
Resolving P lan Amb igu i t y for Cooperat ive Response Generat ion

P e t e r v a n B e e k
Department of Comput ing Science

Universi ty of A lber ta
Edmonton , A lber ta , Canada T6G 2H1

vanbeek@cs.ualberta.ca

A b s t r a c t

Recognizing the plan underlying a query aids in
the genera t ion o f an app rop r i a te response. In
th i s paper , we address the p rob lem of how to
generate coopera t ive responses when the user's
p lan is amb iguous . We show t h a t i t is no t a l ­
ways necessary to resolve the amb igu i t y , and
p rov ide a procedure t h a t est imates whether the
a m b i g u i t y m a t t e r s to the task o f f o r m u l a t i n g
a response. I f the a m b i g u i t y does m a t t e r , we
propose to resolve the a m b i g u i t y by enter ing
i n t o a c la r i f i ca t ion d ia logue w i t h the user and
p rov ide a procedure t h a t per fo rms th is task.
Together , these procedures a l low a quest ion-
answer ing sys tem to take advantage o f the i n ­
terac t ive and co l l abo ra t i ve nature o f d ia logue
in recogniz ing p lans and resolv ing amb igu i t y .

1 I n t r o d u c t i o n

Somewha t obv ious ly , p lan recogni t ion is the process of
i n fe r r i ng an agent 's p lan f r o m observat ion o f the agent 's
act ions. T h e agent 's act ions can be physical act ions or
speech act ions. Four p r i nc i pa l me thods for p lan recog­
n i t i o n have been proposed in the l i t e ra tu re . T h e m e t h ­
ods are p laus ib le inference [A l l e n , 1983; Carber ry , 1988;
L i t m a n and A l l e n , 1987; Sidner , 1985], pars ing [V i l a i n ,
1990], c i r cumsc r i b i ng a h ierarch ica l representat ion of

[)lans and us ing deduc t i on [Kau t z , 1987], and abduc t i on
Cha rn i ak and M c D e r m o t t , 1985; Kono l ige and Pol lack,

1989; Poole , 1989].
O u r p a r t i c u l a r in terest is in the use of p lan recogni­

t i on in ques t ion-answer ing systems, where recogniz ing
the p lan u n d e r l y i n g a user's queries aids in the genera­
t i o n of an app rop r i a te response. Here, the p lan of the
user, once recognized, has been used to : supply more
i n f o r m a t i o n t h a n is exp l i c i t l y requested [A l l en , 1983;
L u r i a , 1987], hand le p r a g m a t i c a l l y i l l - f o rmed queries
[Carber ry , 1988], p rov ide an exp lana t i on f r o m the ap­
p rop r i a t e perspect ive [M c K e o w n et a/., 1985], respond to
queries t h a t resul t f r o m an i nva l i d p lan [Pol lack, 1984;
Po l lack , 1986], and avo id m is lead ing responses and p ro -
duce user-specif ic coopera t ive responses [Joshi et a/.,
1984; van Beek, 1987; Cohen et a/., 1989].

E x a m p l e 1 ([Joshi et a/., 1984]). As an example of

R o b i n C o h e n
Department of Computer Science

Universi ty of Water loo
Waterloo, Ontar io , Canada N2L 3G1

rcohen@dragon.waterloo.edu

a cooperat ive response consider the f o l l o w i n g exchange
between s tudent and s tuden t -adv isor sys tem. T h e p lan
of the s tudent is to avo id f a i l i ng a course by d r o p p i n g i t .

U s e r : Can I d rop numer i ca l analysis?

S y s t e m : Yes, b u t you w i l l s t i l l fa i l the course since your
m a r k w i l l be recorded as w i t h d r a w a l wh i l e f a i l i ng .

I f the system j u s t gives the d i rec t answer. Yes, the s tu ­
dent w i l l r ema in unaware t h a t the p lan i s f au l t y . T h e
more cooperat ive answer warns the s tuden t .

An i m p o r t a n t weakness o f th is wo rk in response gen­
e ra t i on , however, is the rel iance on a p l a n recogn i t ion
component be ing able to un ique ly de te rm ine the p lan o f
the user. T h i s is c lear ly t oo s t r ong an assump t i on as the
user's act ions of ten w i l l be consistent w i t h mo re t h a n
one p l an , especial ly af ter on ly one or a few ut terances
when there is insuf f ic ient con tex t to he lp decide the p lan
of the user. In E x a m p l e 1 there are m a n y reasons w h y a
s tudent may wan t to d rop a course, such as reso lv ing a
schedul ing conf l ic t , avo id ing f a i l i n g t he course, or f ind­
ing the m a t e r i a l un in te res t ing . The re m a y be no reason
to prefer one a l te rna t i ve over the o ther , yet we m a y s t i l l
wan t to generate a response t h a t does m o r e t h a n j u s t
give a d i rect answer to the user's query.

