
Cooperative Hyb r i d Systems1 

Matthias Gutknecht (gutkn@ifi.unizh.ch) 
Rolf Pfeifer* (rolf@arti.vub.ac.be) 
Markus Stolze (stolze@ifi.unizh.ch) 

AI Lab, Institute for Informatics, University of Zurich, 
Winterthurerstr. 190, CH-8057 Zurich, Switzerland 

♦currently: AI Lab, Free University of Brussels, Belgium 

Abstract 

Recently there has been much criticism in the AI 
community that knowledge based systems are not 
situated. We argue that trying to provide for 
situatedness in a conventional system wi l l lead to 
the so called model explosion cycle and that for 
most application environments adaptivity is needed 
for situated behavior. Cooperative systems are a 
solution to the model explosion cycle where 
adaptivity is delegated to the user. A hybrid sym-
bolic/connectionist system offers self tuning ca
pabilities (and therefore adaptivity) but can't cope 
with the model explosion cycle. Integrating both 
approaches into a cooperative hybrid system leads to 
a much more situated behavior than conventional 
systems can achieve. Our approach is illustrated 
using a real-life expert system in the domain of 
technical troubleshooting. Ongoing practical tests 
indicate that a cooperative hybrid design presents an 
attractive architecture for knowledge based systems. 

1. In t roduct ion 

In the last few years the terms situated cognition and 
situatedness have been brought into the discussion about 
knowledge based systems (KBS). It is argued that con
ventional KBS are not situated in several ways. Winograd 
and Flores [1986] state that these systems (in contrast to 
humans) lack the ability to cope with "breakdowns", that is 
situations where the usual "habitual" behavior is interrupted 
by an impasse. In these situations something which is 
otherwise "ready-to-hand" - unproblematic, transparent -
establishes itself as a problem which has to be dealt with in 
a novel way (for example the mechanical properties of a 
jammed screw). Suchman [1987] demonstrates how an 
expert system for a copier fails to support the users because 
it does not have access to all the situational factors, and 
because its models about user intentions and behavior are 

This research was sponsored by Tecan A G , Hombrechtikon, 
and by the Swift AI Chair of the Free University of Brussels. 

much too limited. While access to situational factors might 
be improved by furnishing the system with more sensory 
data, the limitations of the KBS by its models are more 
principled: humans use models and plans just to orient 
themselves in a situation and explain their past behavior; at 
the most basic level, in its atomic actions, behavior is 
situational and not model or plan driven. Models of human 
behavior therefore are always bound to be incomplete and er
ror-prone. Clancey [1989a] argues that "the idea that human-
like intelligent behavior could be generated by interpreting 
stored programs that predescribe the world and ways of 
behaving must be abandoned, for this view confounds 
descriptions an observer might make wi th physical 
mechanisms inside the agent". He concludes that the 
designer of a KBS should move from engineering 
"knowledge structures" in an agent to designing a state-
sensory coupling of a system to its environment [Clancey, 
1989b]. 

At first sight these issues may seem fairly theoretical. 
Nevertheless we were forced to deal with each of them when 
building the D D T (Device Diagnostic Tool) KBS for 
technical troubleshooting of a l iquid handling robot2. A 
conventional approach doesn't work because it is based on 
the implicit assumption that the system can be designed and 
built by the knowledge engineer, who tries to anticipate all 
the potentially relevant situations. The main problem with 
this approach is that such anticipation is simply not 
possible. For example there are costs associated with tests or 
observations the user (technician) of the KBS has to make. 
Looking whether the power cord is plugged in correctly is 
associated with much lower costs than testing the proper 
connections of an internal circuit board of the robot. But 
these costs can vary greatly from situation to situation. If 
the cover of the robot has already been removed by the 
technician in the process of trying to find the faulty com
ponent, the costs of the second test can be very low. 

