CABOT: An Adaptive Approach to Case-Based Search

James P. Callan* Tom E.

Fawcett+ Edwina L. Rissland++

Department of Computer and Information Science
University of Massachusetts « Amherst, Massachusetts 01003 « USA
callan@cs.umass.edu, fawcett@cs.umass.edu, rissland@cs.umass.edu

Abstract

This paper describes CABOT, a case-based sys-
tem that is able to adjust its retrieval and adap-
tation metrics, in addition to storing cases. It
has been applied to the game of OTHELLO. Ex-
periments show that CABOT saves about half
as many cases as similar systems that do not
adjust their retrieval and adaptation mecha-
nisms. It also consistently beats these systems.
These results suggest that existing case-based
systems could save fewer cases without reduc-
ing their current levels of performance. They
also demonstrate that it is beneficial to distin-
guish failures due to missing information, faulty
retrieval, and faulty adaptation.

1 Introduction

Many case-based reasoning (CBR) systems are designed
to solve new problems by adapting solutions to similar,
previously solved, problems. The proposed solution to a
new problem can be inappropriate for a variety of rea-
sons: 1) the system lacks a similar past case, 2) the
"wrong" case was retrieved, or 3) the retrieved case was
not adapted properly to the new problem. Most case-
based and instance-based systems are designed to handle
just one or two of these errors. However, it is rare for a
CBR system to handle all three.

It is important to distinguish between errors with dif-
fering causes because they require different solutions. It
may be possible to compensate for an error in the re-
trieval mechanism by adding more information or alter-
ing the adaptation mechanism, but the resulting sys-
tem might do more work or save more information than
would otherwise be necessary. For example, the CHEF
system [Hammond, 1986] may expend effort adapting a
retrieved case when a different case could be adapted
with less effort. Compensating for an error, rather than
dealing with its causes, may also hamper future perfor-
mance.

*Supported by a grant from Digital Equipment Corp.

+ Supported by a grant from GTE Laboratories Inc.

++ Supported by grants from the Air Force Office of Spon-
sored Research under contract AFOSR-90-0359; the National
Science Foundation, contract IR1-890841; and GTE Labora-
tories Incorporated.

The work presented in this paper is based upon two
hypotheses. The first is that it is useful for a case- or
instance-based system to distinguish among errors due
to a lack of information, a faulty retrieval mechanism,
and a faulty adaptation mechanism. The second hy-
pothesis is that a problem-solving system can profitably
use feedback from its environment to distinguish among
the three types of errors. Once this distinction can be
made, it is assumed that error correction can be done us-
ing a standard machine learning technique for supervised
learning.

These hypotheses have been tested in CABOT, a hy-
brid case-based reasoning/machine learning system that
both reasons from cases and uses an inductive learning
algorithm to adjust its retrieval and adaptation mecha-
nisms. CABOT has been tested against a non-learning
system, two case-based systems with fixed retrieval and
adaptation mechanisms, and two inductive learning sys-
tems. Results from these tests suggest that existing case-
based and instance-based systems could save fewer cases
without reducing their current levels of performance.

2 Case-Based Reasoning

Although case-based reasoning systems vary signifi-
cantly, those that are used for problem-solving share a
common approach. When a new problem is encountered,
the system first retrieves one or more cases that are sim-
ilar to the new problem. Typically no case matches the
new problem exactly, so the system must adapt one of
the retrieved solutions to the new problem. Finally, the
system may add the new problem and its solution to the
case base, and it may adjust its indices.

Instance-based learning algorithms also share this ap-
proach to problem-solving, although they are sometimes
considered distinct from case-based systems. When a
new problem is encountered, one or more similar in-
stances are retrieved. |If their classifications differ, the
differences must be resolved to provide a classification
for the new instance. Finally, the system may add a new
instance to its instance base. The primary differences
between case-based systems and instance-based learning
algorithms are the tasks to which they are applied, and
the complexity of the information that they store; cases
are typically more complex than instances.

