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Abs t rac t 
A para l le l d i s t r i b u t e d c o m p u t a t i o n a l mode l for 
reasoning and lea rn ing is discussed based on a 
bel ie f ne twork p a r a d i g m . Issues l ike reasoning 
and lea rn ing for the proposed mode l are d is­
cussed. Compar i sons between our m e t h o d and 
other methods are also g iven. 

1 I n t r o d u c t i o n 
C o m p a r i n g w i t h the mode l o f Connect ion is t E x p e r t Sys-
tems (CES) [Ga l lan t , Feb 1988], Bel ie f Ne tworks ( B N ) 
[Laur i t zen and Spiegelhal ter , 1988; Pear l , 1988] has qu i te 
a few advantages, eg. (1) i t has the p r o b a b i l i t y t heo ry 
as i ts theore t ica l basis and thus guarantees a consistent 
or correct resu l t ; (2) i t a l lows reasoning in a l l d i rec t ions , 
other me thods l ike CES on ly a l low single reasoning direc­
t i o n , eg. b o t t o m - u p [Ga l lan t , Feb 1988]; and (3) i t is easy 
to express h igher level p robab i l i s t i c (Non - func t i ona l ) do­
m a i n knowledge in BN wh i le i t i s d i f f i cu l t i n CES . 

On the o ther h a n d , however, CES mode l also has i ts 
a t t r ac t i ve features, eg., (1) i t is easy to imp lemen t par­
a l le l d i s t r i b u t e d C E S ; and (2) i t i s possible to a u t o m a t i ­
ca l ly generate CES by a set of learn ing techniques. These 
make CES more and more popu la r in recent years. There 
were discussions abou t some v i t a l issues for bel ie f net­
works a n d some so lu t ions were also proposed. 

• Lau r i t zen a n d Spiegelhal ter [1988] proposed a BN 
decompos i t i on m e t h o d to reduce the c o m p u t a t i o n a l 
a m o u n t when dependencies exist a m o n g the var i ­
ables. T h i s m e t h o d provides a po ten t i a l way to 
make use o f the pa ra l l e l i sm inheren t i n B N . 

• Pear l [1988] proposed a para l le l mode l for his 
Bayesian ne twork wh i ch is elegant and eff icient b u t 
d i f f i cu l t to use in mu l t i - connec ted ne tworks . A 
m e t h o d for learn ing causal tree s t ruc tu re is also dis­
cussed in Pear l 's book . 

• Herskov i ts and Cooper [1990] used the M a x i m u m 
E n t r o p y ( M E ) / M i n i m u m Cross en t ropy ( M C E ) 
me thods to learn cond i t i ona l p robab i l i t i es t o con­
s t ruc t B N . These me thods assign u n i f o r m d i s t r i b u ­
t ions to the unseen cases in the t r a i n i n g set. 

• Laskey [1990] proposed a m e t h o d to const ruc t Bayes 
ne tworks us ing B o l t z m a n n machines [ R u m e l h a r t et 

al . , 1986]. W h i l e th is m e t h o d seems p r o m i s i n g , i t i s 
no t qu i te clear for th is m e t h o d how to hand le the 
NP-hardness o f connect ion is t l ea rn ing [ Judd , 1987]. 

Based on [Laur i t zen and Spiegelhal ter , 1988; Pear l , 
1988], we proposed [Wen, Nov 1989] a h i g h l y para l le l d is­
t r i b u t e d c o m p u t a t i o n a l mode l for B N cal led B o l t z m a n n -
Jeffrey Mach ine Ne two rk ( B J M N e t ) . In th is paper , we 
w i l l explore f u r t he r the capab i l i t ies o f B J M N e t and pro­
pose a set o f eff icient me thods of BN lea rn ing f r o m Sta­
t i s t i ca l Re la t iona l Databases ( S R D B ) . A per formance 
analysis and compar i son between ou r m e t h o d and other 
methods are also g iven. 

We on ly consider the case of b i n a r y var iables in th is 
paper, b u t our results can be general ised to the general 
case con ta in ing a r b i t r a r y var iables s t ra igh t fo rward l y . 
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In summary, we have a t ime efficient parallel reason­
ing algorithm for B J M . However, the number of units in 
a B J M exponentially grows as the number of variables 
increases although we may save all units which have zero 
probabilities in BJMs with sparse spaces. 

