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Abst rac t 

In order to control the motion of a mobile robot, it is 
necessary to have accurate egomotion parameters. In 
addition, egomotion parameters are useful in determining 
environmental depth and structure. We present a 
computationally inexpensive method that rapidly and 
robustly determines both the translational vector and 
rotational component of robot motion through the use of 
an active camera. We employ gaze control consisting of 
two types of camera motion. First, the camera fixates on 
an item in the environment, while measuring motion 
parallax. Based on the measured motion parallax, the 
camera then rapidly saccades to a different fixation point. 
The algorithm iteratively seeks out fixation points that are 
closer to the translational direction of motion, rapidly 
converging so that the active camera will always point in 
the instantaneous direction of motion. At that point, the 
tracking motion of the camera is equal but opposite in sign 
to the robot's rotational component of motion. 
Experiments are carried out both in simulation and in the 
real world, giving results that are close to the actual 
motion parameters of the robot 

1 In t roduc t ion 

When a mobile robot moves within and interacts with its 
environment, accurate egomotion parameters are required for 
tasks such as short-term control of the vehicle, as well as being 
useful in determining environmental depth and structure. 
Egomotion based on inertial navigation systems and/or wheel 
encoders accumulate positional error and are unreliable for long 
distance navigation. Visual information, on the other hand, can 
provide accurate motion parameters. 

Much work in visual motion analysis has concentrated 
primarily on recovering 3-D motion and scene structure from 
passively acquired 2-D image sequences (review given in [1]). 
The majority of the approaches are based on either determining 
dense optical flow accurately or matching a smaller set of 
discrete points between images. The computations involved are 
usually based on solving systems of non-linear (sometimes 
linear) equations. Unfortunately, these algorithms are not too 
successful in the real world since they have high noise 
sensitivity, are sometimes unstable, and are computationally 
complex making them inadequate for real-time processing. 

Since determining general 3-D motion via vision is 
problematic, there has been much research concerning only 
translational motion [2,3]. When a visual sensor translates 
without rotation, all of the flow vectors in the time-varying 
images emanate from a single point known as the Focus Of 
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Expansion (FOE). This point can be determined from the flow 
vectors, and allows us to determine the translational motion 
vector of the visual sensor. Many algorithms have been 
developed that use the FOE, such as determining depth to scene 
points via the time-to-adjacency relationship [3,4]. In short, the 
FOE can provide reliable motion information as long as the 
motion is purely translational. 

If even a small amount of rotation occurs during translational 
motion, the accuracy of the FOE (if one can be found) 
deteriorates. Effects of rotation on the FOE have been given 
elsewhere, the general conclusion being that translational motion 
determined from an FOE is highly inaccurate when rotation 
occurs [3]. Even still, since the FOE is quite useful in 
determining translational motion, methodologies have been 
developed that first 'derotate' any effects of rotation, and then 
determine the FOE as normal in the derotated images [5,6,7]. 
Several methods have been proposed for determining the 
rotational component of motion, such as first finding vanishing 
points in the image (which are invariant to translational motion) 
and then monitoring their motion in order to determine the 
rotation [5,6]. Another method derotates an image by first 
selecting different FOE candidates, after which inverse 
rotational mappings are applied. The resulting image that is 
most radial, i.e., has flow vectors emanating from the smallest 
area, contains the best FOE candidate. Using this method, a 
concept of a 'Fuzzy FOE' has been developed that indicates a 
highly probable area for the FOE, rather than a single point 
[7,8]. This method not only provides a reasonable FOE 
location (and thus translational information), but also the 
rotational component as well. However, the method requires a 
large number of steps that take a good deal of processing time. 

