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Abstract

A parallel distributed computational model for
reasoning and learning is discussed based on a
belief network paradigm. Issues like reasoning
and learning for the proposed model are dis-
cussed. Comparisons between our method and
other methods are also given.

1 Introduction

Comparing with the model of Connectionist Expert Sys-
tems (CES) [Gallant, Feb 1988], Belief Networks (BN)
[Lauritzen and Spiegelhalter, 1988; Pearl, 1988] has quite
a few advantages, eg. (1) it has the probability theory
as its theoretical basis and thus guarantees a consistent
or correct result; (2) it allows reasoning in all directions,
other methods like CES only allow single reasoning direc-
tion, eg. bottom-up [Gallant, Feb 1988]; and (3) it is easy
to express higher level probabilistic (Non-functional) do-
main knowledge in BN while it is difficult in CES.

On the other hand, however, CES model also has its
attractive features, eg., (1) it is easy to implement par-
allel distributed CES; and (2) it is possible to automati-
cally generate CES by a set oflearning techniques. These
make CES more and more popular in recent years. There
were discussions about some vital issues for belief net-
works and some solutions were also proposed.

* Lauritzen and Spiegelhalter [1988] proposed a BN
decomposition method to reduce the computational
amount when dependencies exist among the vari-
ables. This method provides a potential way to
make use of the parallelism inherent in BN.

+ Pearl [1988] proposed a parallel model for his
Bayesian network which is elegant and efficient but
difficult to use in multi-connected networks. A
method for learning causal tree structure is also dis-
cussed in Pearl's book.

* Herskovits and Cooper [1990] used the Maximum
Entropy (ME)/Minimum Cross entropy (MCE)
methods to learn conditional probabilities to con-
struct BN. These methods assign uniform distribu-
tions to the unseen cases in the training set.

* Laskey [1990] proposed a method to construct Bayes
networks using Boltzmann machines [Rumelhart et
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al., 1986]. While this method seems promising, it is
not quite clear for this method how to handle the
NP-hardness of connectionist learning [Judd, 1987].

Based on [Lauritzen and Spiegelhalter, 1988; Pearl,
1988], we proposed [Wen, Nov 1989] a highly parallel dis-
tributed computational model for BN called Boltzmann-
Jeffrey Machine Network (BJMNet). In this paper, we
will explore further the capabilities of BJMNet and pro-
pose a set of efficient methods of BN learning from Sta-
tistical Relational Databases (SRDB). A performance
analysis and comparison between our method and other
methods are also given.

We only consider the case of binary variables in this
paper, but our results can be generalised to the general
case containing arbitrary variables straightforwardly.

2 Boltzmann-Jeffrey Machine Networks

Suppose that a system X of m binary random variables
z; (§=0,...,m — 1) has a set of 2™ states § = {s;]0 <
J < 2™} with distribution p = {P(s;)}. If we have a
prior distribution p{°} that estimates p and we have evi-
dence which changes our estimation of p to $, according
to the Minimum Cross Entropy (MCE) principle
[Kullback, 1968], the best estimate p of p satisfying the
constraints ia the one minimising the croas entropy:
™_1 -
. (0 . FP(a;
H{n)) = B = 3 Poy)log prps.
=0
According to the values of n distinct variables,
Ti, 0<Hr <m, k=0,.,n—1, n<m),in X, we
partition the state space § inte 2" exclusive and exhaus-
tive subapaces calied events S;, | = 0,...,2" ~ 1 such
that in each of these events the value of each binary
number of n bita ! = z; ..z; , is constant. Suppose

we know a prior distribution p(® and some (not nec-
essarily all) of the probabilities of the above events,
PC{m=P(S)|I=0,..,2"~1}. The MCE posterior
distribution which satiafies the constraint set p' is [Wen,

July 1988)]
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Suppose we know the probabilities of all these events
(constraints} and pl©), then the MCE posterior distribu-
tion which satisfies the constraint set {u; = P($;) |{ =
0,..,2" — 1}, is [Lemmer, 1983; Wen, July 1989]

P(s;) = P%s;) F(';‘TE.'S‘[S' (s;€5) (2)

This is the well known Jeffrey’s rule in philosophy and
statistics {Jeffrey, 1957, and (1) is called Pariial Nor-
malized Jeffrey’s (PNJ) rule.