This l iquid handling robot is a complex, programmable and 
configurable device that is controlled by a PC. Failures do 
not only include mechanical, electr ical or electronic 
deficiencies, but as wel l failures that occur due to a false 
setup of programs, or use of false liquids or reagents. 

824 Learning and Knowledge Acquisition 



However, if the cover has to be removed first to make the 
observation, costs w i l l be higher. Furthermore the costs of 
the observation greatly depend on the skills of the user. 
Therefore they cannot be assigned globally once and for all. 
In a traditional system this problem might be approached by 
developing a user model and a spatial model of the device. 
But even these detailed models do not allow the anticipation 
of situations like the fol lowing: the user does not have the 
appropriate tools available at the moment (e.g. he does not 
have a screw driver), he cannot remove a screw because it is 
jammed (and thus he cannot remove the cover), he cannot 
execute a basically easy test (e.g. the Knowledge Engineer 
has not anticipated that to test, if "contacts are ok", many 
factors may have to be considered, for example corrosions, 
oi l on the contact points, the solder points of the contacts 
aren't ok, etc.). It is important to note that the additional 
non-anticipated complications caused by a specific situation 
are not irrelevant On the contrary, they can be crucial to the 
whole task. For example, if the user cannot determine 
whether the contacts are ok, an alternative and potentially 
much more costly solution path may have to be followed. 
Generally speaking, however detailed the models, there wi l l 
always be additional relevant factors which should be 
included: a phenomenon which we called the model 
explosion cycle. 

Moreover, there wi l l always be a tradeoff between the 
benefits of a more detailed model and the computational and 
interactional costs of applying the model to a particular 
situation. In other words, even if the model is more detailed 
- it includes potentially very many situations - much effort 
wi l l have to be expended in actually applying the model: the 
user wi l l have to be asked many questions which might not 
make much sense to him in this situation, and there wi l l be 
high computational costs associated with maintaining the 
model internally. Sometimes things get even worse when 
the user requires additional expertise to answer these 
questions. In summary, every knowledge base in a 
sufficiently complex real world domain w i l l always by 
necessity be incomplete. 

But in most application environments it is not sufficient 
to escape the model explosion cycle in considering all the 
relevant factors because relevancy itself is changing due to 
changes in the environment. For example in the domain of 
technical troubleshooting the following changes may occur: 
the devices to be diagnosed and repaired are redesigned; there 
are different configurations of the devices; the operators of 
these devices show different behavior (e.g. some are more 
careful than others), which leads to different types of 
failures; the users of the expert system have different skills, 
etc. Thus, these KBS have to be adapted continually to 
maintain a situated behavior. By adaptation we understand 
the proper coupling of a system to its environment 
including the user (this matches Clancey's [1989b] request). 
If a system is able to adapt itself, it is called adaptive, that 
is, it has an inherent adaptivity. 

Hence, situatedness of a KBS means, that it has access to 
all the relevant information of a situation and is able to react 
appropriately in novel situations due to experience with 
similar situations. Learning and performance cannot be 
separated in a situated system. 

2. Our own approach 

Our approach to build a situated KBS resulted in a co-
operative hybrid system. We wi l l briefly introduce the no
tion of cooperative systems on the one hand and hybrid 
systems on the other and then motivate our approach. In 
cooperative systems several actors contribute to a problem 
solution. Each of this actors is capable of sophisticated 
problem solving on its own, but the solution to the 
complete problem cannot be achieved without cooperation. 
A l l the tasks to be performed to solve a specific problem are 
allocated to the individual agents in a cooperative system. 
These agents are either computer systems or humans, that is 
users. In this paper the focus w i l l be on jo int human-
computer systems. 

