mode l to be in fe r red , there may 
exist more t h a n one logic p r o g r a m whose least mode l is 
the ta rge t m o d e l . For examp le , there are several so r t i ng 
p rograms to sor t a l is t o f in tegers. Depend ing on wh i ch 
logic p r o g r a m whose basic representa t ive set is g i ven , 
t h a t logic p r o g r a m w i l l be in fe r red . 

D e f i n i t i o n . A basic representa t ive presentation of a 
mode l M is an admiss ib le d a t a p resenta t ion whose i n i t i a l 
p o r t i o n (size p(n) for a p o l y n o m i a l f unc t i on p) conta ins 
a basic representa t ive set of M. 

5 A b s t r a c t i o n Opera to rs and S I M 
O u r da ta -d r i ven a l g o r i t h m S I M is the inverse process 
o f M I S . S I M s ta r t s w i t h the most specif ic con jecture 
and makes i t more general by add ing genera l izat ions o f 
clauses in the cu r ren t con jec ture ob ta ined by a p p l y i n g 
abs t rac t i on ope ra to rs , gu ided by good examples. On the 
o ther h a n d , we prove completeness for t he abs t rac t i on 
opera to rs , s h o w i n g t h a t S I M ident i f ies h-easy models in 
the limit. 

Let size be a t o t a l recurs ive f unc t i on f r o m clauses 
to pos i t i ve integers t h a t gives a measurement of 
the c o m p l e x i t y o f clauses. T h e on ly requ i rement 
on size is t h a t for any in teger n, the set { p \ p 
is a H o r n clause w i t h size\ is f i n i te . 

D e f i n i t i o n . An abstraction operator A is a mapping 
from clauses to sets of clauses, such that 

where and size\  
Any such operator A induces an operator (also de­

noted A) which takes sets of clauses to sets of clauses; 
for a set S of clauses, 

Note that this operator is monotonic, i.e. im­
plies . As usual, we define the operator An 

by induction: . and  
One important difference between refinement and ab­
straction operators is that for any abstraction operator 
A and any finite set S of clauses, there is a finite "least 
fixed point" , the closure of S under A. 

L e m m a 5.1 For anv finite set S of Horn clauses, there 
is an integer n with  

For convenience we wil l often use a (finite) set A of 
abstraction operators. The closure of S under A wil l be 
denoted .4(5) . 

5.1 Comple teness a n d Convergence 

D e f i n i t i o n . A set A of abstraction operators is com­
plete if for every logic program LP and every basic rep­
resentative set S of L P , A(S) contains every clause of 
LP (up to possible renaming of variables in clauses). 

Since abstraction operators are monotonic, we observe 
that if A is complete, and S contains a basic representa­
tive set of LP, then A(S) contains every clause of LP. 

A simple version of the constructive algorithm SIM 
works as follows: from any finite set. of positive data 
5, A(S) can be calculated. If A(S) cannot prove some 
positive data, they are added to S and A(S) is recal­
culated. Eventually the basic representative set of the 
model wi l l be contained in S, and wi th a complete set 
of abstraction operators, A(S) wi l l contain all clauses 
in the logic program of the model. A(S) may contain 
faulty clauses, which are removed by Shapiro's contra-
dictory backtracing algorithm when a negative example 
is proved to be true. Unlike Shapiro's MIS, the removal 
of a faulty clause does not introduce any more clauses 
into the conjecture. Clearly, this simple algorithm iden­
tifies any h-easy models in the l imi t . 

T h e o r e m 5.1 If a set of abstraction operators A for the 
class of theories is complete, then the constructive algo-
rithm above identifies any h-easy model8 of that class in 
the limit given an enumeration of positive and negative 
examples of the model. 

7Most proofs of the paper are omitted and can be supplied 
from [Ling and Dawes, 1990, Ling, 199l]. 

8The attempted derivation of an atom from T may not 
halt. A total recursive function h is used to bound the 
resources in proving. For more details see [Shapiro, 1981, 
Blum an d Blum, 1975]. 
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6 Var ious A b s t r a c t i o n Ope ra to r s 

F I G U R E 1 : T H E S I M A L G O R I T H M 

However, even if S is small, A(S) can be huge (expo­
nential). We use the same heuristic for MIS to improve 
the efficiency of the algorithm while retaining the prop­
erty of identification in the l imi t . 