Among 2™ equations of Jeffrey’s rules (1) and (2) there
is no data dependency at all, and the probabilities of all
2™ gtates can be calculated simultancously. To fully ex-
plore this parallelism inherent in MCE reasoning, we pro-
pose a highly parallel computational model, Bolizmann-
Jeffrey Machine (BJM}). A BIM is a hypercube of 2™
computational unita. Each computational unit u; corre-
sponds to a state #; in § and needs only three arithmetic
operations — addition, muitiplication and division — to
calculate a state probability of the posterior distribution
by (2). Each unit u; is connected to m neighbors {u;.}
(0<j*<2m=-1, }j—j°} =2¥, 0< N <m—1)sothat
it can receive their probability values io calculate the
corresponding prior marginal P(°)(S;) by accumulating
the values { P{®)(a;..)} together, where ;.- € {3;-} \ 5.
Three BJMs are shown in Fig. 1.
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Figure 1: Boltemann-Jefirey Machines

The parallel reasoning procedure in BJM is as follows:

1. Before reasoning, each unit u; of the BJM is as-
signed a prior probability P(u;) = P(®)(s;}.

2. When we observe some evidence which creates
a set of constraints {P(S5:)}, the corresponding
prior {P{®(5})} is calculated by accumulation of
{P{s;.-)}, and the resulis are distributed at each
2 € 5. For a BIM™, if we have an n-th order
consiraint set, then we need m — n addition cycles
to complete both accumulation and distribution.

3. Each unit u; calculates its posterior f’(a,-) by (2) in
parallel using the above results and only one multi-
plication cycle and one division cycle are needed to
complete the computation in thie step.

For the BJM? in Fig. 1 c, to calculate P(®(zo,z,)}
in step 2, we need add the corresponding prior of the
two planes X; : (P(uoo0o), P(u100), P{u110), P(uo10)) and
X, : (P(‘uom),P(tuoﬂ,P(‘l.lul),P(uou)) to each other
in parallel. 3 — 2 = 1 addition cycle is needed to
complete both accurnulation and distribution of the
results. If we want P(®)(zo)} instead of P{%)(zo,z,),

then add the corresponding prior of the two planes
Xy : (P{uogoco), P(uoo1r), P(uio1), P(uso0)) and X; :
(P(uo1o),P(uqu),P(u1u), P(uuo)) to each other, and
then add the corresponding results on planes X; and X3
1o each other. Here, we need 3 — 1 = 2 addition cycles.

Example 1 (XOR Problem): For the exclusive-or
{XOR) problem {Table 1), a 3-dimensional BIM (Fig.

Input Qutput MLFP
Zp Iy Ty Output z; Error
0 0 i] 0.009% 0.0095
0 1 1 0.8613 0.00BT
1 1] 1 0.9913 0.0087
1 1 0 0.0108 0.0109

Table 1: The example of exclusive-or

1c) is needed. The first step 18 to store the patterns to
be recognised. From Table I, we can easily obtain the
conditional probabilities: P(z3|Zo, %) = P(ZalT0,2,) =
P(#3|z0, %1) = P{za{zo,z1) = 0. Thus, P(%o,%),22} =
P(io,thﬁz) = P(ZQ,il,ig = P(Io,ll,zg) = 0.
Using (1) and the above probabilities as constraints
to update a flat distribution of {zp,z1,z2}, we ob-
tain P{ia,fl,fj) = P(in,z;,zg) = P(Zo,fl,ZQ) =
P(zg, z1,Z3) = 0.25. Thua, we store a probability 0.25
at each of 4 units woog, Uo11, %101, and uy1p {black node
in Fig. 1c) and store probability 0.0 in each of the other
4 units. Actually, we do not even need these 4 units with
0 probabilitics because it is easy to see from (2) that they
will always keep the value 0 during any reasoning.

After storing the patterns, the recall is simply per-
formed by {2). The prior probabilities of the input
P 3_.'.0,51) = 0.25, P(io,:l) = 0.25, P(zq,%,) = 0.25,
P(2zo,z:) = 0.25 can be obtained in only one addition
cycle. Suppose we have input 2g = 0 and z, = 0.
The posterior state probabilities can be obtained by
Jeffrey’s updating in one division and one multiplica-
tion cycles. The only non-zsero one among them is
P(20,%1,82) = 0.25- 2% = 1.0, and we have P(£;) = 1
after two more addition cycles. That is, the output is
z; = 0. It is easy to test all the other cases using (2).

