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A b s t r a c t 

Recognizing the plan underlying a query aids in 
the genera t ion o f an app rop r i a te response. In 
th i s paper , we address the p rob lem of how to 
generate coopera t ive responses when the user's 
p lan is amb iguous . We show t h a t i t is no t a l ­
ways necessary to resolve the amb igu i t y , and 
p rov ide a procedure t h a t est imates whether the 
a m b i g u i t y m a t t e r s to the task o f f o r m u l a t i n g 
a response. I f the a m b i g u i t y does m a t t e r , we 
propose to resolve the a m b i g u i t y by enter ing 
i n t o a c la r i f i ca t ion d ia logue w i t h the user and 
p rov ide a procedure t h a t per fo rms th is task. 
Together , these procedures a l low a quest ion-
answer ing sys tem to take advantage o f the i n ­
terac t ive and co l l abo ra t i ve nature o f d ia logue 
in recogniz ing p lans and resolv ing amb igu i t y . 

1 I n t r o d u c t i o n 

Somewha t obv ious ly , p lan recogni t ion is the process of 
i n fe r r i ng an agent 's p lan f r o m observat ion o f the agent 's 
act ions. T h e agent 's act ions can be physical act ions or 
speech act ions. Four p r i nc i pa l me thods for p lan recog­
n i t i o n have been proposed in the l i t e ra tu re . T h e m e t h ­
ods are p laus ib le inference [ A l l e n , 1983; Carber ry , 1988; 
L i t m a n and A l l e n , 1987; Sidner , 1985], pars ing [ V i l a i n , 
1990], c i r cumsc r i b i ng a h ierarch ica l representat ion of 

[)lans and us ing deduc t i on [Kau t z , 1987], and abduc t i on 
Cha rn i ak and M c D e r m o t t , 1985; Kono l ige and Pol lack, 

1989; Poole , 1989]. 
O u r p a r t i c u l a r in terest is in the use of p lan recogni­

t i on in ques t ion-answer ing systems, where recogniz ing 
the p lan u n d e r l y i n g a user's queries aids in the genera­
t i o n of an app rop r i a te response. Here, the p lan of the 
user, once recognized, has been used to : supply more 
i n f o r m a t i o n t h a n is exp l i c i t l y requested [A l l en , 1983; 
L u r i a , 1987], hand le p r a g m a t i c a l l y i l l - f o rmed queries 
[Carber ry , 1988], p rov ide an exp lana t i on f r o m the ap­
p rop r i a t e perspect ive [ M c K e o w n et a/., 1985], respond to 
queries t h a t resul t f r o m an i nva l i d p lan [Pol lack, 1984; 
Po l lack , 1986], and avo id m is lead ing responses and p ro -
duce user-specif ic coopera t ive responses [Joshi et a/., 
1984; van Beek, 1987; Cohen et a/., 1989]. 

E x a m p l e 1 ( [Joshi et a/., 1984]). As an example of 
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a cooperat ive response consider the f o l l o w i n g exchange 
between s tudent and s tuden t -adv isor sys tem. T h e p lan 
of the s tudent is to avo id f a i l i ng a course by d r o p p i n g i t . 

U s e r : Can I d rop numer i ca l analysis? 

S y s t e m : Yes, b u t you w i l l s t i l l fa i l the course since your 
m a r k w i l l be recorded as w i t h d r a w a l wh i l e f a i l i ng . 

I f the system j u s t gives the d i rec t answer. Yes, the s tu ­
dent w i l l r ema in unaware t h a t the p lan i s f au l t y . T h e 
more cooperat ive answer warns the s tuden t . 

An i m p o r t a n t weakness o f th is wo rk in response gen­
e ra t i on , however, is the rel iance on a p l a n recogn i t ion 
component be ing able to un ique ly de te rm ine the p lan o f 
the user. T h i s is c lear ly t oo s t r ong an assump t i on as the 
user's act ions of ten w i l l be consistent w i t h mo re t h a n 
one p l an , especial ly af ter on ly one or a few ut terances 
when there is insuf f ic ient con tex t to he lp decide the p lan 
of the user. In E x a m p l e 1 there are m a n y reasons w h y a 
s tudent may wan t to d rop a course, such as reso lv ing a 
schedul ing conf l ic t , avo id ing f a i l i n g t he course, or f ind­
ing the m a t e r i a l un in te res t ing . The re m a y be no reason 
to prefer one a l te rna t i ve over the o ther , yet we m a y s t i l l 
wan t to generate a response t h a t does m o r e t h a n j u s t 
give a d i rect answer to the user's query. 