One way to handle the exponential explosion of the 
number of units in a big B J M is to decompose the B J M 
into a network of small BJMs (called B J M N e t ) . If we 
can keep the size of the biggest sub-BJM in the BJMNet 
fixed, the exponential explosion is avoided. 

To keep the consistency of the reasoning results among 
the small BJMs, it is desirable to organize the B J M N e t 
as an acyclic hypergraph [Beeri et al., July 1983]. Each 
B J M in the B J M N e t corresponds to a hyperedge in the 
hypergraph and is an autonomous component which has 
its own prior distribution and always checks its interfaces 
with its neighbors which affect i t . BJMi is affected by 
BJMj if BJMi is the Running Intersection Predeces­
sor ( R I P ) or one of the Running Intersection Succes-
sors (RIS's, [Beeri et al., July 1983]) of BJMj. If there 

Table 1: The example of exclusive-or 



is any belief change in the interfaces it wi l l update its 
own distr ibution using (2), and then propagate the belief 
changes to its other RIP and RIS's. The new changes, in 
turn, may cause some other BJMs to update their distri­
butions. The network reaches an equil ibrium when the 
gradients of all the original disturbing points are in some 
small ranges specified beforehand. The network can be 
reconfigured dynamically using some techniques such as 
microprogramming to fit it for different applications. 

Based on the MCE principle and the theory of Markov 
fields we have proven [Wen, July 1989] 

T h e o r e m 2 . 1 : For an acyclic BJMNet, the following 
updating procedures are equivalent: 

1. Global updating the whole network wi th single 
marginal constraint set by (2). 

2. Local updating one sub-BJM which contains 
the constraints and Jeffrey propagation of the 
result to the whole BJMNet through the run­
ning intersections. 

E x a m p l e 2 [ C o o p e r , 1984]: Metastatic cancer (A) is 
a possible cause of a brain tumor (C) and is also 
an explanation for increased total serum calcium 
(B). In turn , either of these could explain a patient 
fall ing into a coma (D). Severe headache (E) is also 
possibly associated wi th a brain tumor. 

The BN and BJMNet for this example are shown in Fig. 
2, where the arrows in Fig. 2b show the RIP /RIS re­
lationship between BJMs. The BJM without decom-
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Figure 2: Belief network and BJMNet For Example 2 

position has 5 binary variables and thus 32 units. Af­
ter decomposition using the techniques in [Lauritzen 
and Spiegelhalter, 1988; Wen, 1990b], the BJM is de­
composed into 3 sub-BJMs: { A , B, C } , {B, C, D}, and 
{ C , E}. Only 23 + 23 + 22 = 20 units are needed here. 
Further saving can be achieved considering that the units 
in the intersections (the black nodes in Fig. 2b) are never 
active simultaneously (14 units are needed here). 

Suppose we have an ini t ia l distr ibution in which 



Tab le 3 : S ta t i s t i ca l i n f o r m a t i o n in sub-re lat ions 

T h e above learn ing procedure may be t r i v i a l i f the 
database is comple te . However, we of ten cannot ob ta in 
a comple te ly specif ied database in many pract ica l cases. 
In these cases, we may have to choose one of the fo l ­
l ow ing methods to generalize the incomple te s ta t is t ica l 
i n f o r m a t i o n to a comple te cond i t i ona l d i s t r i b u t i o n . 

3 . 1 F l o o r M e t h o d A n d M E / M C E M e t h o d 

F loor m e t h o d assigns a sma l l nonzero p robab i l i t y to the 
states ( tup les) wh ich do no t occur in the database. Th i s 
adds the poss ib i l i t y o f Jeffrey u p d a t i n g to these states. 
However, th is m e t h o d makes no d i s t i n c t i o n between the 
cases wh ich are impossib le and those wh ich cou ld be en-
countered in the f u t u r e . 

S imi la r ly , M E / M C E m e t h o d o r D i r i ch le t d i s t r i bu t i on 
[Herskovi tz and Cooper , 1990] s i m p l y assigns a u n i f o r m 
cond i t i ona l d i s t r i b u t i o n to the unseen cases. I t uses for­
m u l a to ob ta in 
a cond i t i ona l d i s t r i b u t i o n , where X is a var iable in the 
unde r l y i ng B N , x is one of the Vx values can be taken 
by X y I Ix is the set of parents of X, is a par t i cu la r 
i ns tan t i a t i on of I Ix , a n d is the number of tuples 
in the database t h a t m a t c h the ins tan t ia ted set o f var i ­
ables . For the unseen cases, the above cond i t iona l 
d i s t r i b u t i o n becomes and thus is u n i f o r m . 