In th is paper, we address the p r o b l e m o f w h a t the
system should do when the user's act ions are a m b i g u ­
ous as they are consistent w i t h more t h a n one p l a n .
Much prev ious work has considered heur is t ics t h a t a l ­
low the p lan recogn i t ion sys tem, g iven an assessment
of the context and d ia logue so far , to prefer some
plans over others (e.g. [A l l e n , 1983; Ca rbe r r y , 1988;
M c K e o w n et a/., 1985J). However , we argue t h a t , unless
we are w i l l i n g to somet imes a r b i t r a r i l y c o m m i t to one
p lan instead o f another , there w i l l be t imes when one
p lan cannot be chosen over ano ther and therefore there
w i l l be a m b i g u i t y abou t wh i ch p l a n the user is pu rsu ing .
As a resul t , we also need o ther m e t h o d s to resolve the
amb igu i t y . E x i s t i n g proposals for reso lv ing a m b i g u i t y
beyond heur ist ics are underspeci f ied and w h a t usua l ly
underl ies these proposals is the a s s u m p t i o n t h a t we a l ­
ways wan t to de te rmine one un ique p l a n [Carber ry , 1988;
L i t m a n and A l l e n , 1987; S idner , 1985] 1 .

1 For example, L i tman and Al len [1987, p. lu] give two
ways for discriminating between the possible plans when
heuristics cannot eliminate all but one plan, "... if it is the

938 Natural Language

We show how to relax the assumption that the plan
recognition component returns a single plan. That is,
given that the result of the plan recognition phase wi l l
usually be a disjunction of possible plans, we show how
to design a response component to generate cooperative
responses given the disjunction. We show that it is not
always necessary to resolve ambiguity, and provide a pro­
cedure that allows the response component to estimate
whether the ambiguity matters to the task of formulat­
ing a response. If the ambiguity does not matter, the
response component can continue to answer the user's
queries and ignore the ambiguity in the underlying plan
unti l further queries help clarify which plan the user
is pursuing. If the ambiguity does matter, the system
should take advantage of the interactive and collabora­
tive nature of dialogue in recognizing plans and resolv­
ing ambiguity. A key contribution of this work therefore
is providing a clear criterion for when to respond to a
question wi th a question that wi l l differentiate between
some of the possibilities. We also propose a specific solu­
tion to what questions should then be asked of the user.
Moreover, these questions are asked only to resolve the
ambiguity to the point where it no longer matters (this
is not necessarily to a unique plan).

Our solution makes use of the crit iquing of possible
plans and identifies plans wi th the same fault. Questions
are asked to prune sets of these plans. After sufficient
pruning, all remaining plans are annotated with the same
fault, and thus the ambiguity does not matter. We argue
that this approach is preferable to proposing one plan
and resorting to debugging when an incorrect plan is
chosen.

E x a m p l e 2. Here are two examples to give a flavor
of what we are proposing. There are two agents: a cook
and an expert who is cooperative, helpful, and adept at
recognizing plans.

a. Suppose the cook says to the expert, " I 'm making
marinara sauce. Is a red wine a good choice?" The
expert recognizes the cook could be pursuing three
possible plans: make fettucini marinara or spaghetti
marinara (both a pasta dish) or chicken marinara (a
meat dish). The expert has the criteria for wine se­
lection that red wine should be served if the meal is
chicken, fettucini marinara, or spaghetti marinara
and white if fettucini alfredo. There is enough in­
formation for the expert to decide red wine should
be bought and the ambiguity does not need to be
resolved to cooperatively answer the question.

b. Now suppose the expert also knows that the cook's
dinner guest is a vegetarian and so would not be able
to eat if a meat dish was served. Here the ambiguity
is important as the expert has recognized that the
cook's plan to entertain his guest may be faulty. The
expert wi l l want to resolve the ambiguity enough to
be assured that the proposed meal does not include
a meat dish and so clarifies this wi th the cook.

