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Abstract 
Causality plays an important role in qualitative rea-
soning about physical systems. In this paper we 
show that the bond-graph method can be f ru i t fu l ly 
applied to represent and generate causal order on 
a formal basis. Both physical and computational 
aspects of bond-graph causality are discussed. In 
particular we show that it provides a (inner phys­
ical foundation for a causal order along the lines 
of Iwasaki and Simon. Bond-graph causality also 
generates more information than does the causal 
ordering theory, including better causal resolution, 
an improved def ini t ion of exogeneity in terms of 
parameters and sources, automatic checking of self 
containment, and a more detailed, physical treat­
ment of feedback. 

1 Introduction 

In previous work we have discussed how the bond 
graph approach provides a solid basis for the formal i -
sation of expert reasoning about physical systems I Top 
and Akkermans, 1990a; Top and Akkermans, 1990b; 
Top et a/., 1991). It is based on the identif ication of a 
small set of physical mechanisms grounded in the energetic 
aspects of physical systems behaviour: storage processes 
(storage of energy, capacitor C and inertia I); dissipative 
processes (resistor R) ; sources and sinks (Se and Sf); and 
distr ibut ion processes (0- and 1 - junct ion, transformer TF and 
gyrator G Y ) . These mechanisms are represented as nodes in 
a labelled digraph, l inked through energy flows. Thus, the 
representation embodies energy conservation as a first pr in­
ciple of physics. Each energy f low is decomposed into an 
effort and a flow variable. Each physics domain has its own 
instantiation of effort and f low variables (for example, force 
and velocity in mechanics), but the generic not ion of effort 
and f low makes it possible to reason across mul t ip le domains, 
including mechanics, electrical engineering, hydrodynamics, 
acoustics and thermodynamics. Thus, bond graphs cover es 
sentially all classical macrophysical domains in an integrated 
fashion. They are based upon a 'mechanism' ontology. Since 
the identif ication of physical mechanisms, which actually arc 
elementary processes, is done on a local basis, this ontology 
combines attractive features of both the device and process 
ontologies fTop and Akkermans, 1990bl. It is incorrect to 
say (e.g. in [Weld, 19901) that system dynamics ( f rom which 

the bond-graph method originates) corresponds to the device 
ontology. The topology of the bond graph can be employed 
to obtain important quali tat ive physical in format ion (Top and 
Akkermans, 1990aI. Thus, bond graphs provide a formal 
and generic language for model l ing and representing physical 
systems. 

In this paper we w i l l deal wi th the topic of causality. 
According to studies of human reasoning about technical 
devices iForbus and Gentner, 19861, causal explanations 
are based on elementary mechanisms that relate indiv idual 
variables in a directed way. We propose that bond graphs 
formalise these intui t ive ideas in a physically appropriate way, 
and can be f ru i t fu l ly employed to obtain causal informat ion 
based on expert knowledge about physical systems theory. In 
particular we show that bond-graph causality yields a causal 
ordering method for physical systems that is similar to but 
more powerful than the theory of Iwasaki and Simon I Iwasaki 
and Simon, 1986aI. 

2 Bond Graph Causality 

We w i l l now describe causality f rom the physical point of 
view, in terms of bond-graph theory. For an extensive intro­
duction to bond graphs wc refer to iKarnopp and Rosenberg, 
19751. 

2.1 Causality in Physical Systems 

Physical models arc usually described at a mathematical level, 
where variables are interrelated through mathematical rela­
tions, even if these relations arc sometimes called confluences 
Ide Kleer and Brown, 1984-1 or influences and quali tat ive pro­
portionalit ies IForbus, 1984]. In contrast, bond graphs are 
based on physical pr imit ives: generic physical mechanisms, 
l inked through energy flows. Causality in bond graphs is 
rooted in physical intuit ions in two ways. First, it is phys­
ically impossible to impose or control both effort and flow 
simultaneously for a single energy l ink iBreedvcld, 19841. 
This means that each energy bond defines a bilateral signal 
flow. In other words, every path of energy exchange is associ­
ated wi th information flow in both directions along that path. 
Second, causal directions are constrained by the mechanisms 
that l ink individual quantities. This is based on the f o l l ow ing 
physical arguments: 

Sources. Sources have fixed causality since they external ly 
impose effort (Se) or flow (Sf). For example, the room 
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atmosphere determines the temperature at the boundary of 
an experiment, and this temperature is not influenced by the 
experiment itself. So, the causal direction of bonds connected 
to sources is determined a priori. 