The simplest approach to error-correction is to save
all information, whether or not an error was made. The

Gallon, Fawcett, and Rissland 803



1. Retrieve the stored problem state most like the current problem state, according to the Retrieval metric.

2. Select from the available successor states the one most like the retrieved successor, according to the Selection

metric.

3. Implement the selected action.

4. Receive feedback from the Oracle about which successor was best.

5. If CABOT did not select the best successor, perform error-correction:

(a) Try to adjust the Retrieval metric. If successful, go to 1.

(b) Try to adjust the Selection metric. If successful, go to 1.

(c) Add the current problem state and the best successor to the case base. Go to 1.

Figure 1: CABOT's problem-solving cycle.

GINA program [De Jong & Schultz, 1988] for playing
OTHELLO adopts this approach, saving every board that
it sees. One might expect GINA eventually to become
swamped with cases. Instead, the number of unique
boards encountered by GINA in its play with opponents
eventually stabilized at a small fraction of the number
of possible boards.

Aha & Kibler (1989) have experimented with a family
of instance filtering algorithms. The Proximity algorithm
saves all instances, while the NTGrowth algorithm dis-
cards instances that would be classified correctly or that
appear to be noisy (ie., their classifications conflict with
the rest of the data). In their tests on noisy data, the two
algorithms were roughly equal; thus, equal performance
was gained from fewer instances.

Both CYRUS [Kolodner, 1983] and PROTOS [Bareiss
& Porter, 1987] dynamicaUy adjust the structure of
their case bases, and hence their retrieval mechanisms.
CYRUS tries to maintain an appropriate organization of
cases based upon an internal metric, expressed in terms
of the number of adherents and exceptions to a given
memory organization packet (MOP). In contrast, PRO-
TOS is given feedback by a benevolent teacher. The
teacher provides the correct answer and may explain the
relevance of individual features. The teacher also ap-
proves or rejects changes that PROTOS proposes, which
prevents PROTOS from making serious mistakes. This
feedback also enables PROTOS to prune its case-base
by merging cases.

EACH [Salzberg, 1988] also stores exemplars (general-
ized, representative instances) to perform classification.
When EACH encounters a new instance, the distance to
each stored exemplar is measured. The closest exem-
plar determines the classification that EACH predicts.
EACH generalizes and specializes its exemplars in re-
sponse to classification successes and failures. In addi-
tion, EACH uses a weighted distance function, similar
to CABOT's, which is adjusted after every classification
error. Thus EACH tunes its retrieval mechanism in re-
sponse to limited feedback from its environment.

CHEF [Hammond, 1986] adjusts its adaptation mech-
anism and also its retrieval mechanism by changing the
way cases are indexed. CHEF receives very detailed feed-
back from a simulator, which it can analyze to identify
the reason that an adapted case fails to meet its goals.
After it repairs the adapted case, CHEF constructs

804 Learning and Knowledge Acquisition

demons that prevent it from making similar adaptation
mistakes in the future. CHEF also indexes the repaired
case according to the failures that the case avoids, as
well as the goals the case satisfies.

Adding a case, adjusting the retrieval mechanism, and
adjusting the adaptation mechanism are all ways of cop-
ing with failure. Few of the systems above make clear
distinctions among causes of failure, and therefore it is
rarely clear which mechanism should be adjusted.

Most systems that can adjust their retrieval or adapta-
tion strategies depend upon detailed feedback from the
problem-solving environment. Requiring detailed feed-
back limits the environments in which those systems can
operate. In contrast, CYRUS optimizes an internal met-
ric that does not use feedback from the environment.
However, the inability to use feedback prevents a system
from adjusting to the environment in which it operates.
Therefore, an important research question is how a sys-
tem can adjust both its retrieval and adaptation mecha-
nisms using only limited feedback from the environment.
The following sections present a system that addresses
this question.