5.2 U s i n g G o o d D a t a 

In general, f rom the current conjecture set T, only a 
small number of clauses in A(T) wi l l be useful in fur­
ther generalizations (via abstraction operators). These 
clauses may be identified by some "simple" positive data 
that can be proved using these clauses. If F+ in the 
following algorithm contains positive examples ranging 
from "simple" to "complex" wi th respect to applications 
of abstraction operators, SIM wil l be much more efficient 
and need much fewer negative data than Shapiro's MIS. 

In practice what good examples should be supplied to 
SIM? First of al l , a small set of basic representative set 
should be supplied. Then, simple examples are those 
positive examples similar to the examples in the rep­
resentative set, and more complex examples are those 
less similar ones. For example, 
are close to  
are similar to and 
rev are less similar. 

Also we notice that for a given set T containing a 
representative set, A(T) wi l l be calculated. The size 
of A(T) may be exponentially larger than size(a) for 
a T. Thus, examples in S of SIM must be small (i.e., 
size(a) must be small). This verifies our intu i t ion that 
in learning list reverse for instance, the examples that 
reverse very long lists are not good examples (while in 
PAC-learning, examples drawn randomly may have an 
indefinite size). 

Figure 1 gives an improved version of S IM. The con­
jecture T starts with the set initial(S), which is the 
most specific conjecture from S in the representational 
language of the theory (See Section 6 for details). The 
algorithm identifies any A-easy models in the l imi t , and 
learns faster given a good set of data. 

We design abstraction operators for various sub-classes 
of clauses, similar to Shapiro's refinement operators for 
sub-classes of clauses [Shapiro, 1981]. Thus, the algo­
r i t hm is more efficient if the class of models to be inferred 
is known. 

6.1 A b s t r a c t i o n O p e r a t o r s f o r A t o m s 
We first discuss the simplest class of models, which 
have logic programs containing only uni t clauses. Here 
initia/(S) in the algori thm SIM is just the set of all posi­
t ive examples in 5. The set of abstraction operators Aat 
for the atom p contains two operators A1 and A2 defined 
as follows: 

• A1(p) is the set of atoms obtained from p by replac­
ing some or all occurrences of a constant in p by a 
variable not in p. 

• A2(p) is the set obtained by replacing some or all 
occurrences of a compound ground term in p by a 
variable not in p. 

T h e o r e m 6.1 is a set of abstraction operators com-
pletc for atomic Horn clauses. 

6.2 A b s t r a c t i o n O p e r a t o r s f o r H o r n Clauses 
Skipping other subclasses, we now study abstraction op­
erators for general Horn clause theories. The most spe­
cific conjec-
ture (initial(S)) contains n most specific clauses, each 
in the form of where 
( are ground atoms in S. The set Acl of 
abstraction operators for general Horn clauses contains 
three operators A1,A2, and A3. 

• A1 and A2 are the same as in Aat except that they 
now apply to occurrences of a constant or term in a 
whole clause rather than in one atom. 

• if p is any Horn clause wi th at least one atom in its 
body, A3(p) is the set of clauses formed by removing 
any one atom from the body of p. 

T h e o r e m 6.2 is a set of abstraction operators 
complete for general Horn clauses. 

If the class of models is a sub-class of models of general 
Horn clauses, then more efficient abstraction operators 
are possible. For example, we might consider only Horn 
clauses wi th no variable occurring only once in a clause, 
or w i th the length of body bounded by a small constant. 
It is easy to modify the abstraction operators for these 
and other syntactically restricted classes. 

7 Implementat ion of S I M 
We have developed SIM in Quintus Prolog. SIM learns 
faster wi th a small set of good examples containing a 
representative set. However, in learning various logic 
programs, SIM does not have a consistent good perfor­
mance. The major reason is that there may not exist 
any new positive examples (besides those in S of SIM) 
that can be proved in A(7) but not in T (see algorithm 
SIM in figure 1). In this case abstraction operators have 
to be applied to the current conjecture (T = A(T) in 
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the algori thm). This makes the conjecture to grow too 
fast to be manageable. In general, we believe SIM is not 
a polynomial a lgor i thm. In fact, there is no polynomial 
algori thm that identifies any Horn clause theory f rom 
basic representative presentations if the conjecture must 
contain the same number of clauses as the target theory 
(see next section). 