Storage processes. Storage processes have preferred 
causality. This means that these processes have a priori 
causal directions at the bonds connected to them, unless the 
system requires otherwise. A capacitive process prefers to 
produce effort and an inertial process generates flow, if al­
lowed to. Mathematically speaking, a storage (capacitive or 
inertial) process defines a relation between one variable and 
the derivative of another. A l though this relation is in itself 
undirected, in simulations preference is given to causality 
corresponding to integration rather than differentiat ion for 
reasons of numerical stability. This has in itself no meaning 
for intu i t ive causality. In [Weld and de K leer, 19901 Wi l l iams 
concludes f rom causal explanations given by engineers that 
'causality always f lows along the direct ion of integrat ion' . 
Why this is physical ly adequate fo l lows f rom a closer i n ­
spection of the intui t ive understanding of dynamic processes 
themselves, as we w i l l argue here. 

The first argument for integral causality is based on the role 
that a storage process plays. The 'amounts of s t u f f stored by 
the indiv idual storage processes characterise the present state 
of a system. These amounts (the state quantities) result f rom 
accumulation of f low (or effort). As a result f rom this accu-
mulat ion effort ( f low) develops. For example, accumulation 
of l iqu id due to l iqu id flow into a container causes the pressure 
in the container to rise: the slate quantity (amount of fluid) 
is conceived as the cause of the resulting effort (pressure). 
The reverse statement 'the pressure determines the amount of 
fluid' is unphysical. Hence, the latter fo rm, corresponding to 
derivative causality, is avoided if possible; its presence in a 
model indicates that some dynamic process is (deliberately) 
being neglected. 

The second argument in support of integral causality is 
based on the fact that causality is conceived as a temporal 
order of assignment of values. Mathematically, a storage 
process is represented by quantity q is a 
result of the amount of / that was accumulated over the 
past period. This is also reflected in the elementary discrete 
representation of integration: 
On the other hand the action of dif ferentiat ion is intu i t ively 
in confl ict w i th causality, since it needs a future value of q: 

Several mathematical methods 
have been developed to facil itate numerical di f ferent iat ion, 
but these have no physical interpretation. 

Resistive processes. Causality at resistive processes is in 
principle context dependent, i.e., determined by other causal 
assignments w i th in the model. However, if causality at 
any such process is not determined by sources or storage 
processes it remains indeterminate. In that case causality can 
be assigned indif ferently in either of two directions. We w i l l 
return to this when discussing feedback. 

D i s t r i b u t i o n processes. Distr ibut ion processes impose con­
straints on the causal directions of the connected energy-
bonds. A 0-junct ion must have exactly one effort input, all 
other bonds generate effort. Consider for example a node in 
an electrical network: there is only a single voltage level at 

such a point , imposed from one of the connected lines. On 
the other hand, a 1-junction may have several input efforts, 
but has exactly one output effort. Final ly, the conversion 
process TF must have one effort input and one effort output; 
GY has either effort or flow at both inputs. Since these 
distr ibut ion processes only constrain causal assignment they 
act as propagators of causality. For instance, if an effort 
source imposes effort on any of the bonds of a 0- junct ion, all 
other bonds must have opposite causality. This in turn may 
determine causality at other junct ions. 

2.2 Genera t ion of causal d i rect ions 

Now we w i l l turn to the generation of causal direc­
tions w i th in a bond-graph model. This is done fo l ­
lowing the Sequential Causality Assignment Procedure 
(SCAP) (Karnopp and Rosenberg, 1975; Breed veld, 1986; 
Rosenberg, 19871 which is one of the most beautiful and 
powerful tools of the bond-graph method. This procedure 
is applied to the graph representation of the model and no 
reference to any mathematical equation is required. Given the 
local restrictions on causal directions, causality assignment to 
a complete structure proceeds as fo l lows iBreedveld, 1986]: 

1. Choose any source (Se or Sf) and assign its required 
causality. Propagate the causal implicat ions through the 
graph as far as possible through distr ibut ion processes. 
Repeat this unti l all sources have been used. 