[system's] turn in the dialogue ..., then the [system] may ini­
tiate a clarification subdialogue. If it is still the [user's] turn,
the [system] may wait for further dialogue to distinguish be­
tween the possibilities." However, this proposal is never de­
veloped further.

2 Estimating Whether the Ambigu i ty
Matters

Example 2, above, showed that sometimes it is necessary
to resolve ambiguity and sometimes it is not. Here we
give criteria for judging which is the case. The result
is a procedure that allows the response component to
estimate whether the ambiguity matters to the task of
formulating a response.

Assuming we can answer the user's query, deciding
when we want to give more than just a direct answer
to the user's query depends on the plan of the user. For
example, a cooperative response should warn a user that
a plan wi l l fail because some of its preconditions are not
satisfied [Allen, 1983] or if there exists another plan that
has the same effects but is in some sense a better plan
[Pollack, 1984; Joshi et a/., 1984]. Our algorithm for
generating a response even when the plan of the user
is ambiguous involves first a plan recognition phase and
then a call to a procedure to critique the set of possi­
ble plans from the plan recognition phase (see Fig. 2).
As a result, the plans are annotated with their faults.
The catalogue of possible plan annotations used in the
examples in this paper is shown below.

1. Failure of preconditions: preconditions.
2. Temporally inconsistent.

3. There exists a better plan: primitive actions.
4 Faultless.

We have restricted the catalogue of annotations to those
faults that are easy to detect (see the discussion below on
the representation of the libraries of typical plans of ac­
tion used in the plan recognition phase). The catalogue
could, of course, be expanded as much previous work has
identified different kinds of faults in a plan that a coop­
erative response should warn a user about (e.g. [Allen,
1983; Pollack, 1986; Joshi et al., 1984; Quil ici et al., 1988;
van Beek, 1987; Luria, 1987] and see [Calistri, 1990]).
For example, Joshi et al. [Joshi et a!., 1984] discuss the
case where a user's plan fails but there exists an alter­
native plan that does not fail and in [van Beek, 1987]
we show that the user may have competing goals that
need to be addressed in a cooperative response. How­
ever, the search for faults in plans must be balanced
against the need for a t imely response and how many
additional faults can be searched for is currently left for
future work.

Once the plans have been crit iqued, we can estimate
whether the ambiguity matters. The deciding criterion
for estimating whether the ambiguity matters is whether
the plans have the same annotation (see the catalogue
of possible annotations shown above; the procedure is
shown in Fig. 2). Briefly, there are two cases: (1) the
plans are all faultless (Case la of procedure Ambigu­
ity .Matters) and (2) the plans are all annotated with the
same fault (Case lb of procedure Ambiguity-Matters).

To make the examples concrete, we adopt Kautz's
[1987] theory of plan recognition and representation for
libraries of plans. Briefly, a l ibrary of typical plans of
action is represented as a set of first-order predicate cal­
culus statements called an event hierarchy. Fig. 1 shows

van Beek and Cohen 939

Figure 1: Plan l ibrary for course-advising examples

a graphical representation of a part of the plan library
for the course-ad vising domain. The thick, grey arrows
represent abstraction (or "isa") links and the thin, black
arrows represent decomposition links. Preconditions,
equality constraints, and temporal constraints are not
shown in the graphical representation but are also part
of the knowledge we must represent. As well, we must
represent under what conditions one plan is better than
another plan. It is these constraints that are checked in
the plan cri t iquing phase.

As an example of determining whether the ambigu­
ity matters to the task of formulating a cooperative re­
sponse, consider the exchanges between student and a
student-advisor system shown in (3) below. Given the
student's query (3a), procedure Response-Generation in
Fig. 2 shows the steps in formulating a response. As a
first step, the plan recognition procedure is called to de­
termine the set of possible plans of the user. Given the
plan l ibrary in Fig. 1, the underlying plan of the student
is ambiguous. The two possible plans are as shown in (3).
Procedure Critique is called to critique the plans. One
precondition of the action switch-section$(FromSection,
ToSection) is that there is space available in the desti­
nation section.

3a. U: C a n I sw i t ch to the o ther sect ion of my numer ica l
analysis course?
Possible plans:
J. Avoid uninteresting prof by switching sections
of course.
2. Resolve scheduling conflict by switching sec­
tions of course.

b. S: Yes.
c. S: N o , there is no space avai lable.

