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Abstract

The ease oflearning concepts from examples in
empirical machine learning depends on the at-
tributes used for describing the training data.
We show that decision-tree based feature con-
struction can be used to improve the perfor-
mance of back-propagation (BP), an artificial
neural network algorithm, both in terms of the
convergence speed and the number of epochs
taken by the BP algorithm to converge. We use
disjunctive concepts to illustrate feature con-
struction, and describe a measure of feature
quality and concept difficulty. We show that a
reduction in the difficulty ofthe concepts to be
learned by constructing better representations
increases the performance of BP considerably.

1 Introduction

Recent progress in artificial neural networks (ANNs) and
their use in disparate domains have spurred the interests
of researchers in studying various means of improving
them. ANNs have shown promising results for a number
of problem areas including content addressable memory,
pattern recognition and association, category formation,
speech production, and global optimization [Kohonen,
1984; Rumelhart et a/., 1986; Anderson, 1977; Sejnowski
and Rosenberg, 1987; Hopfield and Tank, 1986]. They
have also been tried with fairly good results in financial
[Duttaand Shekhar, 1988] and in manufacturing applica-
tions [Rangwala and Dornfeld, 1989] among other areas.

Back-propagation (BP) is one ofthe most widely used
neural network algorithms due to its powerful problem
solving capabilities. There have been numerous studies
by researchers who are interested in the dynamics of the
BP algorithm, and the network (multi-layered percep-
trons) on which back-propagation is based. Although
BP has varied advantages, such as being able to repre-
sent/learn any function [Hornik et a/., 1989], an inherent
problem with the algorithm is that it is very slow to con-
verge (learn). Researchers in the area have successfully
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implemented modifications to enable fastei convergence
of the neural networks using disparate means, ranging
from modifications to the BP algorithm itself to appro-
priate implementations of the algorithm in VLS| com-
ponents. In this paper, we present a novel technique for
improving the learning process in a feed-forward neu-
ral network by pre-processing the input (training) data
using an automated methodology.

A difficult concept shows a high degree of dispersion
in the input representation space due to the inability
of the low-level measurement attributes to describe the
concepts concisely and accurately. Given any feature set
for data representation, the concept dispersion measure
A [Ragavan and Rendell, 1991] estimates the difficulty
of learning any concept using that feature set, and thus
the quality of the feature set. We use feature construc-
tion [Pagallo, 1989; Matheus and Rendell, 1989; Drastal
et al., 1989] to develop new features from the original set
of attributes, to decrease the concept's dispersion in the
constructed feature space. The constructed feature sets
are then used as input to the BP algorithm. New fea-
tures are constructed using CITRE [Matheus, 1989] and
used to improve the performance of the BP algorithm
considerably.

2 Reducing Concept Dispersion by
Feature Construction

Difficult concepts exhibit numerous "peaks" or regions in
instance space [Rendell and Seshu, 1990] if the attributes
used for describing data are inappropriate. These con-
cepts require changes in representation, for example
through feature construction. Good feature construction
can reduce the difficulty of such concepts, by providing
a more compact representation for the training data.
For difficult concepts, each subset ofthe training data
formed by conditioning on a value ofany attribute would
contain alarge number of both positive and negative ex-
amples, and consequently show high uncertainty about
the concept class. Entropy1 measures this uncertainty—
to measure concept difficulty, we estimate the net con-
ditional entropy in the training data, using all the at-

"Entropy of a boolean concept y is defined as H(y) =
—(p log, p+n log; n) where p and n are the prior proba-
bilities of finding a positive or negative instance of y.



tributes (assumed independent) on which the concept
depends.
We define dispersion A of a concept y as
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over all valuesj of X;A has a value between 0 and 1.0.

In general, the more difficult the concept, the higher
its dispersion. At the other extreme, if any single feature
splits the positive and negative examples cleanly, such a
feature alone is sufficient to determine the concept; no
uncertainty would result when the instances are condi-
tioned on such a feature. A captures the difficulty of a
concept for learning using any given feature set. It can
therefore be used estimate feature set quality.

We use feature construction, specifically using CITRE
[Matheus, 1989], to create new feature sets with lower A
values. Using A as an indicator of feature quality, we
show that A decreases in the successive feature spaces
constructed by CITRE. More importantly, BP perfor-
mance increases as A decreases.

The FRINGE [Pagallo, 1989] module of CITRE con-
structs features iteratively from decision trees. It forms
new features by conjoining two nodes at the fringe of
the tree—the parent and grandparent nodes of positive
leaves are conjoined to give a new feature. New fea-
tures are added to the set of original attributes and a
new decision tree is constructed using the maximum in-
formation gain criterion [Quinlan, 1986]. This feature
selection phase thus chooses from both the newly con-
structed features as well as the original attributes for re-
building the decision tree. The iterative process of tree-
building and feature construction continues until no new
features are found. Splitting continues to purity, i.e., no
pruning [Breiman et a/., 1984] is used. The reader is re-
ferred to [Matheus, 1989] for a more detailed discussion
on CITRE.