In summary, we have a time efficient parallel reason-
ing algorithm for BJM. However, the number of units in
a BJM exponentially grows as the number of variables
increases although we may save all units which have zero
probabilities in BJMs with sparse spaces.

One way to handle the exponential explosion of the
number of units in a big BJM is to decompose the BJM
into a network of small BJMs (called BJMNet). If we
can keep the size of the biggest sub-BJM in the BJMNet
fixed, the exponential explosion is avoided.

To keep the consistency of the reasoning results among
the small BJMs, it is desirable to organize the BJMNet
as an acyclic hypergraph [Beeri et al, July 1983]. Each
BJM in the BJMNet corresponds to a hyperedge in the
hypergraph and is an autonomous component which has
its own prior distribution and always checks its interfaces
with its neighbors which affect it. BJMi is affected by
BJMj if BJMi is the Running Intersection Predeces-
sor (RIP) or one of the Running Intersection Succes-
sors (RIS's, [Beeri et al., July 1983]) of BJMj. If there
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is any belief change in the interfaces it will update its
own distribution using (2), and then propagate the belief
changes to its other RIP and RIS's. The new changes, in
turn, may cause some other BJMs to update their distri-
butions. The network reaches an equilibrium when the
gradients of all the original disturbing points are in some
small ranges specified beforehand. The network can be
reconfigured dynamically using some techniques such as
microprogramming to fit it for different applications.

Based on the MCE principle and the theory of Markov
fields we have proven [Wen, July 1989]

Theorem 2.1: For an acyclic BJMNet, the following
updating procedures are equivalent:

1. Global updating the whole network with single
marginal constraint set by (2).

2. Local updating one sub-BJM which contains
the constraints and Jeffrey propagation of the
result to the whole BUMNet through the run-
ning intersections.

Example 2 [Cooper, 1984]. Metastatic cancer (A) is
a possible cause of a brain tumor (C) and is also
an explanation for increased total serum calcium
(B). In turn, either of these could explain a patient
falling into a coma (D). Severe headache (E) is also
possibly associated with a brain tumor.

The BN and BJMNet for this example are shown in Fig.
2, where the arrows in Fig. 2b show the RIP/RIS re-
lationship between BJMs. The BJM without decom-

<9
C
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-

a. Belief Net b. BIMNet

Figure 2: Belief network and BJMNet For Example 2

position has 5 binary variables and thus 32 units. Af-
ter decomposition using the techniques in [Lauritzen
and Spiegelhalter, 1988; Wen, 1990b], the BJM is de-
composed into 3 sub-BJMs: {A, B,C}, {B, C, D}, and
{C, E. Only 2%+ 2% + 22 = 20 units are needed here.
Further saving can be achieved considering that the units
in the intersections (the black nodes in Fig. 2b) are never
active simultaneously (14 units are needed here).
Suppose we have an initial distribution in which

P(Blé) = 0.2 P(BIA) = 0.8,
P{C|A) = 0.05, P(C|A) = 0.2,
P(D|B,C) = 0.05, P(D|B,C} = 08,
P(D|B,C) = 08, P(D|B,C) = 08
P(E|C) = 08, P(E|C) = 0.8,
P(A) = 0.2.
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It in eany to calculate the initial marginal distributions
for each of the sub-BIJMas:

BJIM3 (P(A,B,C)): 0608, 0.032, 0.152, 0.008,
0.032, 0.008, 0.128, 0.032.
BJM}? (P(B,C,D)): 0.608, 0.032, 0.008, 0.032,
0.056, 0.224, 0.008, 0.032.
BIM} (P(C,E)): 0.368, 0.552, 0.016, 0.064.

If we have observed P(D) = 0 and P(E) = 1, respec-
tively, what is the possibility that a patient suffers from
metastatic cancer? The reasoning is as follows:

1. BIM? uses the constraint P{E) = 1 to update ita
own distribution in parallel and calculates the pos-
terior P/(C), and broadcast it.

2. Only BJM} is affected by BJMZ, and it updates
its distribution with P'(C), and calculates the pos-
terior P/(B, C), and broadcast it.