3 .2 C o n n e c t i o n i s t M e t h o d s 

T h e connect ionist learn ing methods are in terest ing be­
cause of the i r genera l isat ion ab i l i t y . I t has been proven 
t h a t the o u t p u t class p robab i l i t i es o f Mu l t i l aye r Percep-
t r on ( M L P ) and B o l t s m a n n machine are good approx­
ima t i ons o f the cond i t i ona l p robab i l i t i es needed by BN 
[Bour la rd and Wel lekens, 1990; Laskey, 1990]. In E x a m ­
ple 2, us ing an M L P ne twork w i t h 2 i n p u t un i t s , 2 h idden 
un i t s , and 1 o u t p u t u n i t , we can learn P(D\B, C) in less 
t h a n 100 epochs. T h e results are given in F i g . 4. For 
example , in F i g . 4a, da ta for P(D\B, C) are miss ing. 
A f t e r the ne twork has learned the weights f r o m the i n ­
comple te d a t a we feed B = C = 1 to the ne twork and 
get an o u t p u t P(D\B,C) = 0.82. 

3 .3 N N / O R M e t h o d 

Acco rd ing to the Nearest Ne ighborhood ( N N ) p r inc ip le , 
the cond i t i ona l p r o b a b i l i t y assigned to an unseen case for 
the database depends on i ts ne ighbor cond i t i ona l d i s t r i ­
bu t ions . T h a t is, i f the unseen case has many neigh­
bors w h o have h igh cond i t i ona l p robab i l i t i es t hen i t i s 
assigned a re la t ive ly h i gh c o n d i t i o n a l p robab i l i t y , o ther­
wise, i t is assigned a low or even sero cond i t i ona l p rob ­
ab i l i ty . T h i s m e t h o d shou ld be used w i t h the Occam's 
Rasor ( O R ) p r inc ip le w h e n there are t w o or more near­
est neighbors hav ing d i f ferent c o n d i t i o n a l p robab i l i t i es . 
W h e n there are more t h a n one cand ida te hypotheses for 
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a g iven p r o b l e m the OR pr inc ip le chooses the s implest 
one w h i c h is c o m p a t i b l e or a t least 9 0 % consistent w i t h 
the observed d a t a . There are m a n y c r i te r ia o f s imp l ic ­
i t y , eg. K o l m o g o r o v comp lex i t y , M i n i m u m Descr ip t ion 
L e n g t h , F o r m u l a complex i t y , etc. We use f o r m u l a com­
p lex i t y i n the fo l l ow ing examples. 

E x a m p l e 3 : Suppose we have the t r a i n i n g d a t a i n F i g . 
3a w i t h the f unc t i ona l dependency T h e 

a. Data w i th b. The Karnough map 

F igu re 3: E x a m p l e 3 

i n f o r m a t i o n abou t is 
m iss ing . M E / M C E methods assign 1 / 2 t o b o t h o f 
these c o n d i t i o n a l p robab i l i t i es . T h i s is obv ious ly 
inconsis tent w i t h the assumpt ion o f 
I t is easy to de te rm ine accord­
ing to the NN p r inc ip le because a l l o f i ts nearest 
neighbors have values 0 (sec F i g . 3b ) . 
is more d i f f i cu l t to de te rm ine because i ts nearest 
neighbors have d i f ferent values. Cons ider ing F i g . 
3b as a K a r n o u g h m a p , a n d t r y i n g to assign 0 and 
1 to the en t ry cor respond ing to we 
have two logic expressions xz and xz + xy, respec­
t ive ly . T h e OR m e t h o d always prefers the assign­
men t w i t h the s implest expression and thus assigns 

T h i s m e t h o d can be general ised to the case of p roba -
b i l i s t i c dependencies. In E x a m p l e 2, suppose the sta­
t i s t i ca l i n f o r m a t i o n a b o u t P(D\B, C) ( the last c o l u m n 
in Tab le 3c) i s miss ing . A c c o r d i n g to the NN p r inc i ­
p le, i t is easy to de te rm ine P(D\B,C) = 0.8 ( F i g . 4a) . 
However, i f the i n f o r m a t i o n a b o u t P(D\B, C) is miss ing 

F igu re 4 : Lea rn ing P(D\B,C) by OR or M L P 

( F i g . 4b ) , we may have t w o choices for i t : 0.05 and 0.8. 
Because the fo rmer has a p robab i l i s t i c logic expression 
0.05 x + 0.8 x B w h i c h is s imp ler t h a n t h a t of the 

l a t t e r we prefer the f i rs t 
choice (see F i g . 4b ) . S im i la r l y , we have the cond i t i ona l 
p robab i l i t i es learned for . a n d when 
the cor respond ing i n f o r m a t i o n m iss ing ( F i g . 4c ,d) . 