2. Choose any storage process (C or I) and assign its 
preferred causality. Propagate causality as far as possible 
through the distr ibut ion processes. Repeat this unti l all 
storage processes have been used. 

3. Choose any unassigned resistive process (R) and assign 
arbitrary causality. Propagate causality as far as possible 
through the distr ibut ion processes. Repeat this unt i l all 
resistive processes have been used. 

4. Choose any remaining unassigned bond and assign ar­
bitrary causality. Propagate causality as far as possible 
through the distr ibut ion processes. Repeat this unti l all 
bonds have been assigned. 

Af ter causality assignment has been completed, which can 
be the case after any of these four steps, every process math­
ematically represents a directed relation. Thus, propagation 
of information is completely specified. 

Figure 1: Bathtub and its bond-graph model 

2.3 An example 

Consider for example the bathtub l lwasak i , 1988] as shown 
in Figure 1. The bond-graph model is given on the r ight. 
Source of flow Sf represents the incoming flow f rom the tap, 
capacitor C represents the storage of fluid in the bathtub and 
resistor R stands for the action of the outlet. These processes 
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are connected through energy flows to a single 0-junct ion, 
representing the fact that they all act on a single pressure P. 
Energy f lows are represented by half arrows, the energybonds. 
In the figure it is indicated to which (effort and f low) variables 
each bond is related at the signal level. represents the net 
f low into the bathtub. 

Causality in bond graphs refers to a two-way signal flow. 
For example, the capacitive process C either must have 
as its input to produce (compute) P as an output or P must 
be the input and the output. If the effort is produced at 
one side of an energybond, then f low is produced at the other 
side. The actual direct ion of the causal relation is graphically 
indicated by a causal stroke at the side of effort production. 
This results in a very elegant and compact representation of 
causality, as can be seen in Figure 2, for which the associated 
mathematical decomposit ion is given on the right in terms of 
a block diagram. The incoming f low Q io is integrated by C 
to cause an increase of f lu id volume l\ which causes a rise in 
pressure P. Note that causal directedness is not restricted to 
linear systems, as P may depend on V in a non-linear way. 

Figure 2: Decomposit ion of a capacitive process 

In Figure 3 the bond graph of Figure 1 is augmented wi th 
causal directions and Figure 4 shows the equivalent block 
diagram. The bond graph can be read as fo l lows: At Sf a f low 

enters the system. On the other hand, at outlet R f low 
i leaves the system as a consequence of pressure P. The 
resulting net f low into the container causes an increase of 
pressure in C. 

Figure 3: Causally augmented bond graph of bathtub 

Figure 4: B lock diagram of the bathtub model 

In order to i l lustrate how a causal order is generated we use 
a sl ight ly extended version of the bathtub model. Suppose 
that the f low is leaving through a long pipe, such that the mass 
of the fluid contained in it cannot be neglected. This situation 

is modelled in Figure 5, where I represents the inert ial effect 
of the f lu id mass. 

According to the above procedure, first causality is assigned 
to the bond connected to a source of flow. Since this does not 
yet determine causality at the 0- junct ion no propagation is 
possible. Next, ef fort-producing causality is assigned to the 
bond connected to C, being one of the storage processes. This 
immediately determines causality at the 0- junct ion, which 
can have only one effort input. The result is shown in Figure 
6. No further propagation is possible, because the 1-junction 
is not yet causally determined. 

F igured : Extended bathtub model 

Next, preferred causality is assigned to the bond connected 
to inertial process I. As a consequence, the 1-junction is 
causally determined (as it can have only one f low input) and 
the causal direction of the bond connected to R is set. This 
completes the causal order, since every effort or flow is now 
an input or an output of some mathematical funct ion, or in 
other words: it has become a cause or an effect. 

Figure 6: Extended bathtub model after assigning partial and 
fu l l causality 

3 Comparison with the Causal Ordering 
Theory 

The method of causal ordering [Iwasaki and Simon, 1986a; 
lwasaki and Simon, 1986b; Iwasaki, 1988; Simon and 
Rescher, 19661 starts of f w i th a self-contained set of equa­
tions. Exogenous variables are those variables that appear as 
the only unknown in one of the equations. The values of these 
variables are substituted in the remaining equations. This re-
sults in some other unknowns being determined, which are 
said to be caused by the exogenous variables. Next, the newly 
found values are in turn used to determine other unknowns. 
This is repeated unti l all variables are causally ordered. 