For the response shown in (3b) , suppose t h a t there is
r o o m for the s tuden t and thus the p recond i t i on is sat­
isf ied. In th i s examp le , the result o f p lan c r i t i qu i ng is
t h a t b o t h p lans are labeled w i t h the anno ta t i on "Fau l t ­
less. " Procedure Ambiguity-Matters is cal led to deter­

m ine whether the a m b i g u i t y regard ing the p lan o f the
user ma t t e r s to the task of f o r m u l a t i n g a response. I t is
found t h a t the a m b i g u i t y does no t m a t t e r as b o t h p lans
are faul t less (Case la o f the a l g o r i t h m) . F i n a l l y , the c r i ­
t iqued plans are used in f o r m u l a t i n g a response to the
o r ig ina l query.

For the response shown in (3c) , suppose t h a t there
is no r o o m for the s tudent and thus the p recond i t i on
is no t sat isf ied. T h e resul t o f p l a n c r i t i q u i n g is t h a t
b o t h plans are labeled w i t h the a n n o t a t i o n "Fa i l u re o f
p recond i t ions : space-available (ToSection)." Procedure
Ambiguity .Matters is cal led to de te rm ine whether the
a m b i g u i t y regard ing the p lan o f the user m a t t e r s to the
task o f f o r m u l a t i n g a response. I t is f ound t h a t the a m b i ­
gu i t y does no t m a t t e r as b o t h p lans are anno ta ted w i t h
the same f a u l t (Case lb o f the a l g o r i t h m) . F i na l l y , the
c r i t i qued plans are used in f o r m u l a t i n g a response to the
o r ig ina l query.

In general , in (Case l a) a response genera t ion proce­
dure can j u s t g ive a d i rect answer to the user's query,
and in (Case 1 b) can give a d i rec t answer p lus any war­
ranted add i t i ona l i n f o r m a t i o n , such as t e l l i ng the user
about the fau l t .

In the above examples i t was f o u n d t h a t the a m b i ­
gu i t y d id no t m a t t e r as there was enough i n f o r m a t i o n
to generate a cooperat ive response. I f instead i t were
found t h a t the a m b i g u i t y d i d m a t t e r (Case 2 o f the a l ­
g o r i t h m) we propose t h a t we enter i n t o a c la r i f i ca t ion
dia logue w i t h the user to resolve the a m b i g u i t y to the
po in t where i t no longer does m a t t e r , i.e., u n t i l we are
in (Case 1). T h e r e m a i n i n g p lans w o u l d then be used in
f o r m u l a t i n g a response.

3 Clarification Dialogues
W h a t should we ask the user when a c la r i f i ca t ion is nec­
essary? Clear ly , we do no t wan t to s i m p l y l is t the set
of possible p lans and ask wh ich is be ing pursued. T h e
procedure to de te rmine w h a t to say {Clarify) is shown in
F ig . 2. Ou r proposa l for c la r i f i ca t ion dia logues is t ied to
a h ierarchica l p lan l i b ra ry . T h e i n p u t to the a l g o r i t h m
is a set of possible p lans t h a t re late the user's ac t ion to
the top- level or end event. Each p lan in the set is anno­
ta ted w i t h a c r i t i que . T h e key idea is to ask abou t the
highest level possible, check whether the a m b i g u i t y s t i l l
needs to be fu r the r resolved, and i f so, ask at the next
level d o w n , i te ra t i ve ly , t h r o u g h the h ierarchy o f events.
T h e a l g o r i t h m groups the p lans accord ing to the t ype o f
fau l t the p lan is anno ta ted w i t h and chooses the g roup
w i t h the fewest events in i t and asks f i rs t abou t t h a t .

As an example o f where the a m b i g u i t y m a t t e r s and
we ask a quest ion to c lar i fy , consider the exchanges be­
tween s tudent and a s tuden t -adv iso r sys tem shown in
(4) . G iven the p lan l i b r a r y i n F i g . 1 , the u n d e r l y i n g
p lan o f the s tudent is amb iguous . T h e three possible
plans and the results of p lan c r i t i q u i n g are as shown.