3 CABOT

The CABOT program was developed to investigate the
problem of using limited feedback from a problem-
solving environment to distinguish different types of er-
rors in case-based reasoning. CABOT is designed for
state-space search, where states are represented as fea-
ture vectors and problem-solving consists of repeatedly
selecting and then executing one of a set of actions. Fig-
ure 1 outlines CABOT's problem-solving cycle. Cases

— — —
consist of pairs of states (8p, 8.}, where S, (the child) is

the desired successor to §; (the  parent).

State-space search is performed by starting at an ini-
tial state and repeatedly selecting successor states until
a goal state is reached. The object of CABOT's reason-
ing is solely to determine, at each state in the search, the
best successor state. CABOT does this by performing
a restricted form of adaptation called selection. when
a case is retrieved, it is used to select one from a set
of successor states. By improving the quality of deci-
sions at each step in the search, CABOT improves its
problem-solving performance.



The feedback available to CABOT is qualitative. A
domain-dependent Oracle identifies the best successor
state, but it does not explain its reasoning, nor does
it score or order the rest of the available successors.
CABOT's task is to use this limited feedback to improve
its problem-solving performance. When CABOT's selec-
tion differs from that of the Oracle, its decision is con-
sidered a failure that it must correct. CABOT first tries
to adjust its retrieval metric. If the retrieval metric can-
not or should not be changed, CABOT tries to adjust
its selection metric. Changes to the retrieval and selec-
tion metrics are both subject to an assured consistency
condition that only allows changes if the two metrics
remain consistent with each other. CABOT checks for
assured consistency by testing any changes on a random
sample of problems that it has previously encountered;
if a change to one of the metrics decreases accuracy, the
change is discarded. |If neither metric can be changed,
CABOT adds a new case.

The next three sections discuss each step in detail.

3.1 Retrieval

Retrieval consists of identifying the case R = (Rp, R_.:)

—— i
whose Rp is closest to the current problem state Sp. Dis-
tance is determined by a weighted distance function dg

——

(the retrieval metric) whose weight vector Wy can be ad-
justed during error correction. No similarity threshold
is used; retrieval always returns a case.

3.2 Selection

It is rare for the retrieved successor state to exactly
match any of the available successors of the current prob-
lem state. However, the exact pair of states is less im-
portant than their relationship; the pair of states en-
codes a transformation of the problem that presumably
reduces the distance to a goal. Selection consists of iden-
tifying the successor state whose transformation of the
current problem is most similar to the transformation
represented by the retrieved case.

The transformation of the problem from one state to
another is represented by the difference between their

— ——t —
feature vectors. The vector AR, = Rp — R, represents
the change in feature values that should ideally occur
between the current problem state and the selected suc-
cessor state. The change that actually occurs between

—
the current problem state and each successor state S is

— — —_
represented as AS, = S,, — 8.. These relationships are
illustrated in Figure 2.

Selection consists of identifying the successor state

— arrn—)
whose AS, is closest to AR.. Distance is determined
by a weighted, signed distance function ds (the selection

metric), whose weight vector Ws can be adjusted during
error correction, ds is defined as follows:

ds(X,Y) =Y Ws, -sign(X; - ¥i) - (Xi - Y3)?

Ties are broken arbitrarily. No similarity threshold is
used; selection always selects a successor state.

%

| ~————7|
B
Bl

Zz|

Figure 2: The relationships among cases in retrieval and

e —g
selection. .S'ct is the successor chosen by CABOT. SC‘ is
the successor chosen by the Oracle.

3.3 Error Correction

After CABOT selects a successor state and carries out
the associated action, it asks the Oracle to identify the
desired action. If the Oracle agrees with CABOT's
choice, no error correction is performed. Otherwise,
CABOT considers its choice to be wrong and tries to
correct itself. Error correction consists of the following:

1. CABOT checks to see ifit retrieved the wrong case.
It does so by conducting retrieval again with the
added constraint that the retrieved case must cause
it to select the desired successor state. The resulting

—_— —

case .N = (Np, N.} is called a near miss. If no such
case is found, CABOT proceeds to step 2.