In order to robustly determine both the translational direction 
and rotational component of robot motion in a rapid fashion, we 
present a computationally inexpensive method that uses an 
active camera mounted on a mobile platform. Our method 
exploits the constraints imposed by actively controlling the 
camera's motion independently of the robot's motion. Based on 
the animate vision paradigm [9], we control the gaze of the 
camera in order to fixate on items in the environment while the 
robot is moving. During fixation, we measure any motion 
parallax that occurs along the line of sight. We then perform 
saccadic movement, i.e., rapid camera movement or jumping', 
in order to select a new fixation point based on the previously 
measured motion parallax. The algorithm operates in an 
iterative fashion, repeatedly selecting and tracking fixation 
points and saccading in the direction of robot motion. The 
algorithm quickly converges so that the active camera always 
points in the instantaneous direction of robot motion. At that 
point, the tracking motion of the camera is equal but opposite in 
sign to the robot's rotational component of motion. This 
algorithm operate continuously and provides accurate egomotion 
parameters while the robot moves in its environment. 
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Our strategy is very similar to the optokinetic nystagmus 
behavior in humans. This reflex in human vision consists 
primarily of two parts. First, as we move in our environment, 
our eyes tend to select a point in the scene and track that point as 
we move forward. Through the use of our field-holding reflex, 
we are able to fixate rather accurately. As the fixation point 
reaches a point where mechanically we can not continue 
tracking, we perform a saccadic movement which moves the 
eyes rapidly in the direction opposite of the original tracking 
motion. A new fixation point is then selected and tracked as 
before. Humans perform this behavior regardless of whether 
the path is linear or curvilinear. It was suggested by Cutting 
[10] that motion parallax is used by humans during fixation to 
determine egomotion. We expound on this idea, and apply it to 
egomotion determination for mobile robots. 

2 Mot ion Equations and Associated Flow 

We first review some mathematical preliminaries that have been 
developed elsewhere [11]. Starting with the general six degree 
of freedom motion equations (which can be found in several 
references, see [12]), we consider the coordinate system fixed 
to a camera as shown in figure 1. In this system, the optical 
axis is aligned along the Z-axis, and Z > 0 for points in front of 
the camera. We then consider point P whose coordinates in 
space are r = (X,Y,Z). If the camera moves with an 
instantaneous translation of t = (U,V,W), and instantaneous 
rotation w = (A,B,C), then the velocity vector of point P is 
given as: 

(1) 

Figure 1. Camera coordinate system. 

Further, we see in figure 1 that 

where Lr is the length of vector r. We wish to determine the 
optical flow of point P in these spherical coordinates (note: it is 
possible to determine the optical flow for an image plane using 
common projection equations, however spherical coordinates 
are more natural for an active camera system). By 
differentiating the above equations, we obtain the optical flow 
given as: 

At this point, we shall consider motion only in the X-Z plane, 
and not allow the camera to rotate around the X- or Z-axes. The 
mathematics and algorithms that follow can easily be extended 
to less restricted motion, but for illustrative purposes, we only 
consider the motion given by the vectors: 

Therefore, 

and thus 

(4) 

(5) 

(6) 
We now want to consider all the points that have equal flow in 

the X-Z plane. If we set constant and equal to zero, we 
obtain the solutions: 

(7) 
where k is a constant. 

These solutions are shown in figure 2. With a fixed k, the 
first solution is an equation for a circle in the X-Z plane. The 
radius of the circle is given by: 

(8) 

(9) 

Figure 2. Points with equivalent flow when translating 
by t and rotating by w = (A, B, C). 

It is important to note that this circle is tangent to the camera's 
instantaneous translation vector. The second solution is an 
equation for a straight line perpendicular to the X-Z plane and 
intersecting the plane at the point: 

(10) 
The meaning of these solutions is as follows: For a given k, 

all points that He on the circle and line described in the above 
equations wil l have equivalent optical flow. Since all of the 
points on the circle have equivalent optical flow, we shall refer 
to the circle as an iso-flow circle. When we vary k, we obtain a 
set of circles which all intersect at the camera's focal point, as 
shown in figure 3. We can consider this set of iso-flow circles 
as iso-flow contours. The values of optical flow corresponding 
to the iso-flow contours depend on the values of k, the direction 
of gaze, and the amount of camera rotation. However, for any 
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Figure 3a. Iso-flow contours while gazing straight ahead for translation 
only in the X-Z plane; t = (U,0,W) (note K is some constant). 

direction of gaze and any rotat ion, the circular shape of the 
contours remains the same. 