I t i s f ound t h a t the a m b i g u i t y m a t t e r s as the anno­
ta t ions are di f ferent for some of the p lans (Case 2b of
procedure Ambiguity-Matters). As a resu l t , procedure
Clarify is cal led to i n i t i a t e a c la r i f i ca t i on d ia logue. At
the s ta r t of the procedure, current -level is i n i t i a l i zed to

940 Natural Language

p r o c e d u r e Response _Generation (Query)
b e g i n

Generate response based on query and plan(s) in S
e n d

p r o c e d u r e Crit ique(S)
b e g i n

f o r each plan in S do
critique and annotate plan

r e t u r n (5)
e n d

p r o c e d u r e Ambiguity.Matters(S)
b e g i n

We are in one of the following two cases:
Case 1 . T h e a m b i g u i t y does n o t m a t t e r .

The critiques are the same for all the plans. I.e.,
a. every plan is faultless, or
b. every plan is annotated wi th the same fault.
r e t u r n (" N o ")

Case 2 . T h e a m b i g u i t y does m a t t e r .
The critiques are different for some or all of the
plans. I.e.,
a. some, but not al l , of the plans are faultless, or
b. every plan is annotated with a fault and the

faults are not all the same.
r e t u rn ("Yes ")

end

p r o c e d u r e Clarify(S)
beg in

first disjunctive branch point from
the top in S.

Part i t ion S into the set of sets { F 1 , . . . , F k } ,
assigning two plans to the same F i if and only
if they have the same fault annotation.

w h i l e Ambiguity.Matters = "Yes" do
b e g i n

Fi in S wi th fewest distinct events
one level below current_level

List distinct events in F m i n one level below
current_level and ask user whether one of
the events is being pursued

if user's answer = "Yes" t h e n

currentJevel next branch point in S
e n d
r e t u r n (5)

e n d

Figure 2: Response generation algorithm

be end-event. (We have only given English descriptions
of the possible plans in this example, but see Fig. 4 for
the and/or graph that represents the possible plans that,
arise in a cooking example.) The set of possible plans is
partit ioned into {F1, F2} where F\ contains plan (4a. 1)

and F2 contains plan (4a.2) and plan (4a.3). Next, F m i n
is found to be F\ as it has the smallest number of distinct
events one level below currentJevel. Asking about the
event one level below currentJevel leads to the question
shown in (4b). Depending on whether the answer is no
(4c) or yes (4e), the set of possible plans, S, is updated
appropriately. In both cases it is found that the ambi­
guity no longer matters. Finally, the remaining set of
critiqued plans are used in formulat ing a response to the
original query (4d or 4f). In this example, by carefully
choosing the question to ask, we are able to resolve the
ambiguity by asking the user a single question about the
single event "avoid-failing."

4a. U: Can I drop numerical analysis?
Possible plans with annotations:
1. Avoid fai l ing by dropping course.
Failure of preconditions: not fai l ing (Student).
2. Avoid uninteresting prof by dropping course.
There exists a better plan:
switch-sections (FromSection, To Section).
3. Resolve scheduling conflict by dropping course.
There exists a better plan:
switch-sections (FromSection, ToSection).

b. S: Are you try ing to avoid fai l ing the course?
c. U: No.
d. S: You can drop the course, but if you are try ing

to avoid an uninteresting professor or t ry ing to
resolve a scheduling conflict, a better way is to
switch to another section.

e. U: Yes.
f. S: You can drop the course, but you wi l l sti l l fail

the course since your mark wi l l be recorded as
withdrawal while fail ing.

As a second example, recall our story in the introduc­
tion about cooking for our vegetarian guest. Given the
plan library in Fig. 3, the underlying plan of the cook is
ambiguous. The three possible plans are as shown in (5)
and, in more detail, in Fig. 4.

5a. U: I'm making marinara sauce. Is a red wine a good
choice?
Part ia l description of possible plans with annota­
tions (see Fig. 4) :

1. Make pasta dish by making fet tucini marinara.
Faultless.
2. Make pasta dish by making spaghetti marinara.
Faultless.
3. Make meat dish by making chicken marinara.
Failure of preconditions: not vegetarian(Guest).

b. S: Are you making a meat dish?

Using procedure Clarify, the three plans are critiqued
and it is found that the ambiguity matters. The two
plans involving a pasta dish are found to be faultless
but the plan involving a meat dish is found to be faulty
as a precondition is false. Using procedure Clarify, the
question asked to resolve the ambiguity would be "Are
you making a meat dish (perhaps wi th justif ication of
why we are asking)?" After either answer of yes or no

van Beek and Cohen 941

Figure 3: Plan library for cooking examples ([Kautz,
1987]; modified)

we know enough that the ambiguity no longer matters.
Note that if we just ask the more general "What are you
making?" this allows such uninformative responses as
"dinner" or just "you'll see."