If a near miss is found, CABOT tries to adjust the
weighted Euclidean distance function dg so that the
near miss state is closer than the retrieved state to
the current problem state. The desired distance re-
lationship is:

—_— — —t —
dr(5p, Np) < dr(5p, By)
This relationship may be expressed in terms of the

]
retrieval weight vector Wg:
Wg- ((SP-' - NP.'F) < Wg- ((SD\‘ - RP\')z)

Wr - ((Sp — Ny = (Sp — Rp)P) <0 (1)

CABOT adjusts W} by applying the absolute cor-
rection rule [Nilsson, 1965] to Equation 1.

Finally, CABOT verifies that the retrieval and selec-
tion metrics remain consistent, as discussed earlier.
If they do, error correction terminates. Otherwise,
the adjustments to the retrieval weight vector are
discarded, and CABOT proceeds to step 2.

2. CABOT assumes that it retrieved the right case, but
that the selection metric is wrong. It tries to adjust
the selection weight vector, in a manner similar to
that used for the retrieval weight vector. Adjust-
ment is based upon the desired relationship:

ds(ARc! Asc‘) < dS(ARcv ASC;:)

E: is the successor state chosen by CABOT. E: is
the desired successor state.

Callan, Fawcett, and Rissland 805



CABOT verifies that the retrieval and selection
metrics remain consistent, as discussed earlier. If
they do, error correction terminates. Otherwise, the
adjustments to the selection weight vector are dis-
carded, and CABOT proceeds to step 3.

3. CABOT assumes that its error was due to missing
information, and adds a new case. The new case
consists of the current problem state and the desired
successor state.

Weights used in the retrieval and selection metrics

— —

(Wg and Ws) are initially set to 1.0 and are adjusted by
the error correction process. CABOT attempts to adjust
its retrieval metric (step 1) before attempting to adjust
its selection metric (step 2) because retrieval determines
the cases that are used in selection. This ordering is de-
signed to make the retrieval metric converge before the
selection metric.

OTHELLO

CABOT has been been tested on OTHELLO, a two-player
board game. Players alternate moves, and there are usu-
ally 60 moves in a game. Although the rules of OTHELLO
are simple, the search space contains approximately 105°
nodes, and the strategies can be quite complex. OTH-
ELLO was selected as a domain for CABOT because of
its large search space, because it has been used as a
domain by researchers in artificial intelligence [Rosen-
bloom, 1982; Lee & Mahajan, 1988; De Jong & Schultz,
1988], and because of the availability of immediate feed-
back after every move. Problem-solving in OTHELLO con-
sists of deciding which move to make next; on each cycle,
CABOT selects a move, makes it, receives feedback, and
possibly performs error correction.

The OTHELLO Oracle makes decisions by conducting a
minimax search, using alpha-beta pruning, to a depth of
3-ply and then evaluating search states with a polyno-
mial evaluation function. The Oracle shifts to exhaustive
search for the last 8 moves of the game.

Raw board positions are often considered too specific a
representation for OTHELLO game states, so it is common
to represent them with vectors of more abstract features.
A feature is a numeric function that measures some im-
portant characteristic of a board position. CABOT and
its opponents use a set of features common to OTHELLO-
playing programs: mobility,  potential  mobility, corner
squares, X squares, etc. [Rosenbloom, 1982] Hereafter,
"board" will be used to denote this feature vector, rather
than the actual raw board configuration. The OTHELLO
Oracle uses a larger and more comprehensive set of fea-
tures than is used by CABOT.

4 An Experimental Domain:

4.1 LATCBR: A Pure Case-Based Opponent

One of CABOT's opponents is a case-based reasoning
system that uses a very simple version of a claim-lattice
[Rissland & Ashley, 1987] to determine the best move.
This opponent, called LATCBR, orders the cases into a
lattice in which the cases closest to the root are those
with maximal subsets of features exactly matching the
current problem state. LATCBR contains no built-in
indices to prune this set, nor does it have any way of

806 Learning and Knowledge Acquisition

judging which of the nodes at a given level are best for
the player. It therefore treats all nodes occurring closest
to the root as equal, and discards the rest. The cases
contained in these nodes are all considered retrieved.