4 Per formance and Compar isons 
A number of t yp i ca l examples of reasoning have been 
tested t o evaluate the per fo rmance o f the B J M mode l . 
F i g . 4 gives the results of one of our exper iments , wh i ch 
uses a 10-d imens ional B J M . F i g . 4 shows the results for 
the reasoning cases w i t h 2,4,8,16 const ra in ts and 1-8 par-
a l le l s imu la ted processing un i t s ( threads for the Encore 
C o m p u t e r ) . I t is easy to see t h a t t he speed up is qu i te 
sat is fac tory when the r a t i o - is s m a l l . For 
greater r a t i o , the per fo rmance suffers f r o m the para l le l 
schedul ing overhead a b i t . 

F igure 5 : Per formance o f para l le l Jeffrey's u p d a t i n g 

C o m p a r i n g w i t h percept ron models , our mode l has i ts 
obv ious advantages. [ M i n s k y and Paper t , 1969] showed 
t h a t no single-layer percep t ron can solve X O R p r o b l e m . 
For C E S / M L P , us ing back p ropaga t i on m e t h o d [Rume l -
ha r t et a/., 1986], a t o t a l s u m of squares (tss) 0.0398 is 
ob ta ined af ter 298 epochs of t r a i n i n g in a feedforward 
ne twork w i t h 2 i n p u t un i t s , 2 h idden un i t s , and 1 ou t -
p u t u n i t . T h e test resul t for a l l the pa t te rns is given 
in Tab le 1 . F r o m th i s examp le , i t can be seen t h a t for 
recal l f r o m comp le te l y specif ied d i s t r i bu t i ons o f sparse 
spaces, the B J M mode l o u t p e r f o r m s C E S / M L P mode l 
in the fo l l ow ing aspects: (1) No t i m e - c o n s u m i n g learn ing 
procedure i s i nvo lved . (2) O n l y a d d i t i o n , m u l t i p l i c a t i o n , 
and d i v i s ion opera t ions b u t no t comp l i ca ted ca lcu la t ions 
l ike s i gmo id are needed. (3) T h e resul t is accurate. (4) 
T h e reasoning d i rec t i on can be a rb i t r a r y . (5) T h e net­
work s t ruc tu re i s m u c h more regular t h a n C E S / M L P . 
T h e g ranu la r i t y o f B J M N e t i s also g o o d . 
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For large scale applications, neither MLP nor BJM 
are Probably Approximately Correctly (PAC) learnable 
[Judd, 1987]. However, in [Wen, 1990a] we have proven 
T h e o r e m 4 . 1 : I f the maximum BJM in the BJMNet 

has a fixed size, the BJMNet is PAC learnable from 
statistical relational data. 

It is possible to decompose an M L P network in a way 
similar to that of BJMNet. Gallant's connectionist ex­
pert systems [Gallant, Feb 1988] may be thought of 
as one step towards this direction. However, Gallant's 
method can handle only functional dependencies but not 
probabilistic dependencies, and does not work properly 
for problems like Example 2. 

5 C o n c l u s i o n s 

A parallel distributed model for reasoning/learning is 
proposed based on BN paradigm. Issues about the struc-
ture, learning methods, and the reasoning method for 
the model are discussed. Comparison between BJMNet 
and CES shows that the soundness and efficiency of the 
model can be guaranteed for a wide range of applica­
tions: 

• The model has probability theory and information 
theory as its theoretical basis. 

• It can be implemented automatically by a set of 
learning methods from statistical relational data. 

• Reasoning in this model can be in any directions, in 
contrast to the CES models which can only reason 
in single direction [Gallant, Feb 1988]. 

• NP-hardness in both reasoning and learning is han­
dled by decomposing the BN into small BJMs. 

A prototype of simulator of BJMNet has been developed 
for the Encore Computer, a shared memory multiproces-
sor system [Wen, Nov 1989]. 
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