In figure 3a, we consider the case when the camera undergoes 
only translational motion whi le gazing straight ahead. We see 
that when k = 0, i.e., when the optical f low is zero, all of the 
environmental points wi th zero optical f low lie on a straight line 
pointed in the direction of mot ion. This is true for any gaze 
direction. This makes sense from an FOE standpoint, since this 
line w i l l intersect the image plane at a single point, i.e., the FOE 
(or Focus of Contract ion (FOC) i f the camera is pointed 
backwards). 

In f igure 3b, the camera undergoes both translation and 
rotat ion whi le look ing along the instantaneous direction of 
mot ion, given by the vectors t = (U,0,W) and to = (0,B,0). We 
now see that all of the points wi th zero optical f low now lie on a 
circle, referred to as the Zero F low Circle (ZFC) [11]. From 
this we can see that since the points on the ZFC w i l l project onto 
the image plane at many different points, a single FOE point w i l l 
not exist. It is also important to note that all of the points inside 
of the ZFC w i l l have optical f l ow values opposite in sign f rom 
the optical f low values outside the ZFC. Also, points that fa l l 
on the line of instantaneous translation w i l l have optical f low 
equal but opposite in sign f rom the rotational component of the 
camera. 

3 Mot ion Paral lax 

Mot ion parallax, or sometimes called k inet ic depth, is the 
sensation of visual depth obtained by a moving observer while 
f ixat ing on a point in the visual scene. Objects in front of the 
f ixat ion point move in the direction opposite of the observer 
movement, whi le objects behind the f ixat ion point move in the 
same direction. The apparent velocity of each object near the 
f ixat ion point is proportional to the distance f rom the f ixat ion 
point [10] . Experiments have been carried out in the real-time 
computation of kinetic depth using an active camera, showing 
that such calculations are easy to compute when constraining the 
camera motion [13]. 

Mot ion parallax is easily understood when considering the 
iso-f low circles developed in section 2. When tracking, the 
f ixat ion point must l ie on a zero-flow circle that also intersects 
wi th the moving observer [11] . Objects inside this ZFC w i l l 
move in the opposite direction of the observer, and objects 
outside of it w i l l move in the same direction as the observer. 
Mot ion parallax w i l l occur anytime the direction of the f ixation 
point is not directed along the instantaneous translational vector 
of observer mot ion, i.e., when the l ine of sight crosses more 

instantaneous 
direction of motion 

Figure 3b. Iso-flow contours while gazing straight ahead for 
translation and rotation in the X-Z plane; t = (U t0,W), to = (0,B,0)-

than one iso-f low contour. This holds true when the camera 
undergoes any amount of rotation. 

A general case of motion parallax is illustrated in figure 4. We 
consider the camera at two positions along a line of translation, 
posi t ion p1 and p2. The optical axis of the camera always 
intersects at the f ixat ion point Z during mot ion. We also 
consider a point A and a point B that lie in front and behind the 
f ixation point Z respectively. The image motion of point A is 
given by angle a, and of point B by angle (3. What we wish to 
show is how a and β change as the angle 0, formed by the line 
of sight through the f ixat ion point and the line of translation, 
changes. If we define Z1 and Z2 as the distances f rom the 
f ixation point to the robot at positions p1 and P2 respectively, 
then we can write Z2 in terms of Z j using the Law of Cosines: 

From the Law of Sines, we know that: 
(11) 

(12) 

Figure 4. Motion parallax given by angles and  

Combining these two equations, we can express angle z in 
terms of d, 0, and Z1: 

In a similar fashion, we can determine equations for the angles a 
and b: 

(13) 
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(14) 

(15) 

We set the values of A1, Z1, B1 and d constant, and plot a, 
β, and their difference <x-p for 8 ranging from 180° to 0°, 
shown in figure 5. From this we can verify that the motion 
parallax of points A and B given by a and β is zero when ø = 0° 
or 180°, i.e., when the line of sight is directed along the line of 
translation. Further, both a and go through a maximum near 
90°. The functions a(8) and P(0) act very much like the sine 
function, and indeed, when d is relatively small compared to 
A1, Z1, and B1, a(0) and p(0) can be approximated by: 