Most cooperative systems wi l l be hybrid in the sense that 
they contain components of different types. The term hybrid 
has been used for systems that include analog and digital 
components, for KBS that include rules, frames, and 
constraints, or for systems including a traditional KBS and a 
neural network part. We w i l l focus on the last. More 
concretely, a system wi l l be described in which the neural 
network learns some tasks from the user, which require 
situation specific knowledge. In other words, in this system 
the neural network picks up parts of the task that were 
originally entirely delegated to the user. In the past few years 
many hybrid systems have been proposed. A number of 
them are briefly reviewed in Gutknecht and Pfeifer [1990]. 

In the introduction we mentioned that KBS, in order to be 
situated, should include all the relevant situational know
ledge without running into the model explosion cycle and 
provide for adaptivity. To escape the model explosion cycle 
the system must be cooperative. Only the user of the system 
has access to the relevant information since he is present in 
the real-world problem solving situation [Winograd and 
Flores, 1986; Suchman, 1987]. To take our example of the 
jammed screw, it is unnecessary to have a complete model 
of the fact that potentially all screws might be jammed and 
what should be done if this is the case. This is only con
sidered if it actually arises. For this purpose the user is 
needed. Although much of the knowledge needed is related to 
common sense - which is assumed to be present in all users 
- specific skills are also required. If the user has dealt with 
jammed screws in other situations he w i l l be better able to 
cope with it. So, there is a high dependence of the joint 
human-computer system on the level of experience of the 
user. Less skilled users should be able to benefit from the 
expertise of more skil led ones, but as we showed, this 
cannot be achieved by standard knowledge acquisition 
techniques only . 

Now, how can we provide less skilled users with access 
to the expertise of more skilled ones without running into 
the model explosion cycle again? Our solution is to have the 
system pick up the control strategies of experienced users, 
since control - choosing the optimal thing to do next - is at 
the very heart of every kind of expertise. To do this, a list of 
hypotheses to pursue and tests that might be performed are 
presented on the screen from which the - preferably 
experienced - user can choose. These selections arc recorded 
and used for training a neural network. This way the network 
eventually picks up the strategy of the user. We use neural 

Gutknecht, Pfeifer, and Stolze 825 



networks for convenience, because of their power to build 
correlations. This inclusion of a neural network leads to a 
hybrid system. 

Another possibility would be to simply ask the user why 
he is preferring a particular alternative to another. This 
would represent an efficient knowledge acquisition procedure 
which is, in fact, applied in quite a number of projects that 
we are aware of. However, this approach can lead to the 
problem of the user getting annoyed by too many questions, 
and the difficulty of making implicit knowledge explicit. As 
is known from the knowledge acquisition literature, such 
explanations are prone to be "post hoc rationalizations" 
[Nisbett&Wilson, 77]. By simply learning the choice of the 
user both of these problems can be avoided. In our approach 
the recorded selections may show that the user chooses 
different alternatives in the same situation. In this case, we 
can look for the hidden piece of information the user is 
apparently implicit ly using. The knowledge engineer may 
then decide whether the discriminating knowledge should be 
introduced in the knowledge base or not. This provides us 
with an incremental knowledge acquisition procedure: we are 
using information about cases which have actually occurred, 
but we are not misled by potentially irrelevant cases and by 
rationalizations. 

In adapting to the (adaptive) behavior of skilled users the 
system also impl ici tely tunes itself to changes in the 
environment. If due to some consistent error, (e.g. the cover 
screws being jammed frequently), there is a design change, 
(e.g. a different way of f ix ing the cover), the errors due to 
jammed screws wi l l no longer occur, the users w i l l change 
their behavior and the system w i l l adapt to the changed 
design without direct intervention of a knowledge engineer. 

3. System descript ion 

An overview of the system architecture of DDT (Device 
Diagnostic Tool) is shown in figure 1. We wi l l describe it 
in two parts. In the first part each component of the archi
tecture wi l l be introduced and in the second part the tasks 
relating the components to each other wi l l be explained. 