Causal ordering and bond graphs w i l l produce identical 
causal order if the underlying mathematical models are equal. 
From the mathematical point of v iew a bond graph can 
be considered as a organisational f ramework that arranges 
equations and variables in such a way that substitutions are 
represented by graphical l inks, viz., the energybonds. The 
fundamental difference between both methods is that causal 
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ordering is based on abstract mathematical relations and the 
bond-graph method on formal physical principles. Thus the 
causal ordering theory may perhaps also be applied to non-
physical systems. In the realm of physical systems, however, 
the bond-graph method constitutes a richer representation of 
knowledge, is better suited for physical explanation, and gen­
erates more causal informat ion. In the fo l l ow ing paragraphs 
this w i l l be elucidated. 

3.1 Causal resolut ion 

A causal explanation is acceptable only if ( i ) the mechanisms 
on which it is bui l t are intui t ively acceptable and ( i i ) these 
mechanisms are fu l ly resolved, i.e., two or more mechanisms 
should not be combined or mixed. That point ( i) is satisfied 
by the bond-graph method has already been discussed in Sec. 
1. The second issue points to a problem in the causal ordering 
theory. Since bond-graphs are based on an exhaustive set of 
pr imi t ive physical mechanisms, they guarantee a maximum 
causal resolution for a given model '. This is not the case 
for the causal ordering theory. The causal ordering theory 
does not preclude to produce maximum causal resolution, but 
leaves it up to the personal ski l ls of the modeller. In contrast, 
bond graphs generate this as an automated part of the method. 
For example, in a situation where there is a balance of energy 
f lows in the system, the bond-graph method automatically 
decomposes this into the mechanisms that create that balance. 
In the causal ordering theory this decomposit ion may be easily 
overlooked by the modeller since it is not necessarily obvious 
f rom the mathematical structure of the system. 

As an example we consider an evaporator as described by 
Iwasaki and Simon in l lwasaki and Simon, 1986aI. Their 
model consists of 8 unknowns in 8 equations, 4 of which 
are assumed to be exogenous. The resulting causal order is 
given in Figure 7. On the other hand, the bond-graph model 
that is based on the same physical description generates 12 
variables and 12 equations (of which 4 arc exogenous). The 
corresponding causal order (Figure 8) shows a much more 
detailed structure. 

Figure 7: Causal order for an evaporator according to llwasaki 
and Simon, 1986a] 

This lack of resolution in the first diagram is partly due 
to one of their mechanisms (based on the balance of energy 
flows in the refrigerant) which should have been decomposed 
further into local mechanisms. As a consequence, the causal 
order of Figure 7 does not show that and influence 

In [Iwasaki and Simon, 1986bJ a difference 

1Of course, it is a modelling problem to find out into what detail 
mechanisms must he distinguished in the real system. However, 
given a certain detail of modelling it is necessary to preserve that 
detail in the modelling language. 

Figure 8: Causal order for an evaporator f rom the bond-graph 
model 

variable l ike is called a 'def ined' quantity, an artifact 
of the model l ing method that should be avoided since it 
has no physical meaning. However, every effort (such as 
temperature or pressure) is defined relative to some reference. 
Hence, is no more an artifact than the so-called ' rear 
quantities and are. In fact, every effort difference 
across some path of energy exchange can be the cause of a 
flow along that path and thus must be considered separately. 
Consequently, it makes sense to split up (the total heat 
absorbed by the refrigerant) into (heat absorbed by the 
refrigerant l iqu id) and (heat absorbed due to evaporation 
of the refrigerant). For a causal explanation it is definitely 
relevant to dist inguish between all of these quantities. 

3.2 Exogenei ty 

Determining exogeneity is essentially a matter of model l ing 
and certainly not a syntactical issue [Iwasaki and Simon, 
1986a|. It is based on assumptions of possible interactions 
between the system under consideration and the rest of the 
wor ld . A modeller uses his or her experience and general 
knowledge of the wor ld to make these assumptions. The 
theory of causal ordering simply refers to those variables in 
the system that are not influenced by the system. Bond graphs 
however provide a more refined approach to exogeneity in 
the context of physical systems, thus supporting the modeller. 