(17) 

(18) 

A key thing to notice in figure 5 and equations 17 and 18, is 
that the amplitude of a is greater than the amplitude of β for all 
values of 8. That is, points nearer to the observer than the 
fixation point will flow in the opposite direction of the observer 
motion, and because they are closer, they wil l have greater 
magnitude than the flow of points behind the fixation point. 
Cutting suggested that humans use this information in 
determining the direction of motion [10]. By grouping the flow 
vectors moving in one direction from a group flowing in the 
opposite direction, and by calculating the average magnitude of 
flow of each group, it is possible to determine the direction of 
observer motion. If a group of flow vectors has greater 
magnitude than the other group, then the observer movement is 
in the direction opposite to the motion of the group of greater 
magnitude. However, there are cases where this concept fails. 
If the closer group of points are close to the fixation point, and 
the far group of points are far from the fixation point, then the 
magnitude of the closer group shall be smaller than the distant 
group. This problem can be rectified through an intelligent 
choice of fixation points. By choosing a fixation point so that 
there are ample scene points between the observer and fixation 
point, and more specifically, that there are points closer to the 
observer than the halfway mark to the fixation point, then the 
problem is eliminated. 

4 E g o m o t i o n D e t e r m i n a t i o n A l g o r i t h m 
4.1 General Strategy 

In order to determine the direction and rotational component of 
robot motion, we use two different kinds of camera motion. 
We first choose a point in the environment and fixate on it while 
we move a short distance. During fixation, we compute any 
motion parallax that occurs from points that lie on or near the 
line of sight. Based on the measure of motion parallax, we then 
saccade the camera, selecting a new view direction. A new 
fixation point is then selected, and the process repeats. The 
algorithm converges so that the camera is always pointed along 
the direction of instantaneous translation, where no motion 
parallax occurs. 

The assumptions of this method are: 

1) The robot motion to be measured must change slowly 
enough so that the saccadic algorithm is allowed to 
converge. 

2) There must exist objects in the environment that are closer 
than half the distance between the camera and the fixation 
point. This insures that the average motion of objects 
behind the fixation point moves less than the average motion 
of objects in front of the fixation point (This is easily 
realized in the case of a mobile robot by directing the view 
slightly downwards. Since there are usually points seen on 
the ground that are much closer than a chosen fixation point, 
the assumption is satisfied). 

The steps of the algorithm are: 

1) Regardless of where the camera is pointed, we choose a 
fixation point in the center of the field of view (In the case of 
a mobile robot, the camera is tilted slightly downward with 
respect to the mobile platform, so that the fixation point 
usually lies on the ground). 

2) The fixation point is tracked as the robot moves for a fixed 
distance along the path. During tracking, we measure the 
flow of scene points that are imaged near the vertical line 
passing through the fixation point. We group the flow 
vectors into a left-moving group and a right-moving group. 
We then calculate the average magnitude of flow (only in the 
X-direction) within each group. We call the resulting value 
of the left-moving group A M L (Average Magnitude Left) 
and the value of the right-moving group AMR (Average 
Magnitude Right). 

3) A new view direction is calculated, given by: 

(19) 
where øi, is the previous view direction, and K is a control 
constant that determines how quickly the the algorithm 
converges to choosing a fixation point along the 
instantaneous direction of motion. The value of K depends 
on the length of the tracking step, the focal length, and a 
limit determining how close objects may come to the camera 
(The choice of K is discussed later when we consider 
convergence and stability). 

4) The camera saccades to the new view direction, and the 
process repeats from step 1. 