We use three different disjunctive boolean concepts to
illustrate our experiments. The three functions are:

Y1 = Ea@7Xs + TyxaZs -+ EaTpy
¥ = TgZ125 + Taxa ¥y + ZoZp®y
Ya = 21T + £1TeX2 + 252123
Three different data sets were generated for the functions
y1, Ye2and y3, and used as input to the FRINGE feature
construction module in CITRE. The newly constructed
features and the trees that were generated for the first
function (y4) are shown in Fig.l.
The A values of the feature sets selected by CITRE
during the different tree generations are evaluated. Re-
sults for all three disjunctive concepts are shown in Fig.2.

<1 057

Tree generation 1:
att3 att4 attd att6 att7 att8.
New Features:
11 and(equal(att3,false),equal(att5,true))
12 and(equal(att4,true),equal(att8,ialse))
13 and(equal(att8,true),equal(att6,lalse))
Tree generation 2:
11 12 13 att7.
New Features:
14 and(equal(att7,true),equal(11,true))
15 and(equal(12,true),equal(att7,false))
16 and(equal(13,true),equal(12,false))
Tree generation 3:
14 15 13 att7.
New Features:
17 and(equal(att7,false),equal(f3,true))
18 and(equal(15,true),equal(14,1alse))
Tree generation 4:
14 15 17.
New Features:
19 and(equal(f7,true),equal(f5,false))
Tree generation 5:
14 15 17.

Figure 1: Features constructed by CITRE for y;.
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Figure 2: Quality ofthe Features constructed by CITRE.
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As can be seen from this figure, the A values drop signif-
icantly as new feature sets are used. We use the features
from each tree as input to the BP algorithm. As we show
in the next section, decreasing the concept's dispersion
in the condensed feature sets in this manner speeds up
the convergence of the BP algorithm greatly.

3 Learning with Back-Propagation

A number of previous studies [Dutta and Shekar, 1988;
Fisher and McKusick, 1989; Mooney et a/., 1989; Weiss
and Kapouleas, 1989] have compared BP with other clas-
sification methods including statistical tree induction,
with results favoring BP in terms of classification ac-
curacy. One of the major drawbacks of BP is that it is
very slow. Several researchers [Fahlman, 1988; Becker
and Le Cun, 1988] have worked on this problem trying
to increase the convergence speed of the BP algorithm
by disparate means. There are four primary means of
increasing the convergence speed of BP: (1) by appro-
priately pre-processing the data used as input to the al-
gorithm, (2) by improving the BP algorithm itself, (3) by
hard-wiring the algorithm using VLSI circuits, and (4)
by utilizing the inherent parallelism in the BP algorithm
through implementations in parallel machines.

Several researchers [Becker and Le Cun, 1988;
Fahlman, 1988; Parker, 1987; Waltrous, 1987] have suc-
cessfully modified the BP algorithm using second-order
gradient search methods resulting in improved perfor-
mance. Kung, Vlontos, and Hwang [1990] describe a
VLS| architecture for implementing BP using a pro-
grammable systolic array. Hinton [1985] and Deprit
[1989] describe the use of parallel processing comput-
ers to implement the BP algorithm with each unit in the
network assigned to a processor.

In this study, no attempt is made to improve the BP
algorithm itself as in previous studies. Instead, the data
used as input to the BP algorithm is pre-processed (see
[Piramuthu, 1990]). More specifically the A of the con-
cept is reduced in the attributes used as input to BP, to
enable it to learn more effectively. As discussed in sec-
tion 2, feature construction can be used to reduce the A
of concepts. Using feature construction, a subset of the
initial and newly constructed attributes that are deemed
to be better for representation are used as input to the
BP algorithm. The new representation has fewer con-
cept regions per class. This makes the search space less
complex, which in turn increases the convergence speed

of BP.

4 Using Good Feature Sets for BP

The criterion we use to categorize a newly generated fea-
ture set as "good" is that it should have small A values,
relative to the initial feature set. Feature spaces with
reduced A values have fewer concept regions, and are
thus relatively easier for learning, i.e., for separating the
examples belonging to different classes. The disjunctive
concepts of Section 2 are used to study the effect of de-
crease in A on the convergence speed of BP.

As the initial weights in the network were set ran-
domly, we ran the BP algorithm 5 times for each set of
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Table 1:

Results using BP for all three concepts.
Standard deviations are shown in parenthesis.

[ Network | Tree || # of epochs | Time seecs. | CUs
9F6+1 | 11 | 107.0(6.8) [ 57.6 (3.3) [ 1605
4+3+1 | 42 || 136.4 (22.2) | 4.2{1.2) | 1091
4+3+1 | s || 95.4{46) | 3.2(0.8) | 763
34241 | t4 || 76.4(8.9) | 2.0(0.0) | 458
34241 15 76.4 (8.9) 2.0 {0.0) 458
0+5+1 | Iz || 111.2(6.1) | 58.4 (3.56) | 1668
6+4+1 | a2 || 123.4(3.3) | 13.6 (0.5) | 1357
T+4+1 | tp3 || 99.0(2.8) | 10.2 (1.0} | 1188
54341 | 24 | 62.8(4.4) | 3.2(04) | s65
4+3+1 | 25 | 52.8(3.2) | 3.0(0.0) | 422
443+1 tas 52.8 (3.2) 3.0 [0.0) 422
936+1 | a1 || 115.4 (18.1) | 61.8 (3.4) | 1731
6+4+1 | 132 | 115.8(4.7) | 8.6(0.5) | 1274
6+4+1 | tas || T7.6 (2.7} 5.4 (0.5) | 854
5+3+1 | tas | 66.0 (5.8 4.6 (0.5) | 594
44341 | ts5 57.2 (4.8) 2.4 (0.6) | 458
443+1 | tse || 57.2(4.6) | 2.4(0.5) | 458