The claim-lattice was designed for comparing and con-
trasting competing alternatives. It does not offer a
straightforward mechanism for selecting a single alter-
native, nor is there any a priori reason for selecting one
alternative as best. The approach adopted for LATCBR
is to adapt each case to the current situation by iden-
tifying the move that it matches most closely, and then
make the choice that is recommended by the majority
of the cases, with ties broken randomly. The degree of
match between a case and a given move is determined
by the number of features on which they exactly match.

LATCBR does not attempt to correct either its re-
trieval function or its adaptation function when it makes
a mistake. When the Oracle disagrees with its chosen
move, LATCBR adds a new case.

4.2 PIL: A Pure Inductive Learning Opponent

The PIL opponent uses an inductive learning algorithm
to improve a heuristic evaluation function h over search
states. PIL selects the successor to the current problem
state for which h is greatest; ties are broken arbitrarily.

After each selection, PIL asks the Oracle to identify
the desired successor. |If the desired successor differs
from PIL's selection, PIL considers its choice to be wrong
and tries to correct h. It does so by adjusting h so that
the desired successor state is rated more highly than all
other successor states.

PIL's evaluation function h is a weighted sum of fea-
ture values. Weights in the weight vector Wyt are ini-
tially set to 1.0. Qualitative feedback can be used correct
the weights, as shown below:

WS.) > R(S.)

Wprr -8, > Wprp -8,
[ —_— J—
Wperr - | Sey — Se, > 0 (2)

PIL adjusts the weight vector by applying the absolute
correction rule [Nilsson, 1965] to Equation 2.

5 Experiments and Results

Four experiments were run to determine the relative ef-
fectiveness of the pure case-based (LATCBR), adaptive
case-based (CABOT), and pure inductive learning (PIL)
move selection strategies. The experiments were de-
signed to examine three characteristics of each strategy:

« Effectiveness: How effective was it for playing
OTHELLO? Effectiveness was measured by the
win/loss ratio, and by the average discs taken per
game.

« Decision Accuracy:
the Oracle's choice?

How often did it agree with

» Growth of Case Base: For the case-based sys-
tems, how quickly did the case base grow?



0.8
g CABOT (hybrid CBR-ML)
5 0.7+ - — — LATCER (pwe CBR)
& 061
&
8 0.5
$ o4
_2 0.3
g 0.2
8 a1
0.0l ! | | | |

0 5 10 15 20 25

Number of Games

Figure 3: Accuracy of decision-making.

Table 1: Games won and lost by each player during the
four tournaments.

Opponents | 1st player 2nd player tied
CABOT vs PIL: 58 39 3
CABOT vs LATCBR: | 14 10 0
CABOT vs Oracle: 1 24 1
PIL vs LATCBR: 66 32 2

Each tournament began with empty case bases and
unweighted linear threshold units (i.e., all weights set
to 1.0). At the beginning of each game, one player was
randomly selected to make the first move. Each player
was permitted to learn from both its own moves and its
opponent's moves throughout the tournament. By train-
ing on both sets of moves, a learning program receives
balanced training because it can train on better game
states than it might achieve on its own.

Games were played until either 100 games had been
played, or until the Oracle's best game had been en-
countered. The latter stopping condition is important
for case-based competitors. |If a case- or instance-based
game-playing program is permitted to observe an oppo-
nent that follows a fixed strategy, it will eventually mem-
orize that opponent's best game. Once the opponent's
best game is memorized, the case-based program cannot
lose more than 50% of the subsequent games. When both
opponents are case-based and both are learning from a
fixed Oracle, they will eventually begin playing a single
game repeatedly. All of the tournaments reported below
were ended if this condition occurred. The results from
the four tournaments are summarized in Tables 1 and 2.

