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Abst rac t 

We present a model for flexible extruded objects, 
such as wires, tubes, or grommets, and demonstrate 
a novel, self-adjusting seven-dimensional Hough 
transform that derives and analyzes their three-space 
curved axes from position and surface normal infor­
mation. The method is purely local and is very cheap 
to compute. The model considers such objects as 
piecewise toroidal, and decomposes the seven pa­
rameters of a torus into three nested subspaces, the 
structure of which counteract the errors implicit in 
the analysis of objects of great size and/or small 
curvature. We believe it is the first example of a 
parameter space structure designed to cluster ill-con­
ditioned hypotheses together so that they can be 
easily detected and ignored. This work complements 
existing shape-from-contour approaches for analyz­
ing tori: it uses no edge information, and it does not 
require the solution of high-degree non-linear equa­
tions by iterative techniques. Most of the results, 
including the conditions for the existence of more 
that one solution (phantom "anti-tori"), have been 
verified using a symbolic mathematical analysis sys­
tem. We present, in the environment of the IBM 
ConVEx system, robust results on both synthetic 
CAD-CAM range data (the hasp of a lock), and actual 
range data (a knotted piece of coaxial cable), and 
discuss several system tuning issues. 

1. In t roduc t ion 

We consider the problem of analyzing dense depth images 
to determine the parameters of flexible extruded objects. Our 
approach views such objects as being piecewise toroidal, since 
the torus is the simplest solid geometric object whose gener­
ating axis exhibits curvature. This is justified by our observa­
tion that many piecewise sections of flexible extruded objects 
have co-planar spines, either because they are easy to manu­
facture that way, or because they represent a minimum energy 
configuration (these reasons are often equivalent). However, 
a torus is an object with seven free parameters: three of 
position, two of orientation, one of size, and one of relative 
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"thickness". This pushes the limits of the current state of the 
art in parsing high-degree parametric object models, particu­
larly since the parameters of position and size are potentially 
unbounded, especially for objects that are nearly cylindrical. 

Following what might be called the principle of least 
variability, we first recover the thickness parameter, since 
among all seven it is the one parameter most likely to be 
constant across the toroidal pieces. The method exploits a 
novel but efficient algorithmic interpretation of a result in 
differential geometry called Meusnier's theorem. Then, using 
the knowledge gained from deriving the thickness, we recover 
the next most well-behaved parameters, the orientation and 
size. These are computed simultaneously and in a manner that 
compensates for the ill-conditioning of orientation estimates 
when size is large. Lastly, using knowledge of both thickness 
and size, we recover the position of the local toroidal section, 
again automatically compensating for the ill-conditioning of 
large and/or nearly straight objects. 

The significance of the work rests on its two principal 
results: the elegance and speed of the thickness-finding trans­
form (reviewed only briefly here, for more details see [Kender 
and Kjeldsen, 1990], and the novel way in which the parameter 
space structure decomposes a difficult seven-dimensional 
problem so that ill-conditioned hypotheses cluster together for 
easy detection and removal. The work as a whole is applicable 
in vision systems wherever depth and surface orientation 
(however sparse) are obtainable, particularly for those cases 
where object boundaries are occluded, and where contour-
based methods therefore fail. 

1.1. The Torus in Brief 
We adopt the terminology of DoCarmo [1976], and review 

the results on tori that we wi l l exploit. 
A torus is a solid of revolution formed by a generating 

circle ("minor circle") of radius r being swept in a circle of 
revolution ("major circle") of radius a (Note that we have 
reversed the sense of/' & a from DoCarmo). Generally speak­
ing, we wil l assume that r<a, that is, that the "donut" has a 
"hole". This constraint wil l be exploited in the decomposition 
of the parameter spaces. 