In th is paper, we address the p r o b l e m o f w h a t the 
system should do when the user's act ions are a m b i g u ­
ous as they are consistent w i t h more t h a n one p l a n . 
Much prev ious work has considered heur is t ics t h a t a l ­
low the p lan recogn i t ion sys tem, g iven an assessment 
of the context and d ia logue so far , to prefer some 
plans over others (e.g. [ A l l e n , 1983; Ca rbe r r y , 1988; 
M c K e o w n et a/., 1985J). However , we argue t h a t , unless 
we are w i l l i n g to somet imes a r b i t r a r i l y c o m m i t to one 
p lan instead o f another , there w i l l be t imes when one 
p lan cannot be chosen over ano ther and therefore there 
w i l l be a m b i g u i t y abou t wh i ch p l a n the user is pu rsu ing . 
As a resul t , we also need o ther m e t h o d s to resolve the 
amb igu i t y . E x i s t i n g proposals for reso lv ing a m b i g u i t y 
beyond heur ist ics are underspeci f ied and w h a t usua l ly 
underl ies these proposals is the a s s u m p t i o n t h a t we a l ­
ways wan t to de te rmine one un ique p l a n [Carber ry , 1988; 
L i t m a n and A l l e n , 1987; S idner , 1985] 1 . 

1 For example, L i tman and Al len [1987, p. lu ] give two 
ways for discriminating between the possible plans when 
heuristics cannot eliminate all but one plan, "... if it is the 
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We show how to relax the assumption that the plan 
recognition component returns a single plan. That is, 
given that the result of the plan recognition phase wi l l 
usually be a disjunction of possible plans, we show how 
to design a response component to generate cooperative 
responses given the disjunction. We show that it is not 
always necessary to resolve ambiguity, and provide a pro­
cedure that allows the response component to estimate 
whether the ambiguity matters to the task of formulat­
ing a response. If the ambiguity does not matter, the 
response component can continue to answer the user's 
queries and ignore the ambiguity in the underlying plan 
unti l further queries help clarify which plan the user 
is pursuing. If the ambiguity does matter, the system 
should take advantage of the interactive and collabora­
tive nature of dialogue in recognizing plans and resolv­
ing ambiguity. A key contribution of this work therefore 
is providing a clear criterion for when to respond to a 
question wi th a question that wi l l differentiate between 
some of the possibilities. We also propose a specific solu­
tion to what questions should then be asked of the user. 
Moreover, these questions are asked only to resolve the 
ambiguity to the point where it no longer matters (this 
is not necessarily to a unique plan). 

Our solution makes use of the crit iquing of possible 
plans and identifies plans wi th the same fault. Questions 
are asked to prune sets of these plans. After sufficient 
pruning, all remaining plans are annotated with the same 
fault, and thus the ambiguity does not matter. We argue 
that this approach is preferable to proposing one plan 
and resorting to debugging when an incorrect plan is 
chosen. 

E x a m p l e 2. Here are two examples to give a flavor 
of what we are proposing. There are two agents: a cook 
and an expert who is cooperative, helpful, and adept at 
recognizing plans. 

a. Suppose the cook says to the expert, " I 'm making 
marinara sauce. Is a red wine a good choice?" The 
expert recognizes the cook could be pursuing three 
possible plans: make fettucini marinara or spaghetti 
marinara (both a pasta dish) or chicken marinara (a 
meat dish). The expert has the criteria for wine se­
lection that red wine should be served if the meal is 
chicken, fettucini marinara, or spaghetti marinara 
and white if fettucini alfredo. There is enough in­
formation for the expert to decide red wine should 
be bought and the ambiguity does not need to be 
resolved to cooperatively answer the question. 

b. Now suppose the expert also knows that the cook's 
dinner guest is a vegetarian and so would not be able 
to eat if a meat dish was served. Here the ambiguity 
is important as the expert has recognized that the 
cook's plan to entertain his guest may be faulty. The 
expert wi l l want to resolve the ambiguity enough to 
be assured that the proposed meal does not include 
a meat dish and so clarifies this wi th the cook. 

[system's] turn in the dialogue ..., then the [system] may ini­
tiate a clarification subdialogue. If it is still the [user's] turn, 
the [system] may wait for further dialogue to distinguish be­
tween the possibilities." However, this proposal is never de­
veloped further. 