As the choice of fixation points approaches the line of 
translation, the K (AML - AMR) term in equation 19 goes to 
zero, and the selected view direction wil l converge so that the 
camera always points along the line of translation. While 
tracking fixation points that lie on the line of instantaneous 
translation, the tracking velocity wil l be equal but opposite in 
sign to the robot's rotational velocity. This fact is confirmed in 
figure 3b, where the optical f low value of the line of 
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instantaneous translation is always -B. We thus know both the 
direction and rotational component of robot motion. 
4.2 Convergence and Stability 

Considering the AML and AMR values as single points in front 
and behind the fixation point, we can model the (AML - AMR) 
term in equation 19 simply as where and are given in 
equation 18. Therefore, equation 19 takes the form of: 

(20) 
where K1 is a cumulative constant made up of the constant K in 
equation 19, along with the terms A, Z, B, and d from equation 
18. It can be shown that equation 20 converges to zero when 
K1 90 for all initial values of 0 in the range from As 
an example, the convergence is shown when K1 = 30 in figure 
6. Note the convergence is slower when is close to 180°. 
Even though at 180° the gaze direction is along the line of 
instantaneous translation, the algorithm will tend to diverge 
away from that point due to any small disturbing rotational 
value. 

Since we do not know a priori the values A, Z, and B for each 
selected fixation point, we can not immediately choose an 
optimum constant K in equation 19 for convergence. However, 
we can insure convergence and stability by choosing K with 
knowledge of the maximum possible length of any flow vector 
used in determining AML or AMR. Knowing the geometry of 
the moving platform and attached camera, it is possible to 
determine how close environmental objects can get to the 
camera. By knowing the focal length of the camera and the 
closest possible distance of an object in terms of the translational 
motion during the tracking period (with corresponding 
movement d), we can determine the maximum possible flow 
that object wil l have when imaged. We consider the extreme 
case when the fixation point is at infinity and we are viewing 
perpendicularly to the direction of motion. K then can be 
chosen so the saccadic algorithm will always converge: 

(21) 
where maxflow is the maximum largest flow of any object. K 

should be chosen close to this value for rapid convergence, but 
should remain less than the value in order to insure stability. 

5 Experiments and Results 
Both simulated and real world experiments were carried out to 
show the effectiveness of our method: 
5.1 Simulation 

The movement of a robot with an active camera was simulated 
on a Sun workstation in various environments such as a flat 
floor with objects, an approaching wall, and objects randomly 
placed in 3-D space. Both linear and curvilinear paths with 
different degrees of rotation were simulated. In the simulation, 
the focal length of the camera was set to 300 pixels and the 

image plane consisted of a 512 x 512 array. The robot moved 
in one-step units, and the camera's focal center was 2 units 
above the floor. In the flat floor simulation, the camera tilt angle 

was set to a constant 11 ° down from the horizontal robot axis, 
therefore the fixation point generally was selected 10 units 
away. We allowed no imaged object point to come closer than 
2.5 units to the robot, therefore, the maximum flow of an object 
point was no greater than 85 pixels. For this reason, K was 
chosen to be equal to one in the simulation. 

The algorithm was executed using many different rotational 
values, including the case of zero rotation resulting in pure 
translation. In all cases the algorithm converged to within 10% 
of the final correct rotational value in 7 steps or less. We show 
the flat floor case where the robot rotates 3° counter-clockwise 
for each unit of forward translation in figure 7. The initial 
camera angle starts at 90° to the left of the direction of motion. 

Figure 7a gives the camera angle relative to the instantaneous 
direction of translation after each saccadic step. We see that the 
algorithm rapidly converges to a final camera angle slightly less 
than 2°. Therefore, during the tracking step, the camera's Z-
axis crosses the line of translation, resulting in equal angles at 
the start and end of tracking. Figure 7a also shows the tracking 
delta theta value, which should be equal to the robot rotation 
component after convergence. We see that convergence occurs 
after 5 steps, with a final value of 2.9°. Figure 7b shows the 
values of AML and AMR for each algorithm iteration. We see 
that the A M L dominates until convergence when they are 
roughly equal. Figure 7c shows the simulated view from the 
camera with the associated motion parallax when the camera 
tracks at the initial angle of 90°. 

Figure 7b. Average magnitude left ( A M L ) and average magnitude right 
(AMR) of flow versus tracking steps for t = (0,0,1), = (0,3°,0). 