Surface properties are best represented in the framework 
of the following parameterization, which identifies the center 
of the torus (and hence, the center of the major circle) with the 
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Fig. 1: Torus terminology. 

center of a cylindrical coordinate system, making a to be 
cylindrical radius and v as cylindrical angle; the axis of the 
torus becomes the remaining coordinate z. We parameterize 
the surface of the minor circle by the angle u; unlike the angle 
v, its origin is critical, and is set to equal 0 when it is most 
distant from the torus center. The locus of points with a given 
v lie on a "meridian". The locus of points with a given u lie 
on a "parallel". 

As with any other regular surface, each point of the torus 
has two principal curvatures, with directions of principal cur­
vature that are perpendicular to each other. Every point has 
one positive curvature, k1, which is oriented along the merid­
ian. The other curvature of the point, k2, is more elaborate, 
although it is always oriented along the parallel, k2 is 0 at the 
"top" and "bottom" parallels of the torus, where the surface is 
locally cylindrical. It attains its extreme positive value at the 
"outermost" parallel, and its extreme negative value at the 
"innermost" parallel. We note and wil l heavily exploit the 
observation that the largest positive curvature at any point is 
always the value of k\. 

We wi l l adopt the following notation. A point on the torus 
is denoted as Pi; it is considered to be vector in three space. 
We wi l l abbreviate the vector P i - P j as P i j . Likewise, we wil l 
refer to the unit normal vector of the surface at Pi as Ni, and a 
similar comment applies to vectors of the form Ni,j. Note that 
the values of the points and the normals are available as input 
data, measured in the coordinate system of the imaging appa­
ratus. We wi l l often refer to the "translated" points 
Ti = Pi - rNi; if the r is the true minor radius, then Ti = Si, that 
is a point on the torus spine. 

2. Computing Minor Radius 
It is not hard to show that when computing the parameters 

of a two-dimensional surface in three space, the information 
that a point is on the surface can be used to fix one parameter, 
and the information that a given vector is the normal to the 
surface at a point can be used to fix two parameters. (Analo­
gous statements can be made about curvature, but we avoid 
curvature information because of its intrinsic susceptibility to 
noise.) Thus, a sphere is uniquely determined by four points, 
or, more simply, by two points and the normal at one of them. 

Thus, two points and their normals are insufficient to uniquely 
determine a torus, since they fix only six parameters. How­
ever, three points and their normals in general overdetermine 
the torus in the following way. There must exist a local space 
circle that serves as the torus spine, and it must be equidistant 
from all three points (this common distance is the value of r). 
But, in addition, this space circle must have the property that 
at the point of closest approach to each of the Pi, the tangent 
to the space circle must be perpendicular to the corresponding 
Ni It is the need for some means to guarantee this tangent 
property that leads to the following observations and construc­
tions. 

We select a distinguished point Pi; without loss of gener­
ality assume that it is the point P1. We then construct all the 
space circles through the translated point 7*1 whose tangents 
at T1 are perpendicular to N1, and that also pass through a 
second translated point, call it T2- There is a one degree of 
freedom family of such circles, and they all lie on the surface 
of a sphere. That such a construction is possible can be seen 
both geometrically and algebraically; it is also a special case 
of the theorem of Meusnier. (Meusnier's theorem states that 
if a set of planes are drawn through a tangent to a surface in a 
non-zero curvature direction, then the osculating circles of the 
intersections with the surface lie upon a sphere [Struik, 1961].) 

Geometrically, we 
consider T\ to be the 
south pole of a sphere 
whose north-south axis is 
collinear with N1. The 
size of the sphere is deter­
mined by T2. Call this 
sphere the supporting 
sphere. Any circle (great 
or little) that passes 
through T1 and T2 now 
also has its local tangent 
at T1 perpendicular to N1. 
Algebraically, we can 
look for the size of the 
support sphere, s; since 
we know that the center is Fig. 2: Minor r extraction geometry. 

constrained to lie along the direction of the N1, the center is 
given by C=T1+sN1. Both T\ and T2 lie on a common sphere 
if their distances from the center are equal. This is captured by 
equating the norms of their relative pOsSition vectors, giving in 
vector form the equation of the plane of their perpendicular 
bisectors: . Expanding, we find that that 
is, the size of the support sphere needed to accommodate T2 
,is a function of r. 