As the examples show, when asking a question we pro-
pose to ask about as high a level of event as possible
that still helps to resolve the ambiguity, and to work top
down. Starting with the top most events and working
down may sometimes give as many or more questions as
bottom up approaches. However, others have noted that
bottom up dialogues are more complex to understand
[Cohen, 1983, p. 25] and more liable to misinterpreta­
tion [Carberry, 1985, p. 54]. Therefore, we believe that
a top down approach is preferable2.

If more than one question is necessary to resolve the
ambiguity, we want the questions to not appear to be dis­
jointed. This is achieved in our proposal by asking about
as high a level of event as possible that still helps to
resolve the ambiguity and moving systematically down­
ward through the hierarchy of possible plans and thus
having the "focus" of the questions change gradually.

The design of the algorithm takes into consideration
that it is important to attempt to minimize both the
length of clarification dialogues and the length of ques­
tions. Fortunately, because plans are hierarchical, we
can often ask about a group of plans by asking about
a single event. For example, with reference to Fig. 4

2Note that, independent of the order that questions are
asked, some questions can be eliminated using plans known
from a previous discourse or background knowledge about the
user. For example, in a student-ad vising domain, we would
not want to ask a user what degree they are pursuing every
time they used the system.

Figure 4: Possible plans for cooking example

and procedure Clarify, if some t\ contained the plans:
make spaghetti pesto, make fettucini marinara, and
make spaghetti marinara, the algorithm would ask about
this set of plans by asking the user, "Are you making a
pasta dish?" In addition, the questions asked all re­
sult in yes/no answers, which removes the task of dis­
ambiguating the user's response. An open problem for
future research is developing tools for comparing criteria
for generating questions. For instance, we may want to
choose the group of plans to ask about as a combination
of how large a question it will give and how probable or
likely the plans in the group actually are.

4 D i s c u s s i o n

In this section we summarize our proposals and de­
fend our position that this straightforward way of doing
things is a good way. With reference to Fig. 5, we dis­
cuss the design of boxes 2, 3, and 4 and the tradeoffs
involved between boxes 2 and 3.

Box 2: Resolve the ambigui ty w i t h heuristics.
As mentioned earlier, many researchers have proposed
heuristics to prefer one plan over another [Allen, 1983;
Carberry, 1988; McKeown tt a/., 1985; Goldman and
Chamiak, 1988; Neufeld, 1989; Kautz, 1987]. Some of
these heuristics can be incompatible with cooperative
response generation. For example, Allen's [l983j prefer­
ence heuristics are generally incompatible with recogniz­
ing and responding to faulty plans. Because we are using
plan recognition for response generation, this should af­
fect the design of Box 2 and therefore what gets passed
to Box 3.

Box 3: Resolve the ambigui ty w i t h the user.
Previous work in response generation makes the assump­
tion that what gets passed to the RG component is a

942 Natural Language

Figure 5: Major modules of query-answering system

single plan the PR component proposes the user is pur-
suing. We argue that , unless we are wil l ing to sometimes
arbitrari ly commit to one plan instead of another, there
wil l be times when one plan cannot be chosen over an­
other and therefore there wi l l be ambiguity about which
plan the user is pursuing. Result: We need other meth­
ods, in addition to heuristics, to resolve the ambiguity.
In plan recognition in a discourse setting (as opposed
to key-hole recognition), the plan the user is pursuing
is knowable simply by asking the user. But we do not
want to always just ask if it is not necessary so we need
to know when to start a clarification dialogue and what
to say. To this end, Box 3 contains a procedure that esti­
mates by plan cri t iquing whether the ambiguity matters
to the task of formulat ing a response. If the ambiguity
does not matter the result is passed to Box 4. If the am­
biguity does matter, a procedure is called that starts a
clarification dialogue, responding to the user's question
with questions that iteratively differentiate between the
possibilities.