3. BJM} reccives P/(B,C) from BJMJ, updates its
own distribution in parallel, and calculates pos-
terior P’(D). At this point, we finish the firat
step of parallel reasoning. Because the gradient
VD = P'(D)— P(D) # 0, the updating continues.

4. BJ M} uses another constraint P(D) = 0 to update
its distribution, calculates the posterior P/(B,C),
and broadcast P"(B,C) to the network.

5. BJM3 and BIM?3? receive P'(B,C) and P"(C),
respectively, and uee them to update their own
distributions in parallel. BJM? calculates P/(E)
and finds VE = P'(E) — P(E) = 0. The result
P(A) = 0.0973 is reported and the procedure stops.

3 Learning From Statistical Relational
Data

Normally, learning atarts from a sample database. Most
of the contermnporery databases are relational. In [Wen,
1890a)], some relationships between Relational Databases
(RDB) [Ullman, 1982] and BN are discovered. These in-
clude the correspondences between (1) functional depen-
dency (—) and probabilistic dependency, a special cases
of multivalued dependency (——), in RDB and condi-
tional probability in BN. (2) acyclic database scheme
with join dependency in RDB and acyclic decomposition
of BN. and (3) three main operations on RDB (projec-
tion, melection, and join) and three main operations of
BN (belief extracting, updating, and propagation).

Definition 3.1: The frequency of an attribute subset X
of relation scheme R in a relation r on Ris Fx(R) =
{Fxze(r) = "’—’ﬁ'ﬂ;‘v’z € Dy} where Dy is the
domain of X, |r| is the cardinality of r, and o is the
selection operator in RDB,

Definition 3.2: The conditional frequency of X in r
givenY =4, Y CRin

l”x::a\Y:y(f)l
— Yz € D, }.
for oy @l - € Do}
Definition 3.3t Let X,2Y C R, and Z = R-XY. r
satisfies the probabilistic dependency X — Y if

Vee DxVy€ DyVz€e Dg,zyz €r =

Fxiy=y = {Fx=eiy=4(r) =



Fxyg=eya(r) - Fxce(r) = Fxy=ey(r) - Fxz=cs(r).
According to the law of large numbers, it is rea
sonable to assume limj o Fo(r) = P(X = =),
lim}ﬂ--oo FX:IlY:w(r) = P(X = =|Y = D‘)- and if
X v Y then P(Y|X Z) = P(Y|X), ie. Y is conditionally
independent of Z given X. i is casy to prove

Theorem 3.1 [Wen, 1990a]:

LX Y =XwrY,
2 XY =X Y

(see [Ullman, 1982] for definitions of — and ——.)

In Example 2, suppose we have the statistical informa-
tion in Table 2 from a sample database. Each entry of
the table gives the number of occurrences of the records
in the database which contain various combinations of
the attributes A, B, C, D, and E. This information

DE DE DE DE
ABE T 23104 34656 1218 1824
ABRC 128 512 B12 2048
ABC | 1218 1824 4884 T296
ABC 12 128 128 812
ABC | 1216 1824 64 96
ABC 32 128 128 B12
ABC | 1024 1538 4096 6144
ABC 128 512 512 2048

Table 2: Statistical information in relation ABCDE

can be obtained by a projection of a universal relation
of the database on {4, B,C, D, E} without eliminating
the duplicates. We can easily check that the probabilie-
tic dependenties 4 — B, A — C, B,C — D, and
C ++ E hold. According to Theorem 3.1, we can use
the algorithms given in [Ullman, 1882] to decompose re-
lation ABCDE inte 4 subrelations AB, AC, BCD, and
CE with a lossless join property. All of these relations
are in 4th normal form and keep the original dependen-
cies projected to the corresponding relations. Thus, we
can readily learn the conditional probabilities for Exam-
ple 2 given in section 2 from the statistical information
(see Table 3) in the decomposed relations using

1. The frequency method: For example, P(A) =

ToTTeos sssor e = 0.2 and P(Bl4) =

ﬁi}% = 0.8, etc.

2. The incremental methods [Lauritzen and Spiegel-
halter, 1988]: suppose we have a prior P(B|A) =

A A A A
B ] esan00 4000 ¢ | 7600 16000
B | 186000 16000 C | 4000 4000
(a) (b)
F:ToJ :T+] B® BC o] c
D[ soso0 800 5600 moC )| E | 36800 1800
D | 3200 3200 22400 3200 || E | 55200 6400
() @

Table 3: Statistical information in sub-relations

16000 and the next example e comes. The updated
ﬁue of P(B|A) is

%{—}, e makes AN B irue,

P(B|A)={ 238%, e makes AAB true,

3%59: € makes A true.

