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A b s t r a c t 

A qualitative reasoning planner for determin­
ing robot control parameters to drive manip­
ulation actions has been developed, integrated 
into a telerobot system, and demonstrated for 
a match striking task. The planner consists of 
a qualitative reasoner and a numerical execu­
tion history which interact to jo int ly direct and 
narrow the search for reliable numerical con­
trol parameter values. The planner algorithm, 
implementation, and an execution example are 
described. The relationship to previous quali­
tative reasoning work is also discussed. 

1 I n t r o d u c t i o n 

Model-based intelligent robotic systems typically make 
use of numerical—especially geometric—representations 
of the robot and the workspace when planning robot 
motions in detail. Such plans, even after successful 
computer simulation with the model, frequently fail to 
achieve the intended results when actually executed by 
the robot. Approaches to overcoming this problem in­
clude precise calibration, more detailed modeling, error 
recovery, and human intervention. 

The qualitative reasoning paradigm can help overcome 
some of the difficulties associated with error and uncer­
tainty by reasoning about the behavior of the physical 
equations describing a system, thereby providing the sys­
tem with intelligence about its own behavior and how to 
achieve desirable states. 

*The research described in this paper was performed at 
the Electrotechnical Laboratory, with support from the Jet 
Propulsion Laboratory, California Institute of Technology, 
under contract with the National Aeronautics and Space Ad­
ministration of the United States of America, and support 
from the Agency of Industrial Science and Technology, Min­
istry of International Trade and Industry of Japan. 

A considerable amount of theoretical work has been 
done on qualitative reasoning [De Kleer and Brown, 
1984, Forbus, 1984, Kuipers, 1984, Kuipers, 1986, Sacks, 
1990], but much of this work has focussed on simulation 
and has not specifically addressed planning issues. A 
topic currently receiving attention as real applications 
are attempted is the coordination of qualitative and nu­
merical elements [Kuipers and Berleant, 1988] to achieve 
a complete reasoning system. 

This paper describes a qualitative reasoning plan­
ner which has been developed and integrated into the 
MEISTER (Model Enhanced Intelligent and Skillful 
TEleoperational Robot) system [Hirai and Sato, 1988, 
Hirai et a/., 1990] and has been demonstrated for a match 
striking task. A qualitative reasoner and a numerical ex­
ecution history work together to search for effective con­
trol parameter values. The present work makes use of 
earlier studies on the application of qualitative reason­
ing to manipulation planning and the relevant physical 
equations [Ornata et a/., 1987, Hirai et al, 1989J. 

In the following sections we describe a match striking 
network and the qualitative math used. Then the plan­
ning algorithm is presented. Descriptions of the teler­
obot, workspace, and an execution example follow. Fi­
nally, this work is placed in context wi th the qualitative 
reasoning literature. 

2 A N e t w o r k f o r M a t c h S t r i k i n g 

A qualitative reasoning network was proposed [Hirai et 
a/., 1989] to represent a single match striking motion. 
The network represents the physical equations describing 
bending moment on the match stick and the total accu­
mulated heat at the contact point of the match head with 
the striking surface. The physical parameters considered 
were the force perpendicular to the striking surface, the 
velocity along the str iking surface, and the angle from 
perpendicular that the match is inclined in the direction 
of motion (figure 1). The possible outcomes were match 
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Figure 1: Physical Parameters for Match Striking 

breakage and match ignit ion, represented as the absolute 
value of bending moment on the match and the amount 
of accumulated heat respectively. 

The proposed network has been extended here (fig-
ure 2) to include an additional preliminary motion to 
the starting position and force. Representations of the 
parameters actually used for controlling the ETA2 robot 
and the results of actual tr ial execution—match break­
age and match ignition—were also added. Note that the 
match can break as a result of either motion. Both ac­
tions are in the same network because they share control 
parameters related to angle and force. 

In the figure, nodes wi th wide shaded arrows indicate 
the interface with the external system; other nodes are 
entirely internal to the qualitative reasoning network it-
self. The robot control system does not support servoing 
to force and velocity during the brief match striking ac­
tion so the corresponding monotonically increasing dig­
ging depth (distance of position control trajectory into 
the match box) and jumping gap (distance between servo 
samples) robot control parameters are used. Angle, dig­
ging depth, and jumping gap are all parameters con­
trolled by—and therefore known to—the robot system. 
Match ignition and breakage are results observed by the 
human operator or an appropriate sensing system. 

3 Q u a l i t a t i v e M a t h w i t h " L i k e l i h o o d s " 

Eight network node types are defined: sum, product, 
M + , negative, absolute-value, constant, control, and 
threshold. Each node logically consists of two parts: (1) 
a value for a parameter and (2) the relationship between 
the parameter itself and its cause nodes. This relation­
ship provides for reasoning in both directions through 
the network. Relationships wi th effect nodes are con­
tained in those effect nodes as relationships with causes. 
Ult imate cause nodes, control and constant, have a rela­
tionship part of ni l . 