Table 1 shows the number of games won, lost and tied
by each playeT during the four tournaments. It demon-
strates that CABOT's performance is superior to that
of the pure case-based system (LATCBR) and the pure
inductive learning system (PIL) in playing OTHELLO. It
also shows that the performance of PIL is superior to
the performance of LATCBR. This result is unexpected
because the training data are not linearly separable. We
expected PIL to perform more poorly, and are unable
to explain why it did not. The performance of CABOT

® 1500 T CABOT (hybrid CBR-ML}
§ = = — LATCBR {pure CBR}
o 1250 - -7
© 1000 + P
o
-
S 7501 ’
by -
rd
500 + Pd
s
250+ ,”7
/
0 | 1 | —

o 5 10 15 20 25

Number of Games

Figure 4: Growth of case base during game playing.

Table 2: Average discs per game won by each player
during the four tournaments.

Opponents | 1st player 2nd player
CABOT vs PIL: 34.1 26.6
CABOT vs LATCBR: | 33.1 29.2
CABOT vs Oracle: 4.9 55.7
PIL vs LATCBR: 38.1 25.9

against the Oracle is not surprising. However, it is in-
teresting to note that it took CABOT just 26 games to
discover the Oracle's best game. After that point, the
two opponents began playing the same game repeatedly,
each losing exactly 50% of the games.

OTHELLO players are rated both on how often they
win and on the magnitude of the score. Table 2 reports
the average number of discs won by each player in each
tournament. The figures confirm that the hybrid sys-
tem is better at selecting moves than either of its pure
opponents.

Figure 3 shows the decision accuracy of CABOT and
LATCBR. Decision accuracy is the percentage of time
that a player's chosen move is judged to be the best
by the Oracle. This graph shows a running average of
decision accuracy through 25 games, and confirms that
CABOT's performance is better than LATCBR's be-
cause its decisions tend to be more accurate. The train-
ing data for both systems are identical, so the only fac-
tor that can account for this difference is CABOT's im-
proved retrieval and adaptation strategies. The improve-
mentin CABOT's retrieval and adaptation strategies oc-
curs quickly, usually within the first game or two. In con-
trast, LATCBR is initially error-prone but its accuracy
continues to improve as its case base grows. Figure 3
shows that the difference between the two accuracies de-
creases as the number of games increases. This confirms
the intuition that having enough cases is asymptotically
as good as having a smaller number of cases with better
retrieval and adaptation strategies.

Superior performance is one result of adjusting re-
trieval and adaptation strategies. Another result is the
difference in the growth of the case base. Figure 4 shows

Callan, Fawcett, and Rissland 807



this growth during the CABOT vs LATCBR tourna-
ment. The CABOT case base tends to be about half
the size of the LATCBR case base. Neither case base
shows any sign of stabilizing. Continued growth may be
due to the small number of games that have been played.
The search space for OTHELLO is large (about 10°" legal
boards), so it may be unrealistic to expect either case
base to stabilize within 24 games.

Results vary from tournament to tournament, because
of the effects of learning, and because the Oracle makes
random choices when it has two or more equally good
moves. We have observed variation in the specific num-
bers of games won and lost by each move selection strat-
egy. However, the relative performance of each strategy
is consistent. CABOT is superior both to LATCBR and
P1L, and PIL is superior to LATCBR.

We have also tested CABOT against opponents that
use other inductive learning techniques to guide move se-
lection. One of these opponents used the ID3 algorithm
for building decision trees [Quinlan, 1986]. One problem
with using ID3 for this task is that the OTHELLO boards
are described by numeric features, whereas ID3 is in-
tended for symbolic attributes. We experimented with
several methods of converting numeric data to symbolic
attributes, including Quinlan's method (1986), Vapnik's
method (1982), and our own manual method. None
of these methods for creating symbolic attributes was
both computationally feasible and more effective than
the weighted sum evaluation function of the PIL system.