Note, however, that the local tangent at T2 is not necessar­
ily perpendicular to N2- Worse, T3 may not even lie on the 
support sphere at all. 

We remedy this second defect first, by constructing with 
T\ and T3 the same sort of support sphere as was constructed 
with T1 and T2- What results is a symmetric relationship, 
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which expresses the size of the support sphere which would 
not only accommodate T3, but which would also allow us to 
draw a one-dimensional family of circles through T1 and T3 
whose local tangents at T1 are perpendicular N1. 

Now note that if for whatever r, the support 
spheres must be coincident, since they are both defined relative 
to P1, and all three Ti lie upon it. Basically, equating 

wi l l find those r that allow a solution to the now 
overdetermined problem of finding a sphere that passes 
through three points and attains a specified normal at a given 
point (here, the south pole). Equating gives a 

quadratic in r; where 

This equation wil l have at most two solutions for the value 
of r, and they are easily obtainable by the quadratic formula. 
Since they are based on T1 being the south pole, call them 
1,1 and r i ,2. We still have to address the need for T2 and 
T3 to satisfy their tangent condition, however. We do this in 
a completely symmetric fashion, by finding two more support 
sphere systems, first by considering T2 a south pole, and then 
T3. The quadratic equations in r that result are derived by 
inspection by permuting the indices of the Pi and Ni. 

From T2 as south pole we get two more candidates for the 
value of r, r2,1 and r2,2, and from T3 we get r3,1 and r3,2. This 
would appear to call for the calculation of 24 inner products, 
but it is easy to show that any two of these three quadratics 
have four inner products in common; thus, there is a total of 
only 12 innerproducts. 

We now have three pairs of candidate r values. Let us 
define a consensus r to be any ri,j that satisfies 

(2a)  

There may be zero, one, or two consensus r. They can be 
accumulated and filtered in the usual Hough way using a 
one-dimensional parameter space. We note several properties 
of this consensus algorithm. 

The values of r are derived by independently solving three 
quadratics in 15 image observables (three for each point Pi, 
and two for each unit normal Ni), The virtue of this method is 
that despite the non-linearities that would result when vari­
ables are eliminated, the method does not require any iterative 
root finding. Nor does it suffer from the attendant problems 
of choosing starting values, guaranteeing convergence, or 
tracking multiple roots. 

Enlisting the aid of IBM's proprietary symbolic math 
system Scratchpad I I I [Jenks et al.,, 1986], we were able to 
show that the transform always produced one consensus value 
for r, corresponding to the true minor radius of the torus, and 

that if a second consensus existed, it was always easily distin­
guishable by its sign and/or magnitude from the true consensus 
r, which is always the smallest positive radius of curvature. 

Further, the analysis suggested several intriguing exam­
ples of what should probably be called anti-tori. The most 
straightforward example is what happens when two of the data 
points are on a meridian, and the third is on the innermost 
parallel. The transform properly returns two consensus: one 
is r, and the other is the value of k2 at the "innermost" 
parallel. What the transform "sees" is an anti-torus whose 
thickness is equal to the torus' hole, and whose hole is equal 
to the torus' thickness. That is, it interprets the data to be lying 
on the negative image of an anti-torus, whose axis is perpen­
dicular to the given torus, with the torus and anti-torus inter­
locking: much like confusing the impression in plaster of a 
face with the face itself. 

3. Computing Orientation (and Major Radius) 
Following the principle of least variability, we next re­

cover orientation by examining the spine points produced by 
our candidate r. Orientation is a naturally bounded quantity, 
and is easily represented as a point on the surface of the upper 
Gaussian hemisphere (mathematically, on P2. 