5.2 Real-World 

We have carried out the same algorithm in a real world 
experiment. An active camera was attached to a robot, which 
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Figure 7c. Flow simulation as the robot moves and tracks a fixation point. The camera is oriented 90° to the direction of translation, 
and the robot rotates 3° counter-clockwise. The left frame shows the flow vectors and the motion parallax of the center vertical line. 

The right frame shows the robot and camera position in the environment. 

moved along the perimeter of a circle whose radius was 430 
millimeters. The camera only rotated around the Y-axis, and 
had a focal length of 1240 pixels. The camera was tilted down 
so that the fixation points were chosen on the floor at around 
1.5 meters. Objects were not allowed to come close enough to 
the camera so as to generate flow larger than 90 pixels. 
Therefore, we set K = 1 in the saccadic control equation so that 
the convergence of the algorithm was guaranteed. 

The robot moved 5o for each tracking step (38 mm 
translation). We had initially pointed the camera at -100° from 
the direction of translation. The flow of objects points near the 
center vertical line was measured, and AML and AMR values 

were determined. Figure 8 shows the scene observed during 
the step when the camera was oriented at -85° from the direction 
of translation. Also in the figure are the flow vectors associated 
with object points. The fixation point is near the center of the 
image, identified by a small circle. We see that the near objects 
have large flow moving right, and far objects have small flow 
moving left. 

The results of the convergence are shown in figure 9. We see 
that the algorithm converged to a measure of robot rotation of 
4.7°. The measured rotation remained within ±0.3° of this 
value. In figure 9b, we see the relative values of AML and 
AMR. At the fourth step, we can see that there was a very close 

Figure 8. View of the scene with flow vectors when camera is oriented at -85° with robot 
rotation at 5°. The fixation point is seen in the middle of the image indicated by a small circle. 
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object so as to give a high A M R value. The resulting 6% error 
is due to an accumulation of error in the measure of the tracking 
delta theta, tracking error of the f ixat ion point, and error in the 
measure of the f low vectors in determining A M L and AMR. 

Figure 9a. Real experiment- Camera angle and calculated rotation 
for t = (0,0,1) w = (0,5°,0). 

Figure 9b. Average magnitude left (AML) and average magnitude right 
(AMR) of f low versus tracking steps for t = (0,0,1), w = (0,5°,0). 

6 D i s c u s s i o n a n d C o n c l u s i o n s 

We have developed a computationally inexpensive methodology 
for determining robot rotation and translation by using an active 
camera that tracks f ixat ion points and subsequently performs 
saccadic mot ion . Through the use of control led saccadic 
motion, the rotational and translational values of motion can be 
determined after a few iterations of the algorithm. If the motion 
of the robot changes smoothly along its trajectory, the algorithm 
w i l l 'track' the instantaneous direct ion of mot ion , and w i l l 
provide continuous egomotion values for any type of path. It is 
important to note that our method simultaneously provides 
rotat ion and translation in format ion, rather than the usual 
method which f irst determines rotation and then derotates an 
image in order to f i nd the F O E and thus the direction of 
translation. 

Note that this method does not assume that the forward 
point ing axis of the vehicle coincides wi th the instantaneous 
direction of mot ion. Such an assumption can be made for 
vehicles w i th conventional forward wheel steering wi th no 
wheel slippage. In this case, a similar but somewhat simpler 
algori thm can be used when the camera's rotational angle is 
known wi th respect to the forward direction of the vehicle [14]. 

We have encountered a small percentage of error in our 
experiments. This error could be reduced by improving the 
angular resolution of our active camera. Also, the algorithm 

depends highly on accurate tracking, so error in the tracking 
algorithm needs to be minimized. Accurate flow measurements 
are also important (albeit only near the center vertical line), so 
we must employ an optical flow method which is precise and 
robust. For speed considerations, we are currently developing a 
method that determines the optical flow only along the center 
vertical line. We intend to continue experimenting with our 
method, and eventually wish to perform the egomotion 
calculations in real-time. 
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