6 Conclusions

CABOT was developed to investigate the hypothesis
that case-based reasoning systems would benefit from
the ability to dynamically adjust their retrieval and
adaptation mechanisms. CABOT reasons from cases for
the purpose of guiding state-space search. State-space
search is different than traditional CBR tasks because
the problem-solver's task is to repeatedly identify the
successor state to explore next. As a result, CABOT
performs a restricted form of adaptation, in which the
retrieved case is used to select one of a set of known
alternatives.

One of the assumptions of this work is that feedback
from the environment is necessary for making proper ad-
justments to retrieval and selection mechanisms. The
feedback provided to CABOT and its opponents consists
of the best move as identified by the Oracle. However, no
information is provided that might suggest why one move
was better than another. This feedback is quite weak
when compared with the detailed information available
to systems like CHEF [Hammond, 1986] and PROTOS
[Bareiss & Porter, 1987].

The empirical results reported in this paper confirm
several hypotheses. First, they demonstrate that the
ability to tune retrieval and selection mechanisms leads
to both a smaller case base and better performance.
They suggest that traditional CBR systems may be sav-
ing more cases than they really need. Second, they
demonstrate that detailed feedback from the environ-
ment, while useful, is not always necessary to make these
adjustments. Sometimes it is enough just to know the

808 Learning and Knowledge Acquisition

desired result. Finally, the performance of CABOT when
played against pure inductive and pure case-based learn-
ing opponents illustrates that a hybrid architecture can
overcome the weaknesses of opponents of each type.

Acknowledgements

Support for this work was provided by the Office of Naval
Research through a University Research Initiative Pro-
gram, under contracts N00014-86-K-0764 and NO00O14-
87-K-0238. Comments by David Aha and Bernard Sil-
ver were especially valuable. We thank Jeff Clouse for
providing the Oracle program.

References

Aha, D. W., & Kibler, D. (1989). Noise-tolerant
instance-based learning algorithms. Proceedings of
the  Eleventh International Joint  Conference on Ar-
tificial Intelligence (pp. 794-799). Detroit, Michigan:
Morgan Kaufmann.

Bareiss, R., & Porter, B. W. (1987).
exemplar-based learning apprentice.

Protos: An
Proceedings of

the Fourth International Workshop on Machine
Learning (pp. 12-23). Irvine, CA: Morgan Kauf-
mann.

De Jong, K. A., & Schultz, A. C. (1988). Using

experience-based learning in game playing. Proceed-
ings of the Fifth International = Conference on Ma-
chine Learning (pp. 284-290). Ann Arbor, MI: Mor-
gan Kaufman.

Hammond, Kristian (1986). Learning to anticipate
and avoid planning problems through the explana-
tion of failures. Proceedings of the Fifth National
Conference  on  Atrtificial Intelligence (pp. 556-560).
Philadelpha, PA: Morgan Kaufmann.

Kolodner, J. L. (1983). Maintaining organization in a
dynamic long-term memory. Cognitive Science, 7.

Lee, K. F., & Mahajan, S. (1988). A pattern classifica-
tion approach to evaluation function learning. Arti-
ficial Intelligence, 36, 1-25.

Nilsson, N. J. (1965). New York:

McGraw-Hill.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, i, 81-106.

Rissland, E.L., & Ashley, K.D. (1987). A Case-Based
System for Trade Secrets Law. Proceedings of the
Tenth  International  Joint Conference on  Artificial
Intelligence (pp. 60-65). Milan, Italy: Morgan Kauf-
mann.

Learning machines.

Rosenbloom, P. (1982). A world-championship-level oth-
ello program. Artificial Intelligence, 19, 279-320.

Salzberg, S. (1988). Exemplar-based learning: Theory
and  implementation (TR-10-88). Cambridge, MA
02138: Harvard University, Center for Research in
Computing Technology.

Vapnik, V. N. (1982).
upon empirical data.

Estimation of dependencies based
New York: Springer Verlag.