Four qualitative values are defined: +, 0, -, and ? 
for unknown. A l l nodes in the network have qualita­
tive values, and the externally visible control and thresh­
old nodes have additional actual values. The qualitative 
value of each control node is the sign of the actual nu­
merical value. The qualitative value of each threshold 
node is + when its actual logical value is true, indicating 
that an unknown real number has exceeded an unknown 
positive threshold, and - when the actual value is false. 

Relation-tables (figure 3) have been constructed to 
represent the qualitative function for each node type. 
Reasoning functions use these tables both to propagate 

Figure 4: Example of the Computation of likely-potentials 

current qualitative values through the network and for 
planning changes to control values for subsequent trials. 
Values in shaded triangles in the figure are qualitative 
values of the parameters; other values are qualitative val­
ues of numerical change consistent with the associated 
shaded values. 

The heart of the qualitative math engine is the likely-
potentials function, described through an example be-
low. This function is used both for propagating quali­
tative values through the network and as an aid in se­
lecting among alternatives during the planning process. 
The analogous likely-change-potentials function is used 
for propagating and planning change. 

Figure 4 illustrates the computation performed by the 
likely-potentials function for the example of the sum re­
lation, given inputs + and ? and a result of + A triple 
of potentials is assigned to each entry in the table, repre 
senting the relative likelihoods that a result of +, 0, and 
- wi l l occur when inputs match the table entry. These 
triples always add up to 3, embodying an assumption 
that each combination of inputs is equally likely. Triples 
defined for results +, 0, -, and ? all appear in step 3 
of the example. Three possibility factors are assigned to 
each of the input and result arguments, wi th 1 represent­
ing the possibility of a match with the values +, 0, and -, 
and 0 representing a mismatch. For inputs, these factors 
are multiplied into all three triplet values of the table en­
tries of corresponding rows and columns; for the result, 
the factors are multiplied into the corresponding triplet 
values of each table entry. The resulting table is shown 
in step 4 of the example. The final likelihood potentials 
returned by the function are, for the inputs, the sums 
of all tr iplet values in the rows and columns and, for 
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8. Control nodes (ult imate causes) which are at phys­
ical or contextual l imits are marked with the at-
maximum and at-minimum properties as appropri­
ate. These properties are propagated toward effects 
and depend upon the actual relations in the net­
work. 

Plan qualitative change, propagating through the net­
work from all must-change results toward ultimate cause 
nodes. 

9a. Planning for this tr ial is complete if all nodes 
marked must-change are changed and at least one 
change to an ult imate cause node has been made. 

9b. Propagation of this thread is complete if a change 
has already been planned for one of the causes of 
this node. 

9c. Select an immediate cause of this node to propagate 
change through according to the following selection 
preferences: 

h ighest nodes marked must-change 
i n t e r m e d i a t e nodes not marked 
l ow nodes marked resist-change 
v e r y low nodes for which a change of 0 has the 

highest likelihood potential 
lowest nodes for which no change is possible con­

sistent with the current known values, changes, 
and at-maximum and at-minimum l imit con­
straints 

lowest nodes marked cycle-back 
9d. For the selected cause, choose the change (+ or -) 

which has the higher likelihood potential. 
9e. Make the change to the selected node and propa­

gate. 

Record, choose numerical value, and execute. 

10. Put the last tr ial and this plan (goals, numerical 
control values, results, and qualitative plan) on the 
history. 

11. Choose a numerical value to use in the next tr ial 
(within the contextual numerical range) for the con­
trol parameter selected for change. 

12. Execute the newly planned tr ia l . 

5 U t i l i z a t i o n o f N u m e r i c a l E x p e r i e n c e 

The most important feature of the planner is the mecha­
nism of coordination of qualitative and numerical infor­
mation for planning. 

Qualitative information is embedded wi th in the nu­
merical execution history in the form of a qualitative 
vector at a point in the numerical search space which in­
dicates the qualitative direction of the goal region from 
that point. Numerical information influences qualita­
tive search by asserting constraints on qualitative motion 
when numerical l imits are exceeded. 

The key is the use of limits. For the 2-dimensional 
example in figure 6, the limits visible from a most re­
cent tr ial are the physical limits above, below, and to 
the right, but to the left, an earlier tr ial asserts a tighter 

Figure 6: Control Limits Visible from a Point and Overlap 

Figure 7: Just Before the Strike Motion 

l imit . Only the region in white is considered for the next 
tr ial . When limits overlap, the planner must consider an­
other direction. The qualitative reasoning engine easily 
handles l imits by zeroing out the likelihood potentials for 
changes in nodes which would attempt to exceed limits. 

6 T h e M E I S T E R T e l e r o b o t a n d 
E x p e r i m e n t W o r k s p a c e 

The qualitative reasoning planner and match-striking 
network described have been integrated into the MEIS­
T E R (Model Enhanced Intelligent and Skillful TEle-
operational Robot) telerobot system [Hirai and Sato, 
1988, Hirai et al., 1990]. 

MEISTER hardware includes the 6-DOF ETA2 slave 
manipulator, a Lord gripper wi th force/torque sensors 
at the base of each finger, a 6-DOF master manipula­
tor, several cameras, some on pan-ti l t heads, and sev­
eral monitors including a Sun workstation and a custom 
Mult i-Media Display, which supports real-time stereo 
graphics overlay. 