2 Estimating Whether the Ambigu i ty 
Matters 

Example 2, above, showed that sometimes it is necessary 
to resolve ambiguity and sometimes it is not. Here we 
give criteria for judging which is the case. The result 
is a procedure that allows the response component to 
estimate whether the ambiguity matters to the task of 
formulating a response. 

Assuming we can answer the user's query, deciding 
when we want to give more than just a direct answer 
to the user's query depends on the plan of the user. For 
example, a cooperative response should warn a user that 
a plan wi l l fail because some of its preconditions are not 
satisfied [Allen, 1983] or if there exists another plan that 
has the same effects but is in some sense a better plan 
[Pollack, 1984; Joshi et a/., 1984]. Our algorithm for 
generating a response even when the plan of the user 
is ambiguous involves first a plan recognition phase and 
then a call to a procedure to critique the set of possi­
ble plans from the plan recognition phase (see Fig. 2). 
As a result, the plans are annotated with their faults. 
The catalogue of possible plan annotations used in the 
examples in this paper is shown below. 

1. Failure of preconditions: preconditions. 
2. Temporally inconsistent. 

3. There exists a better plan: primitive actions. 
4 Faultless. 

We have restricted the catalogue of annotations to those 
faults that are easy to detect (see the discussion below on 
the representation of the libraries of typical plans of ac­
tion used in the plan recognition phase). The catalogue 
could, of course, be expanded as much previous work has 
identified different kinds of faults in a plan that a coop­
erative response should warn a user about (e.g. [Allen, 
1983; Pollack, 1986; Joshi et al., 1984; Quil ici et al., 1988; 
van Beek, 1987; Luria, 1987] and see [Calistri, 1990]). 
For example, Joshi et al. [Joshi et a!., 1984] discuss the 
case where a user's plan fails but there exists an alter­
native plan that does not fail and in [van Beek, 1987] 
we show that the user may have competing goals that 
need to be addressed in a cooperative response. How­
ever, the search for faults in plans must be balanced 
against the need for a t imely response and how many 
additional faults can be searched for is currently left for 
future work. 

Once the plans have been crit iqued, we can estimate 
whether the ambiguity matters. The deciding criterion 
for estimating whether the ambiguity matters is whether 
the plans have the same annotation (see the catalogue 
of possible annotations shown above; the procedure is 
shown in Fig. 2). Briefly, there are two cases: (1) the 
plans are all faultless (Case la of procedure Ambigu­
ity .Matters) and (2) the plans are all annotated with the 
same fault (Case lb of procedure Ambiguity-Matters). 

To make the examples concrete, we adopt Kautz's 
[1987] theory of plan recognition and representation for 
libraries of plans. Briefly, a l ibrary of typical plans of 
action is represented as a set of first-order predicate cal­
culus statements called an event hierarchy. Fig. 1 shows 
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Figure 1: Plan l ibrary for course-advising examples 

a graphical representation of a part of the plan library 
for the course-ad vising domain. The thick, grey arrows 
represent abstraction (or "isa") links and the thin, black 
arrows represent decomposition links. Preconditions, 
equality constraints, and temporal constraints are not 
shown in the graphical representation but are also part 
of the knowledge we must represent. As well, we must 
represent under what conditions one plan is better than 
another plan. It is these constraints that are checked in 
the plan cri t iquing phase. 

As an example of determining whether the ambigu­
ity matters to the task of formulating a cooperative re­
sponse, consider the exchanges between student and a 
student-advisor system shown in (3) below. Given the 
student's query (3a), procedure Response-Generation in 
Fig. 2 shows the steps in formulating a response. As a 
first step, the plan recognition procedure is called to de­
termine the set of possible plans of the user. Given the 
plan l ibrary in Fig. 1, the underlying plan of the student 
is ambiguous. The two possible plans are as shown in (3). 
Procedure Critique is called to critique the plans. One 
precondition of the action switch-section$(FromSection, 
ToSection) is that there is space available in the desti­
nation section. 

3a. U: C a n I sw i t ch to the o ther sect ion of my numer ica l 
analysis course? 
Possible plans: 
J. Avoid uninteresting prof by switching sections 
of course. 
2. Resolve scheduling conflict by switching sec­
tions of course. 

b. S: Yes. 
c. S: N o , there is no space avai lable. 