8 P A C - L e a r n i n g Boo lean Func t ions 
f r o m G o o d Examples 

D e f i n i t i o n . A class of concepts is PAC-learnable from 
good examples if for any / in the class, there exists a 
learning algor i thm A such that given any set S of posi­
tive examples of / that contains the good examples, and 

where p is a polynomial function and 
n is the number of variables, A PAC-identifies /. Notice 
that A may draw more random examples from the fixed 
distr ibut ion. 

Similar to the good examples in the model inference 
discussed in the previous sections, we may define good 
examples in PAC-learning as a set of examples that go 
through every term of the DNF function once (basic rep­
resentative set). However, a l i t t le more thoughts reveal 
that such definit ion is insufficient for polynomial learn­
ing of k-term DNF . Assume that such a polynomial al­
gor i thm (denoted as A) existed, then k-term DNF would 
be PAC-learnable (by k-term DNF) without basic repre­
sentative sets as follows: First a sample of a polynomial 
size is drawn such that w i th a high probabil i ty each term 
in the target function is sampled. Choose at most A: data 
from the sample as basic representative sets in A. Ap­
ply A on all sets (since there is a polynomial number of 
the sets, the sample size A would draw would be polyno-
mially larger). Clearly this polynomial algorithm PAC-
identifies any k-term DNF. This is contradictory to k-
teYm D N F is not PAC-learnable by k-term DNF (unless 
RP = NP). Essentially it is NP hard to find a k-term 
DNF that is consistent w i th a set of examples even when 
a set of basic representative set is provided. Since any 
k-term D N F can be transferred to a propositional Horn 
clause theory w i th k clauses, therefore, even wi th a ba­
sic representative set, there is no polynomial algorithm 
that identifies the theory if the conjecture must contain 
the same number of clauses as in the target theory. It is 
unknown to us if basic representative set is sufficient for 
polynomial inference of general DNF formulas (by pro-
ducing a D N F wi th a size at most polynomially larger). 

8.1 P o l y n o m i a l L e a r n i n g o f D N F f r o m 
G e n e r a t i v e E x a m p l e s 

We provide a stronger definit ion of good examples where 
k-term D N F and genera) DNF are polynomially learn-
able. 

A Boolean funct ion in D N F consists of terms. We first 
define generative sets for a term. Let a be an instance 

Let < be a term, and t(a) be the t ru th value of 
t w i th a as the assignment of the variables in t. 

D e f i n i t i o n s . For a set S of instances, lgg(S) (least gen­
eral generalization) is a term t such that for all 
t(a) is true; and for any other term t ' , if for all  

t'(a) is true, then S is a generative set of t if for 
all and Igg(S) = t. 

Igg(S) is easy to calculate: check iih bits of all in­
stances in S. If they are all 1, then x i is in t; if all 0, then 
xi- is in t; otherwise neither x,- nor xi is in t. In another 
word, if t does not contain a variable x nor x (i.e. x is an 
irrelevant variable in t ) , there are at least two instances 
in a generative set of t whose bits on x are different. 
Intui t ively the generative set of t contains positive ex­
amples showing contrast information. Notice however, 
these examples may not constitute a "near-miss" [Win­
ston, 1984]. 

For any term t, there exists a smallest generative set S 
of t w i th where is a constant throughout 
the paper. This is the set of positive examples with a 
constant size showing all contrast information of a term. 

D e f i n i t i o n . S is a generative representative set for a 
term t if S is a generative set o f t w i th A genera­
tive representative set for a Boolean formula f in DNF is 
the union of generative representative sets for all terms 
in an equivalent DNF formula wi th a smaller or equal 
size. A generative representative presentation R for / is 
a set of positive examples that contains a generative rep­
resentative set of / w i th where p is 
a polynomial function and n is the number of variables. 