B o x 2 vs. B o x 3: T h e t radeof fs . Much previ­
ous work in plan recognition makes the assumption that
we want the PR component to commit to and return a
single plan. Carberry [1988] and McKeown [1985], for
example, use a strong heuristic to commit to a single
plan. However, commit t ing to a single plan means the
system wi l l at times commit to the wrong plan and thus
will require the abi l i ty to handle natural language debug­
ging dialogues wi th the user to correct itself. Carberry
[1989, p. 4] argues that a system wi l l appear "unintell i­
gent, obtuse, and uncooperative" if it engages in lengthy
clarification dialogues. However, a procedure to perform
a debugging dialogue is not specified and is, we specu­
late, a difficult problem. We argue for not committ ing
early. Our hypothesis is that a clarification dialogue is
better than a debugging dialogue. The questions in the
clarification dialogues are simple to answer, whereas de­
termining that the system has misunderstood your plan
requires users to engage in plan recognition. That is,
users must recognize the plan the RG component is us­
ing from its responses and note that it differs from their
plans. Moreover, the user may not recognize the system
is wrong and be misled. Finally, we argue that, if the
questions are carefully chosen, the clarification dialogues
need not be lengthy or too frequent.

Preference heuristics can st i l l be used in our approach.
These would best be applied when too many top level

events give an unwieldy clarification question. There
may be tradeoffs between overcommitt ing in the plan
recognition process and engaging in lengthy clarification
dialogue, particularly wi th a large set of complex candi­
date plans. This may suggest applying pruning heuris­
tics more actively in the plan recognition process (Box
2) to reduce the number of questions asked in the clarifi­
cation dialogue (Box 3). For future work, these tradeoffs
wil l be examined more closely as we test the algorithms
more extensively.

B o x 4: G e n e r a t e t h e response. Once Box 3 has
estimated that any remaining ambiguity does not matter
to generating a cooperative response, the disjunction of
possible plans is passed to Box 4. Generating a response
is handled by a procedure described in [van Beek, 1987].
There are two cases.

1. Every plan is faultless, so we just give a direct an­
swer to the user's query and ignore the underlying
plan unti l further queries help clarify which plan the
user is pursuing.

2. Every plan has the same fault, so we give a direct
answer plus some additional information that warns
the user about the deficiency and perhaps suggests
some alternatives (see [Joshi ct al., 1984; van Beek,
1987]).

5 Future W o r k and Conc lus ion
This paper makes contributions to the areas of plan
recognition and response generation, as follows. For plan
recognition, we have shown that there are cases where
it is possible to retain a disjunction of possible plans
and avoid the work incurred in the application of certain
pruning heuristics which propose a single plan, when the
plan recognition is being done for the purpose of gener­
ating a cooperative response. This also demonstrates
that it is possible to use Kautz-style plan recognition for
cooperative response generation. Our solution requires
init ial ly determining whether it is important to resolve
plan ambiguity. And this involves cri t iquing the ful l set
of possible plans, rather than the one plan that would
be proposed if ful l pruning heuristics were applied. We
argue that the process of cr i t iquing, as described in this
paper, is not difficult to implement (see [van Beek, 1987]
for a description of the implementation) and incurs l i t ­
tle overhead and would thus argue that there is a cost
saving overall.

van Beek and Cohen 943

The paper also contributes to response generation by
providing clear criteria for the init iat ion of clarification
dialogues. Furthermore, we provide an ini t ial proposal
for what questions to ask during clarification, and ar­
gue for the advantages of our top-down approach. We
believe that natural language generation systems should
be designed to involve the user more directly and are
clearly demonstrating that this is plausible.

We acknowledge that determining the ideal set of ques­
tions to ask is sti l l open to future research. This could
be empirically tested by observing human advice givers
or by gauging reactions to certain clarification dialogues
from human audiences. Our preference is to first defend
our design decision on theoretical grounds, arguing that
if the questions we supply are not "opt imal" in terms
of work spent to generate and need for further clarifica­
t ion, they are only marginally less "opt imal" than other
options which could be followed.
A c k n o w l e d g e m e n t s . We thank Fei Song and Bruce
Spencer for comments on an earlier version of this pa­
per and for many discussions about plan recognition.
Financial assistance was received from the Central Re­
search Fund of the University of Alberta and the Natural
Sciences and Engineering Research Council of Canada.

References

[Allen, 1983] J. F. Al len. Recognizing intentions from
natural language utterances. In M. Brady and R. C.
Berwick, editors, Computational Models of Discourse,
pages 107-166. M I T Press, 1983.

[Calistri, 1990] R. J. Calistr i . Classifying and Detecting
Plan-Based Misconceptions for Robust Plan Recogni­
tion. PhD thesis, Brown Univ., 1990. Available as:
Dept. of Computer Science Technical Report CS-90-
11.