For the response shown in (3b ) , suppose t h a t there is 
r o o m for the s tuden t and thus the p recond i t i on is sat­
isf ied. In th i s examp le , the result o f p lan c r i t i qu i ng is 
t h a t b o t h p lans are labeled w i t h the anno ta t i on "Fau l t ­
less. " Procedure Ambiguity-Matters is cal led to deter­

m ine whether the a m b i g u i t y regard ing the p lan o f the 
user ma t t e r s to the task of f o r m u l a t i n g a response. I t is 
found t h a t the a m b i g u i t y does no t m a t t e r as b o t h p lans 
are faul t less (Case la o f the a l g o r i t h m ) . F i n a l l y , the c r i ­
t iqued plans are used in f o r m u l a t i n g a response to the 
o r ig ina l query. 

For the response shown in (3c ) , suppose t h a t there 
is no r o o m for the s tudent and thus the p recond i t i on 
is no t sat isf ied. T h e resul t o f p l a n c r i t i q u i n g is t h a t 
b o t h plans are labeled w i t h the a n n o t a t i o n "Fa i l u re o f 
p recond i t ions : space-available (ToSection)." Procedure 
Ambiguity .Matters is cal led to de te rm ine whether the 
a m b i g u i t y regard ing the p lan o f the user m a t t e r s to the 
task o f f o r m u l a t i n g a response. I t is f ound t h a t the a m b i ­
gu i t y does no t m a t t e r as b o t h p lans are anno ta ted w i t h 
the same f a u l t (Case lb o f the a l g o r i t h m ) . F i na l l y , the 
c r i t i qued plans are used in f o r m u l a t i n g a response to the 
o r ig ina l query. 

In general , in (Case l a ) a response genera t ion proce­
dure can j u s t g ive a d i rect answer to the user's query, 
and in (Case 1 b) can give a d i rec t answer p lus any war­
ranted add i t i ona l i n f o r m a t i o n , such as t e l l i ng the user 
about the fau l t . 

In the above examples i t was f o u n d t h a t the a m b i ­
gu i t y d id no t m a t t e r as there was enough i n f o r m a t i o n 
to generate a cooperat ive response. I f instead i t were 
found t h a t the a m b i g u i t y d i d m a t t e r (Case 2 o f the a l ­
g o r i t h m ) we propose t h a t we enter i n t o a c la r i f i ca t ion 
dia logue w i t h the user to resolve the a m b i g u i t y to the 
po in t where i t no longer does m a t t e r , i.e., u n t i l we are 
in (Case 1). T h e r e m a i n i n g p lans w o u l d then be used in 
f o r m u l a t i n g a response. 

3 Clarification Dialogues 
W h a t should we ask the user when a c la r i f i ca t ion is nec­
essary? Clear ly , we do no t wan t to s i m p l y l is t the set 
of possible p lans and ask wh ich is be ing pursued. T h e 
procedure to de te rmine w h a t to say {Clarify) is shown in 
F ig . 2. Ou r proposa l for c la r i f i ca t ion dia logues is t ied to 
a h ierarchica l p lan l i b ra ry . T h e i n p u t to the a l g o r i t h m 
is a set of possible p lans t h a t re late the user's ac t ion to 
the top- level or end event. Each p lan in the set is anno­
ta ted w i t h a c r i t i que . T h e key idea is to ask abou t the 
highest level possible, check whether the a m b i g u i t y s t i l l 
needs to be fu r the r resolved, and i f so, ask at the next 
level d o w n , i te ra t i ve ly , t h r o u g h the h ierarchy o f events. 
T h e a l g o r i t h m groups the p lans accord ing to the t ype o f 
fau l t the p lan is anno ta ted w i t h and chooses the g roup 
w i t h the fewest events in i t and asks f i rs t abou t t h a t . 

As an example o f where the a m b i g u i t y m a t t e r s and 
we ask a quest ion to c lar i fy , consider the exchanges be­
tween s tudent and a s tuden t -adv iso r sys tem shown in 
(4) . G iven the p lan l i b r a r y i n F i g . 1 , the u n d e r l y i n g 
p lan o f the s tudent is amb iguous . T h e three possible 
plans and the results of p lan c r i t i q u i n g are as shown. 