The approach is straight forward: given a candidate r, we 
form the spine points Si = Pi - rNi from the pixels supporting 
r, and determine the orientation of the plane on which they lie. 
The direction of the plane's normal is easy to compute: simply 
take the normalized unit vector of the following cross product 
(or any of its variants obtained by permuting the Si): 

However, this orientation is ill-conditioned when the spine 
points are nearly co-linear, which occurs when a is large. 
Using derivatives, it is not hard to show that small changes of 
S2 in a direction perpendicular to this plane have an effect on 
the plane's orientation that is roughly proportional to the major 
radius, a. This suggests that the computation for orientation 
should be accompanied by the computation of a, so that 
orientation can be "weighted" inversely by a somehow. 

Rather than use a as a pure parameter space voting weight, 
we note the following. The value of a eventually has to be 
recovered anyway, and if it disappears into a weighted sum it 
is not recoverable. Instead, we scale the unit orientation vector 
by dividing it by a. The parameter space now becomes the 
interior of the upper Gaussian hemisphere, which is three 
dimensional, and the values of a are recoverable simply by 
taking each vector's length. More importantly, orientations 
accompanied by high a cluster near the origin, where they are 
easy to detect and remove. Conversely, other orientations 
receive parameter space representation proportional to their 
certainty, since they are proportionately distant from the hemi­
sphere center. 

This parameter space has two other advantages. First, it 
uses the interior of what would otherwise be a very inefficient 
use of three-space, thus obviating the need to cleverly tessei-
late the surface of the Gaussian sphere. Secondly, points that 
cluster at its origin can immediately be considered evidence 
of cylindrical objects in the image (which have no orientation 
and infinite a). 
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Since the orientation and a spaces are now combined, the 
computation of the resulting parameter point (the scaled ori­
entation vector) can also be combined; it is not necessary to 
actually plot the spine circle or calculate its center. By means 
of a three-space geometric construction related to the planar 
"Law of Sines" for circles, it can be shown that the scaled 
vector is directly given by the following (or by any of its 
variants obtained by permuting the Si): 

where 

4. Computing Center 

What remains are the three most difficult parameters, the 
center parameters, which are potentially unbounded and 
highly sensitive to the value of a. Local tori with small 
curvature have distant centers which are difficult to compute 
accurately. Since triangulation error of the center is also 
roughly proportional to a, this final space computes and accu­
mulates vectors to the center point, scaled again by a. In effect, 
this measures each center in units of major radius, thus relative 
error is nearly constant. It is not hard to show that this space 
is now bounded, since for local tori with large a, their center 
must be about a units from the image origin, otherwise they 
would not fall within the image. Thus, most tori have centers 
within one unit from the origin. The upper limit of this space 
is determined by small tori at the image edge; since a is 
bounded by r, and r is bounded by physical considerations, this 
limit is calculable directly. 

We note that although many tori might map to the same 
scaled vector, they have already been classified and separated 
by the value of a in the prior parameter space. Thus, the 
nesting of these spaces is critical both for adjustment to error, 
and for disambiguation of results. 

The computation is straightforward but a bit messy (how­
ever, it is again invariant to the permutation of the Si): 

where 

and 

5. System Considerations 
In practice, the above method relies on the ability to pick 

"good" triples of points Pi. Additionally, the performance and 
behavior of the method can be enhanced by simple "sanity 
checks" on computed intermediate results. Lastly, the orienta­
tion space can be improved by a judicious choice of "offset" 
for the scaled orientation vector. We handle these in turn. 

Picking good triples is determined by enforcing a mini­
mum and maximum distance between image points/*/; we call 
this distance the "radius of coherence" (ROC). If the ROC is 
too small, accuracy suffers due to small triangulation baseline; 
too large, and most triples do not lie on the same torus. For 
the minor radius space, it can be set in accordance with the 
expected range of minor radii, which can be determined from 
the imaging parameters. Empirically, we have found that a 
wide range between minimum and maximum ROC works well 
for minor r. The two other spaces have similar considerations, 
however the range between minimum and maximum ROC 
must be rather narrow or the system becomes overwhelmed 
with noise hypotheses. Fortunately, experience shows that a 
narrow range of ROC about r works very well for a large range 
of torus shapes. 