[Carberry, 1985] S. Carberry. Pragmatic Modeling in In­
formation System Interfaces. PhD thesis, Univ. of
Delaware, 1985. Available as: Dept. of Computer and
Information Sciences Technical Report 86-07.

[Carberry, 1988] S. Carberry. Modeling the user's plans
and goals. Computational Linguistics, 14:23-27, 1988.

[Carberry, 1989] S. Carberry. A new look at plan recog­
nit ion in natural language dialogue. Dept. of Com­
puter and Information Sciences Technical Report 90-
08, Univ. of Delaware, 1989.

[Charniak and McDermott , 1985] E. Charniak and
D. V. McDermott . Introduction to Artificial Intelli­
gence. Addison Wesley, 1985.

[Cohen et ai, 1989] R. Cohen, M. J ones, A. Sanmuga-
sunderam, B. Spencer, and L. Dent. Providing re­
sponses specific to a user's goals and background. Int.
Journal of Expert Systems: Research and Applica­
tions, 2:135-162,1989.

[Cohen, 1983] R.Cohen. A Computational Model for the
Analysis of Arguments. PhD thesis, Univ. of Toronto,
1983.

[Goldman and Charniak, 1988] R. Goldman and
E. Charniak. A probabilistic assumption-based t ruth

maintenance system for plan recognition. In Proc. of
the AAAI-88 Workshop on Plan Recognition, St. Paul,
Minn. , 1988.

[Joshi et ai, 1984] A. Joshi, B. Webber, and R. Wei-
schedel. Living up to expectations: Comput ing ex­
pert responses. In Proc. of the Fourth National Conf
on Artificial Intelligence, pages 169-175, Aust in, Tex.,
1984.

[Kautz, 1987] H. A. Kautz. A Formal Theory of Plan
Recognition. PhD thesis, Univ. of Rochester, 1987.
Available as: Dept. of Computer Science Technical
Report 215.

[Konolige and Pollack, 1989] K. Konolige and M. E.
Pollack. Ascribing plans to agents. In Proc. of the
Eleventh Int. Joint Conf on Artificial Intelligence,
pages 924-930, Detroit, Mich., 1989.

[Litman and Alien, 1987] D. J. L i tman and J. F. Allen.
A plan recognition model for subdialogue in conversa­
tions. Cognitive Science, 11:163-200, 1987.

[Luria, 1987] M. Luria. Expressing concern. In Proc. of
the 25th Conf. of the Association for Computational
Linguistics, pages 221 227, Stanford, Calif., 1987.

[McKeown et al, 1985] K. R. McK eown, M. Wish, and
K. Matthews. Tailoring explanations for the user. In
Proc. of the Ninth Int. Joint Conf on Artificial Intel­
ligence, pages 794-798, Los Angeles, Calif., 1985.

[Neufeld, 1989] E. Neufeld. Defaults and probabilities;
extensions and coherence. In Proc. of the First Int.
Conf. on Principles of Knowledge Representation and
Reasoning, pages 312 323, Toronto, Ont., 1989.

[Pollack, 1984] M. E. Pollack. Good answers to bad
questions: Goal inference in expert advice-giving. In
Proc. of the Fifth Canadian Conf. on Artificial Intel-
ligence, pages 20-24, London, Ont., 1984.

[Pollack, 1986] M. E. Pollack. Inferring Domain Plans
in Question-Answering. PhD thesis, Univ. of Pennsyl­
vania, 1986. Available as: SRI International Technical
Note 403.

[Poole, 1989] D. L. Poole. Explanation and prediction:
An architecture for default and abductive reasoning.
Computational Intelligence, 5:97-110, 1989.

[Quilici et ai, 1988] A. Qui l ic i , M. G. Dyer, and
M. Flowers. Recognizing and responding to plan-
oriented misconceptions. Computational Linguistics,
14:38-51,1988.

[Sidner, 1985] C. L. Sid ner. Plan parsing for intended
response recognition in discourse. Computational In­
telligence, 1:1-10, 1985.

[van Beek, 1987] P. van Beek. A model for generating
better explanations. In Proc. of the 25th Conf. of the
Association for Computational Linguistics, pages 215-
220, Stanford, Calif., 1987.

[Vi lain, 1990] M. Vi la in. Gett ing serious about parsing
plans: A grammatical analysis of plan recognition. In
Proc. of the Eighth National Conf. on Artificial Intel­
ligence, pages 190 197, Boston, Mass., 1990.

944 Natural Language