I t i s f ound t h a t the a m b i g u i t y m a t t e r s as the anno­
ta t ions are di f ferent for some of the p lans (Case 2b of 
procedure Ambiguity-Matters). As a resu l t , procedure 
Clarify is cal led to i n i t i a t e a c la r i f i ca t i on d ia logue. At 
the s ta r t of the procedure, current -level is i n i t i a l i zed to 
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p r o c e d u r e Response _Generation (Query) 
b e g i n 

Generate response based on query and plan(s) in S 
e n d 

p r o c e d u r e Crit ique(S) 
b e g i n 

f o r each plan in S do 
critique and annotate plan 

r e t u r n (5) 
e n d 

p r o c e d u r e Ambiguity.Matters(S) 
b e g i n 

We are in one of the following two cases: 
Case 1 . T h e a m b i g u i t y does n o t m a t t e r . 

The critiques are the same for all the plans. I.e., 
a. every plan is faultless, or 
b. every plan is annotated wi th the same fault. 
r e t u r n ( " N o " ) 

Case 2 . T h e a m b i g u i t y does m a t t e r . 
The critiques are different for some or all of the 
plans. I.e., 
a. some, but not al l , of the plans are faultless, or 
b. every plan is annotated with a fault and the 

faults are not all the same. 
r e t u rn ( "Yes " ) 

end 

p r o c e d u r e Clarify(S) 
beg in 

first disjunctive branch point from 
the top in S. 

Part i t ion S into the set of sets { F 1 , . . . , F k } , 
assigning two plans to the same F i if and only 
if they have the same fault annotation. 

w h i l e Ambiguity.Matters = "Yes" do 
b e g i n 

Fi in S wi th fewest distinct events 
one level below current_level 

List distinct events in F m i n one level below 
current_level and ask user whether one of 
the events is being pursued 

if user's answer = "Yes" t h e n  

currentJevel next branch point in S 
e n d 
r e t u r n ( 5 ) 

e n d 

Figure 2: Response generation algorithm 

be end-event. (We have only given English descriptions 
of the possible plans in this example, but see Fig. 4 for 
the and/or graph that represents the possible plans that, 
arise in a cooking example.) The set of possible plans is 
partit ioned into {F1, F2} where F\ contains plan (4a. 1) 

and F2 contains plan (4a.2) and plan (4a.3). Next, F m i n 
is found to be F\ as it has the smallest number of distinct 
events one level below currentJevel. Asking about the 
event one level below currentJevel leads to the question 
shown in (4b). Depending on whether the answer is no 
(4c) or yes (4e), the set of possible plans, S, is updated 
appropriately. In both cases it is found that the ambi­
guity no longer matters. Finally, the remaining set of 
critiqued plans are used in formulat ing a response to the 
original query (4d or 4f). In this example, by carefully 
choosing the question to ask, we are able to resolve the 
ambiguity by asking the user a single question about the 
single event "avoid-failing." 

4a. U: Can I drop numerical analysis? 
Possible plans with annotations: 
1. Avoid fai l ing by dropping course. 
Failure of preconditions: not fai l ing (Student). 
2. Avoid uninteresting prof by dropping course. 
There exists a better plan: 
switch-sections (FromSection, To Section). 
3. Resolve scheduling conflict by dropping course. 
There exists a better plan: 
switch-sections (FromSection, ToSection). 

b. S: Are you try ing to avoid fai l ing the course? 
c. U: No. 
d. S: You can drop the course, but if you are try ing 

to avoid an uninteresting professor or t ry ing to 
resolve a scheduling conflict, a better way is to 
switch to another section. 

e. U: Yes. 
f. S: You can drop the course, but you wi l l sti l l fail 

the course since your mark wi l l be recorded as 
withdrawal while fail ing. 

As a second example, recall our story in the introduc­
tion about cooking for our vegetarian guest. Given the 
plan library in Fig. 3, the underlying plan of the cook is 
ambiguous. The three possible plans are as shown in (5) 
and, in more detail, in Fig. 4. 

5a. U: I'm making marinara sauce. Is a red wine a good 
choice? 
Part ia l description of possible plans with annota­
tions (see Fig. 4 ) : 

1. Make pasta dish by making fet tucini marinara. 
Faultless. 
2. Make pasta dish by making spaghetti marinara. 
Faultless. 
3. Make meat dish by making chicken marinara. 
Failure of preconditions: not vegetarian(Guest). 

b. S: Are you making a meat dish? 