3.1 Components 
In figure 1 there are two types of components: humans 
(head-symbols) and artifacts (boxes). The human compo
nents of the system are the user, the expert and the know
ledge engineer. The user is the person who selects the best 
failure hypothesis from the interface, chooses and executes 
tests that discriminate between competing (failure) hy
potheses and updates the list of current findings (see below). 
He is also the component most sensitive to the 
environment. The expert is the person responsible for the 
adaptation of the knowledge base (i.e. maintenance and 
extension). He sometimes assumes the role of the user. In 
this role he "produces" high quality cases for the case base 
(see below) to teach the hybrid system. The knowledge 
engineer is the person who designs the system. This in
cludes the assignment of tasks to humans and artifacts. The 
knowledge engineer is in fact both, part of the system itself 
(where maintenance is concerned), and outside of it (as its 
designer)[Clancey, 1989a&b]. Her responsibilities include 
the knowledge acquisition up to the point where the system 
is maintainable by the expert. 

Figure 1: Architecture and embedding of the cooperative hybrid system. Boxes represent components, arrows tasks 
relating the components to each other. (See text for further details.) 

826 Learning and Knowledge Acquisition 



The artifacts in the system are the knowledge base, the 
neural networks, the case bases, and the user interface. The 
knowledge base (KB) stores the knowledge in a structured 
form and makes it available to the inference mechanisms and 
- for maintenance purposes - to the expert and the 
knowledge engineer. The diagnostic knowledge is divided 
into failures, observations, and relations between them. The 
neural networks (NN) are three layer feedforward nets that 
learn the focusing interactions from skilled users and are able 
to give hints to less skilled ones due to this knowledge. 
There are two NNs in the system. One NN is trained on the 
users' selection of hypotheses, given the set of current 
findings, the other is trained on the users' selections of tests 
(or new observations), given the set of hypotheses which are 
currently in his focus. These selections which reflect the 
users' focusing actions are recorded in the case bases. 

The user interface is supporting the user in solving his 
tasks by displaying relevant information. This information 
is extracted from the KB and the NNs. But the user interface 
is also responsible for recording the user interactions 
(selections of hypotheses/observations/tests and updates of 
findings) in the appropriate case base. The user interface 
consists of windows and buttons to manipulate the infor
mation shown in the windows. One window is the obser
vation window, where general symptoms or tests relevant to 
the current situation are displayed. In another window, the 
hypothesis window, failure hypotheses are displayed. In 
front of each hypothesis there is an evaluation part with the 
KB rating for this hypothesis and the NN rating. 

3 . 2 Tasks 
In figure 1 the basic tasks are shown as arrows. The system 
has to perform two main types of tasks, namely con
sultation and modification tasks. Three task loops can be 
identified: a consultation loop and two modification loops. 
In the fol lowing, the loop of consultation tasks is described 
as it is performed after the addition of some new findings to 
the set of current findings. The loop starts, when the user 
enters a set of ini t ial findings. First the find&rate-hy-
potheses task w i l l be performed. The result of this task is a 
set of rated hypotheses related to the set of current findings. 
The task can be performed by two problem solving methods. 
Either the relations between findings and hypotheses in the 
KB are evaluated, or the NN which maps findings to 
hypotheses is consulted. In both cases the result is a rated 
set of hypotheses. (In contrast to the suggestions of the N N , 
which depend on previous cases and are therefore not 
complete, the KB always finds all valid hypotheses due to 
its observation-failure-relations.) Then the present-
hypotheses task filters and groups the set of rated hypotheses 
before presenting them to the user (fi ltering means either 
showing the highest rated KB proposals or those NN 
suggestions, which are val id and have a high rating). 
Knowledge about groups of hypotheses is used for this task. 
The select-best-hypotheses task is performed by the user. He 
selects on the display the hypotheses he wants to focus 
upon, or marks the irrelevant hypotheses. This may involve 
changes of the hypotheses display (e.g. switching between 
KB and NN hypotheses). After the user has chosen a set of 
interesting hypotheses, this set is used by the find&rate-tests 
task to find a set of rated tests. Again, there are two problem 