Sanity checks are inexpensive checks on the data before it 
is used in a parameter transform. Our sanity checks are of the 
following form. In computing r, no points in a planar neigh­
borhood are used; they are easy to detect, since they have very 
small and equal principal curvatures. Nor are points near a 
depth discontinuity used, as the surface approximations be­
come inaccurate there. Further, degenerate quadratics (with 
A=0 or with imaginary roots) are ignored . In computing 
orientations and centers, spine points within a pixel of each 
other are ignored. These checks take a minute percentage of 
the computation times, but reduce the noise in parameter space 
dramatically. 

In practice, the scaling of orientation vectors by 1/u results 
in vectors too tightly clustered around the origin. This is 
because any torus large enough to be seen in the image as a 
torus wil l have a major radius of at least eight pixels, approxi­
mately. Thus, all the activity in the space happens in a hemi­
sphere of radius 1/8; this uses less than 1% of the space. If a 
lower bound on a is known (and it usually can be approxi­
mated), then the scaling function should be of the form 
b/(a+c), with c serving to shift small values of a closer to the 
surface of the hemisphere. Heuristic choices of constants 
based on expected torus and image sizes can be selected; one 
good one maps the smallest torus onto the surface of the 
hemisphere, and the largest torus that can be fully seen 
(a=64, assuming a range image of size 256) into the midpoint 
of the hemisphere; the scaling function becomes 56/(a+48). 

6, System Description 

We briefly survey the complete system of which this 
transform is a part, highlighting those aspects most germane 
to our results. A more complete description can be found in 
[Kjeldsen et al, 1989]. 

Recognition is structured as a hierarchy of layered and 
concurrent parameter transforms [Ballard, 1981][Sabbah, 
1985]. Each transform examines input data or previously 
established features and accumulates evidence for new feature 
hypotheses in an associated parameter space. Compatibility 
relations accumulate evidence for or against a hypothesis on 
the basis of peer hypotheses. A large number of hypotheses 
are typically generated. The evidence for and against each is 
integrated using an iterative refinement process in a dynami­
cally constructed constraint satisfaction network [Feldman & 
Ballard, 1981]. 
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Each parameter space is instantiated as a subnetwork 
where nodes correspond to hypotheses. The links in the net­
work are (1) bottom-up connections, representing support 
from input data, and (2) lateral links between hypotheses. The 
former links can be thought of as votes generated by the 
parameter transforms [Hough, 1962]. The latter links, gener­
ated by the compatibility relations, can be inhibitory, or exci­
tatory. For example, surface hypotheses generated from the 
same pixels are connected by an inhibitory link, because they 
represent conflicting interpretations of the same data. 

Evidence integration works as follows. Each node i com­
putes an activation level ui representing a confidence level in 
the corresponding feature. At each iterative step t, the activa­
tion level of a node, denoted by ui(r), is computed as 

where li represents bottom-up support for feature i, and the 
summation embodies the collective inhibition and excitation 
of conflicting and cooperating hypotheses;. The weight factor 
wij is negative when hypothesis j conflicts with hypothesis i 
and positive when hypothesis j is supporting i. Di is a decay 
term that suppresses spurious hypotheses with little support, 
and helps insure stability. 

A unit "survives" iteration when it has sufficient ui and 
insignificant inhibition. It is then passed to the next parameter 
transform in order to create hypotheses in higher-level spaces. 
Units also feed-back to their component features in lower-
level spaces and to consistent hypotheses in parallel spaces. 
Thus, surviving features form stable coalitions which repre-
sent globally consistent interpretations of the scene. 