Using procedure Clarify, the three plans are critiqued 
and it is found that the ambiguity matters. The two 
plans involving a pasta dish are found to be faultless 
but the plan involving a meat dish is found to be faulty 
as a precondition is false. Using procedure Clarify, the 
question asked to resolve the ambiguity would be "Are 
you making a meat dish (perhaps wi th justif ication of 
why we are asking)?" After either answer of yes or no 
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Figure 3: Plan library for cooking examples ([Kautz, 
1987]; modified) 

we know enough that the ambiguity no longer matters. 
Note that if we just ask the more general "What are you 
making?" this allows such uninformative responses as 
"dinner" or just "you'll see." 

As the examples show, when asking a question we pro-
pose to ask about as high a level of event as possible 
that still helps to resolve the ambiguity, and to work top 
down. Starting with the top most events and working 
down may sometimes give as many or more questions as 
bottom up approaches. However, others have noted that 
bottom up dialogues are more complex to understand 
[Cohen, 1983, p. 25] and more liable to misinterpreta­
tion [Carberry, 1985, p. 54]. Therefore, we believe that 
a top down approach is preferable2. 

If more than one question is necessary to resolve the 
ambiguity, we want the questions to not appear to be dis­
jointed. This is achieved in our proposal by asking about 
as high a level of event as possible that still helps to 
resolve the ambiguity and moving systematically down­
ward through the hierarchy of possible plans and thus 
having the "focus" of the questions change gradually. 

The design of the algorithm takes into consideration 
that it is important to attempt to minimize both the 
length of clarification dialogues and the length of ques­
tions. Fortunately, because plans are hierarchical, we 
can often ask about a group of plans by asking about 
a single event. For example, with reference to Fig. 4 

2Note that, independent of the order that questions are 
asked, some questions can be eliminated using plans known 
from a previous discourse or background knowledge about the 
user. For example, in a student-ad vising domain, we would 
not want to ask a user what degree they are pursuing every 
time they used the system. 

Figure 4: Possible plans for cooking example 

and procedure Clarify, if some t\ contained the plans: 
make spaghetti pesto, make fettucini marinara, and 
make spaghetti marinara, the algorithm would ask about 
this set of plans by asking the user, "Are you making a 
pasta dish?" In addition, the questions asked all re­
sult in yes/no answers, which removes the task of dis­
ambiguating the user's response. An open problem for 
future research is developing tools for comparing criteria 
for generating questions. For instance, we may want to 
choose the group of plans to ask about as a combination 
of how large a question it will give and how probable or 
likely the plans in the group actually are. 

4 D i s c u s s i o n 

In this section we summarize our proposals and de­
fend our position that this straightforward way of doing 
things is a good way. With reference to Fig. 5, we dis­
cuss the design of boxes 2, 3, and 4 and the tradeoffs 
involved between boxes 2 and 3. 

Box 2: Resolve the ambigui ty w i t h heuristics. 
As mentioned earlier, many researchers have proposed 
heuristics to prefer one plan over another [Allen, 1983; 
Carberry, 1988; McKeown tt a/., 1985; Goldman and 
Chamiak, 1988; Neufeld, 1989; Kautz, 1987]. Some of 
these heuristics can be incompatible with cooperative 
response generation. For example, Allen's [l983j prefer­
ence heuristics are generally incompatible with recogniz­
ing and responding to faulty plans. Because we are using 
plan recognition for response generation, this should af­
fect the design of Box 2 and therefore what gets passed 
to Box 3. 

Box 3: Resolve the ambigui ty w i t h the user. 
Previous work in response generation makes the assump­
tion that what gets passed to the RG component is a 
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Figure 5: Major modules of query-answering system 

single plan the PR component proposes the user is pur-
suing. We argue that , unless we are wil l ing to sometimes 
arbitrari ly commit to one plan instead of another, there 
wil l be times when one plan cannot be chosen over an­
other and therefore there wi l l be ambiguity about which 
plan the user is pursuing. Result: We need other meth­
ods, in addition to heuristics, to resolve the ambiguity. 
In plan recognition in a discourse setting (as opposed 
to key-hole recognition), the plan the user is pursuing 
is knowable simply by asking the user. But we do not 
want to always just ask if it is not necessary so we need 
to know when to start a clarification dialogue and what 
to say. To this end, Box 3 contains a procedure that esti­
mates by plan cri t iquing whether the ambiguity matters 
to the task of formulat ing a response. If the ambiguity 
does not matter the result is passed to Box 4. If the am­
biguity does matter, a procedure is called that starts a 
clarification dialogue, responding to the user's question 
with questions that iteratively differentiate between the 
possibilities. 