solving methods for this task. Either the relations between 
hypotheses and tests in the KB are evaluated, or the NN 
which maps hypotheses to tests is consulted (cf.find-and-
rate-hypotheses). As for the hypotheses, a present-tests task 
groups the set of rated tests, before they are presented to the 
user (cf. present-hypotheses). Knowledge about groups of 
tests is used for this task. Then the user performs the select-
best-actions task by selecting appropriate repairs or tests to 
discriminate between the interesting hypotheses. He executes 
the selected repairs or tests and evaluates the results 
(execute&evaluate-actions task). Afterwards he updates the 
set of findings on the interface accordingly (update-current-
findings task). The consultation ends when all symptoms 
have been removed. 

Modif ication tasks are performed in two loops: an au
tomatic loop which tunes the system to the user and the 
environment, and a manual one that is performed by the 
knowledge engineer and the expert who adapt the KB based 
on their evaluation of the system performance. In the au
tomatic loop the record-case task of the interface keeps track 
of the user's selections of tests or hypotheses and records 
them in two case bases. During the modify-network task the 
case bases are used to train the appropriate NN with the 
backpropagation learning algorithm [Rumelhart el al., 
1986]. Because this task requires a lot of time and system 
resources, it wi l l typically be performed overnight when the 
KBS is not being used. The manual loop starts wi th the 
evaluation of observations about unsuccessful consultations 
by the expert and the knowledge engineer (evaluate-system-
performance task). These observations can either be made 
directly by users of the system or indirectly by analyzing the 
cases recorded in the case bases. Based on this analysis they 
modify the KB {modify-knowledge-base task). 

3 .3 A sample session: adaptat ion and 
knowledge acqu is i t ion 

We wi l l show how the self tuning mechanism of the system 
leads to an adaptive behavior, and we w i l l point out how 
specific characteristics of the system performance can be 
evaluated and used for knowledge acquisition. 

The case presented here is a reproduction of a session of 
one of our experts wi th the system. This session was 
recorded in the case bases together with about four others of 
the same day. The case base with the data from the hy
potheses selection task has been used afterwards to train the 
N N , which learns to focus on hypotheses. After 200 training 
passes through this case base, we replayed one of the five 
sessions to assess the quality of the now self tuned system. 
The results of the first f ive steps of this session are shown 
in table 1. In the leftmost column the step number together 
with the newly added finding is shown. In the next three 
columns, the hypotheses focused on by the expert and the 
corresponding suggestions of the NN and the KB are shown. 
The NN and the KB proposals appear with their associated 
ratings. For the NN this figure is the scaled activation level 
of the output node representing this proposal. Only 
proposals with a rating above 80 are shown. For the KB this 
rating is computed from the number of findings related to 
this hypothesis and an apriori assessment of its frequency 
which is also stored in the KB. Only the proposals with the 
highest ratings are shown. 

Gutknecht, Pfeifer, and Stolze 827 



Table 1: The first f ive steps of a session after the NN has been trained on several sessions. The leftmost column shows 
the number of the step together with the new finding. The next columns show the hypotheses the expert is focusing on, the 
suggestions of the NN together with their rating, and the top rated suggestions of the KB with their rating. 

In the first step the NN suggests a focus which is too 
broad. Beside the two hypotheses the expert has focused on, 
the NN suggests seven more hypotheses. This can be either 
due to a poor generalization on the part of the NN or to 
inconsistencies in the case base stemming from inconsistent 
behavior on the part of the users. Inconsistent behavior can 
have two reasons: either the users were selecting different 
hypotheses/tests in the same situation due to their individual 
preferences and experiences or some relevant piece of 
discriminating information about these situations is missing 
in the system. In the first case, the cause of the individual 
preferences and experiences of different users could be found 
in peculiarities of their local environment (e.g. in some 
countries failures of a device due to insufficient maintenance 
are more frequent than in others) which would suggest that 
alternatively tuned system components (KB and/or NN) 
should be used. The second case is interesting, because it 
points out deficiencies of the KB itself. The KB must be 
modified to include some new hypotheses or observations 
(incremental knowledge acquisition). In our case the expert 
made a trial session with the system where he used the same 
initial finding, but chose a very broad focus. This session 
had been recorded into the case base too and was the reason 
that the system had been trained with this broad focus. The 
KB proposes only one of the two hypotheses of the expert. 
The other got a lower rating than the proposed one and is 
therefore not shown. 