Two types of exogeneity can be dist inguished, viz., direct 
and indirect exogeneity. Direct exogeneity is related to 
processes or influences f rom outside the system that directly 
determine certain dynamic variables w i th in the system. These 
influences are represented by sources in a bond graph. In fact, 
Iwasaki's suggestion that exogeneity is related to processes 
which involve ' in f in i te1 amounts of energy l lwasaki and 
Simon, 1986a] is given a formal basis in the def ini t ion of 
a source. It delivers or consumes energy wi thout being 
influenced. A battery in an electrical circuit is usually 
modelled as an ideal source of voltage. 

Indirect exogeneity is related to the assumption that a 
dynamic system is embedded in a fixed structure which is 
not influenced by the changes of variables. For example, 
it is usually the case that the capacitance of an electrical 
capacitor is not influenced by the charge and voltage it 
is ho ld ing (although its value is impl ied by their values). 
This type of exogeneity is represented by parameters, to 
be distinguished f rom dynamical variables. This physical ly 
relevant dist inct ion is usually ignored in A I . 
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3.3 Self-containment 

The theory of causal ordering requires the (static or mixed) 
mathematical model to be self-contained [ Iwasaki, 19881. It 
is up to the modeller to check a model and to repair it if does 
not satisfy these requirements: no part of the structure may 
be overdetermined and the equations may not be dependent. 
If a model is expressed in terms of a bond graph however, 
causality assignment automatically checks self-containment. 
This is due to the fact that after correct causal assignment 
every variable (effort or flow) is the result of precisely one 
expression, in which this variable does not occur. The system 
is said to be in canonical form f [l wasaki, 19881. Given the 
init ial values at all storage processes a single value for each 
variable in the system fo l lows. 

However, dur ing model l ing it is possible to construct a 
system that is not self-contained. In that case applying SCAP 
w i l l immediately reveal the problem. For example, suppose 
we connect two effort sources to a single 0- junct ion, so that 
the system is overdetermined. Since a ()-junction cannot 
accept two efforts as its input, reverse causality has to be 
assigned for the second source. Hence, a causal error is 
detected and located. If both effort sources impose equal 
values one of them is redundant, if they don't the system is 
inconsistent. This corresponds to the impossibi l i ty for two 
batteries of different voltage and connected in parallel to act 
l ike two perfect effort sources. 

An interesting application of automatic checking of self 
containment arises if a (mixed) dynamic structure is equi­
librated. Equi l ibrat ing refers to the process of replacing 
dynamic mechanisms by their corresponding equi l ibr ium 
mechanisms, in order to find the state of the system after 
these processes have reached steady-state behaviour [ I wasaki, 
19881. In a bond-graph model equi l ibrat ing boils down to 
replacing capacitive processes by flow sources and inertial 
processes by effort sources, and setting the respective sources 
to zero output. Next, SCAP is applied to generate a causal 
order for the new system. If no causal error is detected the 
system has a steady-state solut ion, otherwise the system is 
overdetermined. In that case simple propagation of values 
shows whether there is an inf ini te number of solutions or none 
iBreedveld, 1984]. 

3.4 Feedback 

In the theory of causal ordering 11 wasaki and Simon, 1986a; 
I wasaki and Simon, 1986b] feedback is detected when causal 
analysis runs into a set of equations that can only be solved 
simultaneously. The theory does not provide any information 
about the type of feedback or its sign. Bond graphs in­
corporate a much more clear and informative representation 
of feedback. Its presence, character and symbolic sign are 
provided automatically f rom the causally augmented graph. 
Moreover, in contrast to the causal ordering theory bond 
graphs do assign a causal direction w i th in a feedback loop. 

Causal loops. A feedback loop wi th in a bond graph simply 
shows up as a causal loop, i.e., a chain ol* energybonds 
wi th equally directed causality between two storage and/or 
resistive processes 2 For example, in Figure 3 the bonds 

2Any GY within the chain continues it, although the causal 
direction is reversed. 

between C, 0 and R represent a causal loop, corresponding to 
the feedback loop in Figure 4. 

Only three types of loops arc possible. Loops between 
inert ial and capacitive processes introduce two derivatives 
and thus are of second order (related to osci l lat ion), loops 
between resistive and storage processes arc of first order 
(related to relaxating behaviour), and loops between resistive 
processes are static. Hence, the character of a loop can be 
obtained directly by inspecting the graph. 