features corresponding to the various trees constructed
by CITRE. The average of 5 BP runs and their standard
deviations are given in Table 1. The number of units in
the network? is also shown in the table. The number of
hidden units is roughly half the total number of input
and output units for all the networks. The output layer
always has 1 unit which classifies an example as either
positive or negative.

In Table 1, the decision trees constructed by CITRE
are indicated by tn,, for the tree constructed after the
(n— 1)”‘ iteration for the function yn. The identical
entries in Table 1 for the rows corresponding to the last
two trees of each function (e.g., t;s and tyg) are due to
the identical final trees that CITRE produces on conver-
gence.

The decision attributes wused in the final trees
(t1s,t26,t36) are fewer than those in the initial set (9).
This reduces the number ofinput units, in turn reducing
the hidden units that are necessary. Thus the total num-
ber of units used in the network is reduced. Except for
a few cases, the standard deviations for each of the re-
sulting values are low compared to their respective mean
values. It can also be seen that the standard deviation
values do not have any specific pattern with respect to
the number of units used in the neural network.

We now take a closer look at the first two performance
criteria listed in Table 1. The number of epochs and
time taken to converge by BP for the three concepts as
a function of constructed feature sets (tree generations)
are shown in graphically in Figs.3 and 4 respectively.

As Fig.3 shows, the epochs required for convergence
shows a slight initial increase in some cases, but then
reduces considerably as better representations are con-

Za+b+4c a, b, and c are the number of input, hidden,
and output units respectively.
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Figure 3: BP Epochs in the new Feature Spaces.

structed. The number of epochs taken by the final set
of features (tis5, tzs, tzo) to converge decreases to about
half the value corresponding to the original attributes
(t11, t21, t31), for all three examples.

In Fig.4, the time taken for BP to converge, for all
three examples, drops precipitously as the tree genera-
tion proceeds, before finally levelling off. The time taken
for the BP algorithm to converge using the final set of
attributes is less than an order of magnitude compared
to using the initial attributes.

This trend of improved performance with decreasing
concept difficulty is also clear from the reducing number
of connection updates (CUs = # epochs x total number
of units in the network) in Table 1. The reduction in
convergence time is substantial due to significant drop
in the number of connection updates, as newer feature
sets are generated. Because of serial processing, the time
taken per epoch depends to a large extent on the total
number ofunits that are used in the network. This would
not be the case if parallel processors (e.g., Connection
Machine) are used for the units.

Neural networks require fewer epochs to learn a con-
cept ifits dispersion is decreased by using good features.
By constructing new features, we reduce not only the
number of effective attributes that are needed to define
the concepts, but also increase the average information
content at each of the constructed input units. This is
achieved by considering the interaction effects of the at-
tributes in disjunctive concept terms in addition to the
main effects of the individual disjunctive terms, through
feature construction.

5 Discussion

The Back Propagation algorithm is being successfully
used in commercial applications, such as credit risk rat-
ing of companies. There have also been developments
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Figure 4: BP Convergence Time improvement.

in the area of creating expert systems using neural net-
works. In a commercial credit risk rating situation, for
example, the learning speed of the BP algorithm is crit-
ical for the firm to be able to make quicker decisions
for it to remain competitive. We have shown a means
of getting closer to the goal of achieving faster learning
using a feed-forward neural network by automating the
input feature selection process. Feature construction can
be used to automatically generate better feature sets,
as measured by their A values, which are used as in-
put to the BP algorithm. The proposed methodology
also eliminates the least important attributes from the
training data, thus facilitating efficient use of computing
resources by directing attention to only those attributes
important for a given classification problem.

Advantanges of neural networks such as good perfor-
mance in high feature interaction domains [Indhurkya
and Weiss, 1990] are combined with advantages of
decision-tree based induction by this method. Incor-
porating a front-end like CITRE to the BP algorithm
also provides a facile technique for introducing domain
knowledge in neural nets. Knowledge gets compiled into
the constructed features.

It should also be noted that the classification ac-
curacy was a full 100 percent for feature sets corre-
sponding to each of the trees (ty11, t12, t13, tia tys,
to1, tao, tos, tos, t2s, ta1, tao, tas, taq, tas, t36), in
spite of the reduction in the number of attributes used
as input after feature construction. By using a set of
attributes with reduced A, along with other means of
increasing the convergence speed such as second-order
gradient methods, the convergence speed ofthe BP algo-
rithm can be significantly improved. Performance with
noisy data remains to be investigated.
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