In the second step the expert includes three more hy
potheses into his focus. The NN suggests the same hy

potheses as the expert except one ("dispense speed too fast", 
which in fact had been proposed, but with a rating below 
80). It is interesting to note that the expert's hypotheses had 
already been proposed by the NN in step 1 with a 
significantly higher activity level than the rest. This can be 
explained as follows: when a hypothesis is part of the focus 
over several selection steps, it will be trained several times 
together with the initial findings. This means that strong 
connections will be built up between this finding and the 
hypothesis (reflecting the high correlation between them). 
When this finding is present in a consultation using the 
trained N N , the strongly correlated hypotheses will get a lot 
of activation from it leading to a high rating. The top rated 
suggestion of the KB was also part of the expert's focus. 

In the third step the expert made a test which discrimi-
nated between the hypotheses in his focus. The NN and the 
KB both make a correct suggestion. 

In the fourth step the observation that the liquid had a 
high viscosity made the expert eliminate both hypotheses 
remaining in his focus and switch to a totally new hy
pothesis. This focusing switch had also been learnt correctly 
by the NN whereas the top rated suggestion of the KB was 
not useful in this case. 

In the fifth step the expert again broadened his focus and 
even reconsidered a hypothesis he had focused on before. The 
NN suggested all three hypotheses correctly. As before, the 
highest rated NN suggestion was considered the most likely 
one by the expert. The KB suggestion was part of the 
expert's focus, too. 

828 Learning a n d Knowledge Acquisition 



4. Discussion and fur ther work 

Initially we stated, that if we want to build a situated KBS, 
it should meet the following requirements: it should include 
relevant situational factors without running into the model 
explosion cycle, and it should be adaptive to its 
environment We argued, that traditional KBS technology 
cannot appropriately fu l f i l l these requirements, while the 
proposed approach based on cooperativity and tunability can. 

Cooperativity: Cooperativity was shown to be a way to 
cope with the problem of the model explosion cycle. In our 
system cooperativity has been realized through a task 
distribution, which was developed in close collaboration 
with a domain expert, who has worked with us on the de
velopment of the system for more than a year. The NN part 
was only introduced recently (see below). It seems that the 
experts feel comfortable with this cooperative approach. One 
of our experts is a strong supporter of this technology in the 
company and sees a great potential for further applications. 
A preliminary evaluation was so successful, that the system 
has been introduced this spring into a productive 
environment. But extensive and systematic evaluations of 
experiences in various productive environments wi l l have to 
be conducted to make a final assessment. 

Tunability : The need for having an incrementally tunable 
system is given by a changing environment which includes 
the skill levels of different users. Our incrementally trained 
NN's can track the changes in the environment and represent 
a means for making skills of experienced experts available to 
less skilled ones. They function as a kind of associative 
case-base of previous user-system interactions. This setting 
allows the system to adjust itself to a certain extent to its 
environment Since this was the most recent addition, there 
are no extensive tests available ye t However, preliminary 
evaluations by one of the experts have been very positive. 
He clearly stated that the selection tasks present real 
problems for less skilled users and that having useful hints 
on an appropriate subset of hypotheses or tests for focusing 
would be of great advantage. He was also enthusiastic about 
the idea of tuning systems to different countries (the 
company distributes these robots world-wide) and to different 
user groups (e.g. to sales personnel, technicians, or 
operators). Of course one has to be careful to train the NN 
with experienced users only. 