In general the sign of a feedback loop can be simply derived 
from the individual directions of the energybonds by tracing 
the reversals of bond directions w i th in the loop. For example, 
in Figure 3 the direction of the energybonds between C and R 
reverses at the intermediate 0- junct ion, result ing in a negative 
feedback loop. In many cases the feedback sign can be found 
even more easily by apply ing one of the seven theorems 
developed in I Brown, 1972]. 

Thus, the path of a feedback loop, its character, sign and 
internal causal direction can be established immediately f rom 
inspection of the bond graph. However, the net effect of 
several interacting feedback loops cannot be determined on 
the basis of qualitative informat ion only, since it depends in 
a complicated way on the actual values of the parameters. 
In fact, this points to a basic problem of the Quantity Space 
Ide Kleer and Brown. 1984; Forbus, 1984; Kuipers,' 1986). 
The resolution of a Quantity Space is too low to al low for an 
adequate treatment of mult ip le feedback. 

Instantaneous feedback. It may happen that a feedback 
loop contains no dynamic processes. In that case feedback 
is mathematically described in terms of a set of simultaneous 
equations that cannot be solved by simple substitution. Ac-
cording to Iwasaki and Simon l lwasaki and Simon, 1986b] it 
is pointless to assign a causal order wi th in such a loop. In the 
above paragraph we already mentioned that in a bond graph 
this type of feedback can easily be recognised as a causal 
loop between two resistive (R) processes. Moreover, the 
presence of this algebraic feedback is detected already dur ing 
the application of SCAP: if sources and storage processes 
do not succeed in determining all causal directions w i th in 
the model, then the remaining acausal bonds participate in 
algebraic feedback. As we saw in Section 2, SCAP does not 
prescribe a preferred causal direction in such a loop. Hence, 
bond graphs do assign causality w i th in all types of feedback, 
but in the case of algebraic feedback the direct ion is arbitrary. 

The fo l lowing argument shows that this agrees wi th the 
intui t ive conception of causality. An algebraic feedback loop 
can actually be considered as a dynamic loop that is assumed 
to reach equi l ibr ium instantaneously, i.e., in a t ime that is very 
short compared to the time scale of the rest of the system. 
However, causal reasoning is only possible in terms of a 
sequence of causes and effects over t ime. Since the algebraic 
loop reaches equi l ibr ium in 'no t ime ' compared to the rest of 
the system, it makes no difference what comes first. Hence, 
there is no preferred causal direct ion. It is interesting to relate 
this argument to the conclusion in l lwasaki and Simon, 1986a] 
that the causal ordering in the equil ibrated bathtub example 
is counterintuit ive. Apparently, any causal explanation needs 
dynamics to be intui t ively acceptable. A steady state model 
is intui t ively explained in terms of the associated dynamic 
behaviour and in a dynamic model (relat ively) instantaneous 
processes are assigned ' v i r tua l ' dynamics. 
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An example of instantaneous feedback can be found in a 
pressure regulator (see e.g. Ide Kleer and Brown , 19841), 
between the regulating resistance and the load resistance. 

4 Conclusion 

It has been argued that the bond-graph method can be fruit­
fu l ly applied to represent and generate causal order in a 
physical system in a formal way. We have emphasised 
the physical notions that underly bond-graph causality and 
have indicated that they conform wel l w i th expert physicists' 
ideas. Assignment of causal directedness is done on a local 
basis. A causal order is then computational ly generated using 
the sequential causality assignment procedure, applied to the 
graphical representation of the model. 

We have compared this conception of causality w i th that of 
the causal ordering theory of Iwasaki and Simon IIwasaki and 
Simon, 1986a I. These two concepts turn out to be similar, but 
it appears that the causal ordering theory can be put on a firmer 
physical foundation if it is based on bond-graph causality. It 
has furthermore been demonstrated, wi th the help of various 
examples, that the present approach yields additional causal 
information. Bond graphs arc seen to be more powerful wi th 
respect to: 

• causal resolution 

• exogeneity 

• self-containment 

• feedback 

The causal analysis techniques described in this paper have 
been fu l ly implemented in Q u B A , our system for qualitative 
bond graph analysis. 

Bond graphs constitute a powerful tool for integrated qual­
itative and quantitative analysis of physical systems. This is 
being strengthened by their application to causal ordering. 
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