Using generative representative presentations, we 
show that many classes of DNF formulas are PAC-
learnable. Basically, f rom a generative representative 
presentation, we can form all possible terms by apply­
ing igg on at most r examples, and form all possible 
Boolean formulas in the hypothesis space (i.e., form 
all k-term DNF formulas in learning k-term DNF and 
form one disjunction of all terms in learning general 
DNF) . Draw enough random examples according to a 
simple and important theorem due to [Valiant, 1984, 
Blumer et a/., 1989]: If C contains a finite number of 
Boolean functions, then any polynomial algorithm that 
requests sample size at ieast r _ and outputs 
any consistent function in C PAC-identifies C. For 
proofs of the fol lowing theorems, see [Ling, 199l]. 

T h e o r e m 8.1 k-term-DNF is PAC-learnable (by k-
term DNF) from generative representative presentations 
with a sample size and time com­
plexity  

T h e o r e m 8.2 Any DNF f is PAC-learnable (by 
DNF with at most p(n, size terms) from 
generative representative presentations with sample 
size and time complexity 

Is the definition of generative representative set too 
strong? In some sense it is not. In the worst cases it is 
necessary to enumerate all terms formed by applying Igg 
on subsets of data from ini t ia l port ion of p(n) data. For 

to be polynomial, can 
only be a constant. Of course, generative representative 
set is not a necessary condition for polynomial learning 
of DNF formulas: there are other spacial cases where 
DNF is PAC-learnable. 
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9 M o d e l In ference f r o m Genera t i ve 
Examples 

T h e de f in i t i ons o f generat ive examples for the mode l i n ­
ference can be g iven in a s im i l a r way as for P A C - l e a r n i n g 
D N F . T h e least genera l genera l i za t ion (Igg) o f a set of 
clauses i s t aken f r o m P r o t k i n ' s w o r k [ P l o t k i n , 1970]. We 
define a set of g r o u n d a toms as a generative represen­
tative set for a logic p r o g r a m LP i f i t is the un ion of 
generat ive representa t ive sets fo r a l l clauses in LP. A set 
S of g r o u n d a toms is a genera t i ve representative set for 
a clause A :- B 1 , . . . , B n i f there are at mos t r t r u e i n ­
stances of t he clause in t he f o r m of . 

such t h a t a l l are in S, 
and con ta ins the clause A :-
B1 •••, Bn- T h e resu l t i ng clauses can be very l ong . Some 
techniques o f log ica l r educ t i on o f clauses [ B u n t i n e , 1988, 
M u g g l e t o n and Feng , 1990] and syn tac t i c r es t r i c t i on 
(such as i j - d e t e r m i n a t i o n [Mugg le ton and Feng, 1990]) 
may be app l i ed . C lea r l y the t o t a l number o f possible 
clauses f r o m the Igg of at mos t r mos t specif ic clauses is 
p o l y n o m i a l , so is the m a x i m u m n u m b e r o f f a u l t y clauses 
in the con jec tu re . T h u s the mode l inference p r o b l e m can 
be solved in p o l y n o m i a l t i m e f r o m a genera t i ve repre­
senta t ive p resen ta t i on i f a p roper set ( w i t h a p o l y n o m i a l 
size) of nega t i ve examples is p r o v i d e d . T h i s is, as we 
bel ieve, t h e cond i t i on for o the r cons t ruc t i ve a l go r i t hms 
based on least general genera l i za t ion to learn in p o l y n o ­
m ia l t i m e . 

10 Conclus ions and F u r t h e r Research 
A new lea rn ing m o d e l t h a t learns faster i f the i n i t i a l por­
t i o n of the examples conta ins a set of good d a t a is de­
ve loped. T h e m o d e l captures t he q u a l i t y o f the d a t a (or 
teacher) in the role o f the speed o f the learn ing . T h u s , 
the mode l p rov ides a new approach to s tudy h u m a n 
lea rn ing , w h i c h i s ef f ic ient , i n te rac t i ve and d a t a - d r i v e n . 

C u r r e n t l y we are s t u d y i n g the use of "nega t i ve repre­
sentat ive se ts " , and the a p p r o p r i a t e de f in i t ions o f good 
examples for theor ies w i t h non -d i s j unc t i ve componen ts 
(such as M- fo rmu las ) . We hope to invest iga te language 
lea rn ing f r o m good sentences in the near f u t u re . 
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