Additional features are added to the system by defining 
parameter transforms and compatibility relations which work 
within a well defined I/O structure. These generally make use 
of techniques described in [Califano, 1988] and [Califano et 
al, 1988]. Our first transform takes triples of data points and 
returns values of r on the basis of the consensus in Eq 2a. The 
second transform takes triples of the data points that support a 
surviving r hypothesis, and returns the parameters of the scaled 
vector of section 3. Finally data points supporting surviving 
orientation/major radii are used as described in section 4. The 
current system contains 21 parameter transforms for various 
features. 

The lowest level of the system extract local features such 
as surface approxima­
tions or depth discon­
tinuities from the data 
for use by the parame­
ter transforms. The 
local features impor­
tant to this work use 
bicubic interpolations 
to obtain the least 
mean square error fit 
to dense depth data, 
then computes di­
rectly from the poly­
nomial coefficients of 
the approximation Fig. 5: Points voting for minor radius 

both the surface gradient vector, and the directions and 
amounts of principal surface curvature [Sabbah & Bolle, 
1986]. Experiments comparing computed values with known 
true values indicate that over a wide range of imagery and 
circumstance the inaccuracy of the approximations is no more 
that 5% from the ideal. 

7. Results 
The torus extraction transforms have been run on about a 

dozen images. We wil l present two of the more interesting 
cases. The first is a depth map generated from a CSG repre­
sentation of a padlock (figure 3). The image contains a single 
torus segment, as well as several other surfaces. The second 
image is an actual range image of a knotted length of cable 
(figure 4). The cable forms a continuously varying tube of 
constant cross section, which can be reasonably approximated 
as piecewise toroidal. 

In both cases we used only a small percentage of the 
possible triples within the ROC; the percentage was large 
enough to give reasonable coverage but small enough to give 
acceptable running times. Additionally, hypotheses receiving 
votes from fewer than 20 triples were not instantiated. Since 
many noise hypotheses receive just a few votes, this pruning 
helped cut down on the time and memory needed to support 
them. 

Fig. 3: Depth map of lock. Fig. 4: Depth map of knot. 

7.1. Lock 
Figure 3 shows a 64x64 plot of the 256x256 depth map of 

the lock. Surface approximations were taken using a 5x5 
window around each point. After the sanity checks, only the 
points hilighted in the dithered image in figure 5 were passed 
to the minor radius parameter transform. ROC was 9 to 10, 
and 50% of the possible triples were used. 10 hypotheses 
received votes from more than 20 triples, and so took part in 
iteration. After 11 iteration steps a single hypothesis of 16.5 
for r survived, which corresponds closely to the apparent 

radius of the hasp. 
Figure 6 shows 

the points which sup­
ported the winning r. 
To find the orienta­
tion/major radius, 
ROC was set to range 
from 15 to 16 (ap­
proximately r) and 
50% of the triples 
formed from the spine 
points were used. 
102 hypotheses re­
ceived sufficient sup-

Fig. 6: Pixels supporting winning r. port to be instantiated. 
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Fig. 7: Orientation hyotheses plotted in 3-space. Fig. 8: Pixels voting for orientation 1. Fig. 9: Pixels voting for orientation 2. 

Figure 7 shows the hypotheses receiving votes plotted in 
3-space (it does not show the number of votes each received). 
You can make out the hemispherical outlines of the parameter 
space, as well as a distinct cluster of hypotheses in the -x +y 
+z quadrant. Two hypotheses survived after iteration. The 
points supporting them are shown in figures 8 and 9. The first 
captured the orientation of the torus forming the top of the hasp 
as closely as we were able to measure it ourselves. The major 
radius was captured as accurately as the parameter space 
resolution (bucket size) would allow (actual a=34, computed 
a=37). The second surviving orientation hypothesis "found" 
a very large diameter torus (a=523) on the straight segment of 
the hasp. As we mentioned in section 3, it is possible to 
eliminate hypotheses of very large radius, that is near-cylin­
ders by discarding those very close to the origin of the parame­
ter space. Since the length of the parameter vector of the torus 
on top of the hasp is .65, and the length of the parameter vector 
for the torus found on the cylinder was . 1 , the cutoff could 
easily be adjusted to eliminate such misinterpretations. 