B o x 2 vs. B o x 3: T h e t radeof fs . Much previ­
ous work in plan recognition makes the assumption that 
we want the PR component to commit to and return a 
single plan. Carberry [1988] and McKeown [1985], for 
example, use a strong heuristic to commit to a single 
plan. However, commit t ing to a single plan means the 
system wi l l at times commit to the wrong plan and thus 
will require the abi l i ty to handle natural language debug­
ging dialogues wi th the user to correct itself. Carberry 
[1989, p. 4] argues that a system wi l l appear "unintell i­
gent, obtuse, and uncooperative" if it engages in lengthy 
clarification dialogues. However, a procedure to perform 
a debugging dialogue is not specified and is, we specu­
late, a difficult problem. We argue for not committ ing 
early. Our hypothesis is that a clarification dialogue is 
better than a debugging dialogue. The questions in the 
clarification dialogues are simple to answer, whereas de­
termining that the system has misunderstood your plan 
requires users to engage in plan recognition. That is, 
users must recognize the plan the RG component is us­
ing from its responses and note that it differs from their 
plans. Moreover, the user may not recognize the system 
is wrong and be misled. Finally, we argue that, if the 
questions are carefully chosen, the clarification dialogues 
need not be lengthy or too frequent. 

Preference heuristics can st i l l be used in our approach. 
These would best be applied when too many top level 

events give an unwieldy clarification question. There 
may be tradeoffs between overcommitt ing in the plan 
recognition process and engaging in lengthy clarification 
dialogue, particularly wi th a large set of complex candi­
date plans. This may suggest applying pruning heuris­
tics more actively in the plan recognition process (Box 
2) to reduce the number of questions asked in the clarifi­
cation dialogue (Box 3). For future work, these tradeoffs 
wil l be examined more closely as we test the algorithms 
more extensively. 

B o x 4: G e n e r a t e t h e response. Once Box 3 has 
estimated that any remaining ambiguity does not matter 
to generating a cooperative response, the disjunction of 
possible plans is passed to Box 4. Generating a response 
is handled by a procedure described in [van Beek, 1987]. 
There are two cases. 

1. Every plan is faultless, so we just give a direct an­
swer to the user's query and ignore the underlying 
plan unti l further queries help clarify which plan the 
user is pursuing. 

2. Every plan has the same fault, so we give a direct 
answer plus some additional information that warns 
the user about the deficiency and perhaps suggests 
some alternatives (see [Joshi ct al., 1984; van Beek, 
1987]). 

5 Future W o r k and Conc lus ion 
This paper makes contributions to the areas of plan 
recognition and response generation, as follows. For plan 
recognition, we have shown that there are cases where 
it is possible to retain a disjunction of possible plans 
and avoid the work incurred in the application of certain 
pruning heuristics which propose a single plan, when the 
plan recognition is being done for the purpose of gener­
ating a cooperative response. This also demonstrates 
that it is possible to use Kautz-style plan recognition for 
cooperative response generation. Our solution requires 
init ial ly determining whether it is important to resolve 
plan ambiguity. And this involves cri t iquing the ful l set 
of possible plans, rather than the one plan that would 
be proposed if ful l pruning heuristics were applied. We 
argue that the process of cr i t iquing, as described in this 
paper, is not difficult to implement (see [van Beek, 1987] 
for a description of the implementation) and incurs l i t ­
tle overhead and would thus argue that there is a cost 
saving overall. 
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The paper also contributes to response generation by 
providing clear criteria for the init iat ion of clarification 
dialogues. Furthermore, we provide an ini t ial proposal 
for what questions to ask during clarification, and ar­
gue for the advantages of our top-down approach. We 
believe that natural language generation systems should 
be designed to involve the user more directly and are 
clearly demonstrating that this is plausible. 

We acknowledge that determining the ideal set of ques­
tions to ask is sti l l open to future research. This could 
be empirically tested by observing human advice givers 
or by gauging reactions to certain clarification dialogues 
from human audiences. Our preference is to first defend 
our design decision on theoretical grounds, arguing that 
if the questions we supply are not "opt imal" in terms 
of work spent to generate and need for further clarifica­
t ion, they are only marginally less "opt imal" than other 
options which could be followed. 
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