The above learning procedure may be trivial if the
database is complete. However, we often cannot obtain
a completely specified database in many practical cases.
In these cases, we may have to choose one of the fol-
lowing methods to generalize the incomplete statistical
information to a complete conditional distribution.

3.1 Floor Method And ME/MCE Method

Floor method assigns a small nonzero probability to the
states (tuples) which do not occur in the database. This
adds the possibility of Jeffrey updating to these states.
However, this method makes no distinction between the
cases which are impossible and those which could be en-
countered in the future.

Similarly, ME/MCE method or Dirichlet distribution
[Herskovitz and Cooper, 1990] simply assigns a uniform
conditional distribution to the unseen cases. It uses for-
mula P(X =z|llx =xx} = € x:;i!:::x;l to obtain
a conditional distribution, where X is a variable in the
underlying BN, x is one of the Vx values can be taken
by X, Iix is the set of parents of X, wx is a particular
instantiation of llx, and GC(®) is the number of tuples
in the database that match the instantiated set of vari-
ables For the unseen cases, the above conditional

distribution becomes vl’-(— and thus is uniform.

3.2 Connectionist Methods

The connectionist learning methods are interesting be-
cause of their generalisation ability. It has been proven
that the output class probabilities of Multilayer Percep-
tron (MLP) and Boltsmann machine are good approx-
imations of the conditional probabilities needed by BN
[Bourlard and Wellekens, 1990; Laskey, 1990]. In Exam-
ple 2, using an MLP network with 2 input units, 2 hidden
units, and 1 output unit, we can learn P(D\B, C) in less
than 100 epochs. The results are given in Fig. 4. For
example, in Fig. 4a, data for P(D\B, C) are missing.
After the network has learned the weights from the in-
complete data we feed B = C = 1 to the network and
get an output P(D\B,C) = 0.82.

3.3, NN/OR Method

According to the Nearest Neighborhood (NN) principle,
the conditional probability assigned to an unseen case for
the database depends on its neighbor conditional distri-
butions. That is, if the unseen case has many neigh-
bors who have high conditional probabilities then it is
assigned a relatively high conditional probability, other-
wise, it is assigned a low or even sero conditional prob-
ability. This method should be used with the Occam's
Rasor (OR) principle when there are two or more near-
est neighbors having different conditional probabilities.
When there are more than one candidate hypotheses for
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a given problem the OR principle chooses the simplest
one which is compatible or at least 90% consistent with
the observed data. There are many criteria of simplic-
ity, eg. Kolmogorov complexity, Minimum Description
Length, Formula complexity, etc. We use formula com-
plexity in the following examples.

Example 3: Suppose we have the training data in Fig.
3a with the functional dependency 2,4, — w. The

T ¥ x| uw P(WIz

.V;S) : 4 z ; 4 ; 4
7 o ole ¥ ) ¥ ¥
0 0 11 r==
6 1 11 2 0 E) Lo
1 010 .
1 1 0]0 = LD_J 0 0 0
1 1 110

a. Data with b. The Karnough map

Z, ¥,z W
Figure 3: Example 3

information about P{w)%,y, Z) and P(w|z,§, Z) is
missing. ME/MCE methods assign1/2to both of
these conditional probabilities. This is obviously
inconsistent with the assumption of 2,¥,2 — w.
It is easy to determine P(w|z,§,Z) = 0 accord-
ing to the NN principle because all of its nearest
neighbors have values 0 (sec Fig. 3b). P{w|Z,y, %)
is more difficult to determine because its nearest
neighbors have different values. Considering Fig.
3b as a Karnough map, and trying to assign 0 and
1 to the entry corresponding to P{w]z,y, ), we
have two logic expressions xz and xz + xy, respec-
tively. The OR method always prefers the assign-
ment with the simplest expression and thus assigns
P(w|z,yz) = 0.