MEISTER high-level software is written in object-
oriented EusLisp [Matsui and Inaba, 1990]. The match-
striking network was added into the match-box object. 

Among a variety of objects in the workspace for a 
flame-test chemical experiment is a match box in a clamp 
on a stand and several matches lined up for easy grasp-
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Figure 8: Match Striking Example 

ing by the manipulator. Figure 7 shows the robot just 
before executing a striking motion. 

W i t h EusLisp running on a Spare station equipped 
with 24Mb of memory and evaluating uncompiled qual­
itative planner lisp code, it took less than 3 seconds 
to plan each tr ia l . T h e qualitative reasoning software 
consists of approximately 2000 lines of general-purpose 
qualitative reasoning code, 200 lines of match-striking 
network definition, and roughly 200 lines of M E I S T E R 
interface code. 

7 A Match Striking Example 
Figure 8 presents the data and the search performed dur­
ing actual execution of the qualitative reasoning planner 
while directing the robot for the match-striking task. 
T h e vertical dimension in each frame is the angle in de­
grees and the horizontal dimension is the digging depth 
in millimeters. A l l frames represent the plane where the 
jumping gap is at the max imum physical l imit of 20mm. 

The match neither ignited nor broke upon a first trial 

at a digging depth of 8 m m and angle of 20deg. The 
qualitative reasoning planner determined that the dig­
ging depth should be increased. This trial is represented 
by a point and an arrow. T h e half-tone bar indicates a 
l imit due to non-ignition/non-breakage visible along the 
angle=20deg line. T h e 2nd and 3rd trials were similar, 
successively increasing the digging depth. T h e match 
broke upon the striking action of the 4th tr ia l . At this 
point, the planner decided to decrease the angle, assert­
ing a limit (striped bar) along the digging depth=12rnm 
line. A new match, on the 5th tr ial , broke on the move 
to the starting force and position, at an angle of-10deg. 
Again the planner asserted a limit (cross-hatched bar) 
visible from the 12mm line, but in the opposite direction. 
The angle at this digging depth must now lie between 
20deg and -lOdeg. Breakage on the striking action in the 
6th and 7th trials further narrowed the angle range until 
on the 8th trial the angle was fixed at -lOdeg. Notice 
that there were two trials at this precise location in the 
control space with different results. Now the qualitative 
reasoner was constrained from changing the angle and 
decided to reduce the digging depth instead. The 9th 
and 10th trials both resulted in breakage on the striking 
action and an 11th trial was successful at an angle of 
-50deg and a digging depth of 10mm. 

This example illustrates the narrowing of numerical 
search and the need for contextual limits to achieve suc­
cess. Overlapping of failure regions is also evident. 

8 Relationship to Other Qualitative 
Reasoning Work 

Sacks [1990] characterized qualitative simulation as a 
trajectory through phase space. Here, we view plan­
ning similarly as a search for a path through the space 
of control parameters. 

De Kleer and Brown [1984] mentioned the use of addi­
tional network nodes to represent landmarks. The con­
stant node (figure 2) is just such a landmark correspond­
ing to the angle where, during the striking motion, the 
force is directed along the match stick and the bending 
moment is zero. 

Forbus [1984] uses the term "quantity space" to rep­
resent a relative ordering of comparable values. A sin­
gle representation is used to express qualitative values 
of multiple physical parameters. In the present work, 
the state of the entire system is represented in terms of 
ranges of control parameters, ranges whose values vary 
with position in the control space. 

Kuipers [1984, 1986] uses a network to describe the 
physical equations governing the system, and defines a 
set of network node types. We do the same here, adding, 
in the same spirit, absolute-value and threshold node 
types. Our approach is similar to Kuipers', with differ­
ences deriving from the use for planning rather than sim­
ulation. We use only the values +, 0, and - instead of a 
system of general intervals, and so do not generate land­
marks during simulation. Indeed, we are concerned only 
with where the goal region is relative to any "current" 
region, and are not interested in the topologies of paths 
through the various regions as embodied in the series of 
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intervals of Kuipers' simulation. Also, the development 
of qualitative math functions which return "likelihood 
potentials" in place of simple Boolean values is a direct 
consequence of their application to planning. 

Kuipers and Berleant [1988] propagate constraints on 
the numerical value each node in the network can take. 
We do not attempt to imbue network nodes whose nu­
merical values are not externally visible wi th numeri­
cal information beyond the constraints of the qualitative 
representation. 

9 Conclusions 
A simple planner uti l izing qualitative reasoning and nu­
merical experience has been developed and integrated 
into the MEISTER telerobot system and demonstrated 
for a match striking task. The primary contribution 
of this work is the identification of a mechanism ut i ­
lizing limits for coordinating numerical and qualitative 
information to direct search. Qualitative math functions 
which return "l ikelihood possibilities" facilitate the use 
of qualitative constraints in the planning process. 

Directions for the future include work on more robust 
search algorithms, exploring expanded use of likelihoods 
for planning, and more extensive testing of applications 
to a variety of tasks. 
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