Both orientation hypotheses now voted into location space. 
The same ROC and hit rate were used. The cylindrical seg­
ment was not able to find any consistent location, and therefore 
created no hypotheses strong enough to be considered. The 
actual torus created 25 hypotheses. Only one survived itera­
tion. The surviving center was (30 67.5 -30), with the actual 
center at approximately (31 66 -32). Thus, the system found 
the results to within one bucket of available resolution. 

These runs were done on a Symbolics 3650. With the 
parameters set as described the entire recognition took roughly 
70 minutes. Computing the surface approximations took 10 
minutes. Generating the votes for minor r space took 30 
minutes. Generating votes for orientation space took 25 min-

Fig. 10: Pixels supporting winning 
minor radius. 

utes. Generating votes for location space took 3 minutes. In 
all, 30 iterations were needed to prune down the hypotheses. 
Total time for all iteration was roughly 3 minutes, including a 
rather elaborate trace of system status. 

7.2. Knot 
The second image is a range image of a knot of coax cable 

(figure 4) taken using a laser triangulation range finder [Tech­
nical Arts, 1986]. ROC was the range 4 to 5, hit rate was 50%. 
Figure 10 shows the points supporting the winning (and cor­
rect, as far as we can measure) minor radius hypothesis. 

These points were passed thru the orientation/major radius 
parameter transform. Despite the lack of distinct peaks in the 
histogram of votes (figure 11), the iterative refinement was 
able to find three distinct clusters, representing competing 
hypotheses of orientation from different areas of the knot. The 
strongest hypothesis in each cluster survived iteration. The 
points supporting them are shown in figures 13, 14 and 15. 
The light coverage is due to the low hit ratios (10%) we had 
to use. The low hit rate also appears responsible for some 
regions of the knot not being covered by any hypotheses. 

Figure 12 shows a histogram of the votes the three orien­
tation hypotheses generated in location space. One peak was 
generated by the segment in fig. 15, and the other peak is an 
overlap of the votes from both fig. 13 and fig. 14. The two 
locations which survived iteration correspond well to the 
center points we expected from those torus segments. 

Running times were somewhat better than those for the 
lock test case, except for the time to generate votes for orien­
tation hypotheses. Here the continuously varying curve cre­
ated a very large number of noise hypotheses, and very wide 
peaks in the histogram of votes. With the 10% hit rate used 

Fig. 11: Knot orientation votes / 2D projection. 
Fig. 12: Pixels supporting winning location. 
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here, roughly 4000 hypotheses were created. Linking them 
took well over an hour. With somewhat higher hit rates, 21000 
hypotheses were created. Many hours were needed to create 
and link them. 

7.3. Discussion 
These experiments demonstrate the ability to break a con­

tinuously varying curve into piecewise toroidal segments, to 
deal with non-toroidal surfaces and cylinderical segments. 
We hope that speeding the implementation and a future port 
to faster hardware wi l l improve the coverage, but these results 
are very promising. 

System parameters must currently be adjusted for each 
image. An initial setting generally gives either impossibly 
long running times, due to the number of hypotheses created, 
or poor coverage of points supporting the winning hypotheses. 
The latter makes recognition in subsequent parameter spaces 
difficult. ROC and hit rate can generally be adjusted for good 
coverage in reasonable time, but it takes several attempts. A 
faster implementation would allow us to use all triples and a 
wider ROC, especially in minor radius space. We believe this 
would almost eliminate the need to tune system parameters. 
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Fig. 13: Pixels supporting orientation 
hypothesis 1. 

Fig. 14: Pixels supporting orientation 
hypothesis 2. 

Fig. 15: Pixels supporting orientation 
hypothesis 3. 