This method can be generalised to the case of proba-
bilistic dependencies. In Example 2, suppose the sta-
tistical information about P{D\B, C) (the last column
in Table 3c) is missing. According to the NN princi-
ple, it is easy to determine PMD\B,C) = 0.8 (Fig. 4a).
However, if the information about P(D\B, C) is missing

P(D|B,C]) C c P(D|B,C

B 0.05 0.8 H
> [Cos I8 [
a. P(D|B,C) missing b. P(D|B,C) mising
{0.05- BC+4-0.8-{B4C)) (0.05-B+0.8- B)

P(D[B.C] ¢ c ppjec] C c
B | o008 |08 ] B 0.8
B X 0.8 B 0.8 0.8

c. P(DIB,C) missing d. P(D}B, C') missing
(0.05-C+0.8-C) {0.9)

Figure 4: Learning P({D\B,C) by OR or MLP

(Fig. 4b), we may have two choices for it: 0.05 and 0.8.

Because the former has a probabilistic logic expression
0.05 x B+ 0.8 x B which is simpler than that of the
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latter (0.05 x BC + 0.8 x (B 4 C)), we prefer the first
choice (see Fig. 4b). Similarly, we have the conditional

probabilities learned for P(D|BC) and P(D|BC) when

the corresponding information missing (Fig. 4c,d).

4 Performance and Comparisons

A number of typical examples of reasoning have been
tested to evaluate the performance of the BJM model.
Fig. 4 gives the results of one of our experiments, which
uses a 10-dimensional BJM. Fig. 4 shows the results for
the reasoning cases with 2,4,8,16 constraints and 1-8 par-
allel simulated processing units (threads for the Encore

Computer). It is easy to see that the speed up is quite
Nounits

satisfactory when the ratio NoWonsiramnis is small. For
greater ratio, the performance suffers from the parallel

scheduling overhead a bit.

=—#— 7 conatraint seta

37.0 \ --+0--- 4 tonstralnt sets
= % — B onatraint sets
\ —¢— 1§ constraint sets
0.0 +
4.0 A

Time 500 1 \
[LTH

Numbar of Processcrs

Figure 5: Performance of parallel Jeffrey's updating

Comparing with perceptron models, our model has its
obvious advantages. [Minsky and Papert, 1969] showed
that no single-layer perceptron can solve XOR problem.
For CES/MLP, using back propagation method [Rumel-
hart et a/., 1986], a total sum of squares (tss) 0.0398 is
obtained after 298 epochs of training in a feedforward
network with 2 input units, 2 hidden units, and 1 out-
put unit. The test result for all the patterns is given
in Table 1. From this example, it can be seen that for
recall from completely specified distributions of sparse
spaces, the BJM model outperforms CES/MLP model
in the following aspects: (1) No time-consuming learning
procedure is involved. (2) Only addition, multiplication,
and division operations but not complicated calculations
like sigmoid are needed. (3) The result is accurate. (4)
The reasoning direction can be arbitrary. (5) The net-
work structure is much more regular than CES/MLP.
The granularity of BJMNet is also good.



For large scale applications, neither MLP nor BJM
are Probably Approximately Correctly (PAC) learnable
[Judd, 1987]. However, in [Wen, 1990a] we have proven

Theorem 4.1: If the maximum BJM in the BJMNet
has a fixed size, the BUMNet is PAC learnable from
statistical relational data.

It is possible to decompose an MLP network in a way
similar to that of BJMNet. Gallant's connectionist ex-
pert systems [Gallant, Feb 1988] may be thought of
as one step towards this direction. However, Gallant's
method can handle only functional dependencies but not
probabilistic dependencies, and does not work properly
for problems like Example 2.

5 Conclusions

A parallel distributed model for reasoning/learning is
proposed based on BN paradigm. Issues about the struc-
ture, learning methods, and the reasoning method for
the model are discussed. Comparison between BJMNet
and CES shows that the soundness and efficiency of the
model can be guaranteed for a wide range of applica-
tions:

« The model has probability theory and information
theory as its theoretical basis.

* It can be implemented automatically by a set of
learning methods from statistical relational data.

* Reasoning in this model can be in any directions, in
contrast to the CES models which can only reason
in single direction [Gallant, Feb 1988].

* NP-hardness in both reasoning and learning is han-
dled by decomposing the BN into small BJMs.

A prototype of simulator of BJMNet has been developed
for the Encore Computer, a shared memory multiproces-
sor system [Wen, Nov 1989].
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