Independent statistical tests (with simulated cases) were 
performed to assess the capabilities of the NN. They clearly 
show the NN's capabilities to generalize to cases they were 
not trained on: The NN which learns the hypotheses 
selection task had been trained overnight on a case base of 
250 cases1. After 277 epochs of training with the standard 
backpropagation algorithm the NN could reproduce 239 
(95%) cases of the training set correctly. Tested on a set of 
250 new cases it was able to solve 160 (64%). This is a 
good result, considering the fact that in our application the 
interface filters out all NN suggestions that are not part of 

The net was a three layer net with 167 input nodes 
(findings), 80 hidden nodes and 142 output nodes 
(hypotheses). We used a learning rate of 0.5 and a 
momentum value of 0.9. The weights were changed after 
each pattern presentation. 

the KB suggestions (i.e. what is shown on the interface is 
the intersection of the NN suggestions wi th al l KB 
suggestions). In other words: if the user is solving a 
problem that has occurred previously, he can focus properly 
with the help of the NN in 95% of the cases; if it is a new 
problem, he wi l l be better off (compared to a system which 
doesn't tune itself) in 64% of all the cases. But even in the 
remaining 36% of the cases he won't pursue any wrong 
hypotheses, he wi l l just focus on hypotheses which w i l l 
lead to a less optimal solution (but nevertheless a correct 
one). 

The initial experiments have been encouraging. Thus, it 
seems sensible to do further work in this direction. One task 
wi l l be to analyze, how the optimal balance between design 
knowledge (acquired via traditional knowledge acquisition 
methods) and situation specific knowledge (acquired via 
adaptive mechanisms) can be found. Moreover, it has to be 
investigated what the impact of this point of view is on 
knowledge engineering. We suppose, for example, that it 
may not be desirable to develop enormous libraries of 
problem solving methods but that more time and effort 
should be spent on studying experts and users in how they 
interact with their social and physical environments, and 
how the introduction of knowledge systems changes their 
work. These insights wi l l in turn "feed back" into the design 
of better knowledge systems as discussed in this paper. 

Acknowledgements 

We would l ike to thank B. A iken, D. Al lemang, T. 
Bratschi, and T. Wehrle for their helpful comments. 

References 

[Clancey, 1989a] W.J. Clancey. The knowledge level rein-
terpreted: Model ing how systems interact. Machine 
Learning, 4:285-291, 1989. Kluwer Academic Publishers, 
Boston, 1989. 

[Clancey, 1989b] W.J. Clancey. The frame of reference 
problem in cognitive modeling. In Proceedings of the 
Annual Conference of the Cognitive Science Society, 
pages 107-114. Lawrence Erlbaum, Hil lsdale, New 
Jersey, 1986. 

[Gutknecht and Pfeifer, 1990J. M. Gutknecht and R. Pfeifer. 
An approach to integrating expert systems with 
connectionist networks. Al Communications, 3(3): 116-
127, September 1990. 

[Nisbett and Wilson, 1977] R.E. Nisbett and T.D. Wilson. 
Telling more than we can know: Verbal report on mental 
processes. Psychological Review, 84:231-259, 1977. 

[Rumelhart et ait 1986] D.E. Rumelhart, J.L. McClelland, 
and the PDP Research Group. Parallel Distributed 
Processing, V o l . 1. M I T Press, Cambridge, 
Massachusetts, 1986. 

[Suchman, 1987]. L.A. Suchman. Plans and situated 
actions. Cambridge University Press, Cambridge, 1987. 

[Winograd and Flores, 1986]. T. Winograd and F. Flores. 
Understanding Computers and Cognition. Addison 
Wesley, Reading, Massachusetts, 1986. 

Gutknecht, Pfeifer, and Stolze 829 


