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Abs t rac t 
T h e task of o b t a i n i n g a l ine labe l ing f r o m a 
greyscale image of t r i hed ra l ob jects presents 
d i f f icu l t ies n o t f o u n d in the classical l ine la ­
be l ing p r o b l e m . As o r i g i na l l y f o r m u l a t e d , the 
l ine l abe l i ng p rob lem assumed t h a t each j u n c ­
t i o n was cor rec t ly pre-classif ied as be ing of a 
pa r t i cu l a r j u n c t i o n t ype (e.g. T , Y , a r r o w ) ; 
the success of the a l g o r i t h m s proposed have de­
pended c r i t i ca l l y u p o n g e t t i n g th i s i n i t i a l j u n c ­
t i o n c lassi f icat ion correct . In real images, how­
ever, j u n c t i o n s o f d i f ferent types m a y ac tua l l y 
look qu i te s i m i l a r , and th is pre-c lassi f icat ion 
is o f ten d i f f i cu l t to achieve. T h i s issue is ad­
dressed by recast ing the l ine labe l ing p rob lem 
in te rms of a coupled p robab i l i s t i c system wh ich 
labels b o t h l ines and j u n c t i o n s . T h i s results 
in a robus t sys tem, in wh i ch p r io r knowledge 
of acceptable con f igura t ions can serve to over­
come the p r o b l e m o f m is lead ing or amb iguous 
evidence. 

1 I n t r o d u c t i o n 
Given a greyscale image of so l id , opaque po l yhed ra w i t h 
exac t ly three planes t ouch ing at every ver tex, we wish to 
o b t a i n a l ine labe l ing for the image. T h i s is i l l us t ra ted in 
F igure 1, where (a) is the i n p u t image , and (b ) is the l ine 
labe l ing produced for t h a t image. T h e labels used here 
are based on the we l l - known work o f [ H u f f m a n , 1971; 
Clowes, 1971], 

In th i s task, there are a number of d i f f icu l t ies wh ich 
are no t present in the o r i g i na l f o r m u l a t i o n o f the l ine 
labe l ing p r o b l e m , or in subsequent work [Wa l t z , 1975; 
M a l i k , 1985]. I t has genera l ly been assumed t h a t i n p u t 
w i l l be in the f o r m o f an ideal ized l ine d r a w i n g , w i t h 
each j u n c t i o n cor rec t ly pre-classif ied i n t o one of several 
types (e.g. T , Y , a r row , e tc ) . T h e a l go r i t hms proposed 
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(a) (b) 

Figure 1 : L ine L a b e l i n g f r o m an Image 

(b) 

F igure 2 : Perceptua l S i m i l a r i t y o f J u n c t i o n Types 

have been c r i t i ca l l y dependent on the correctness of th is 
a priori j u n c t i o n c lass i f icat ion. 

In an ac tua l image of a set of ob jec ts , however, j u n c ­
t ions o f d i f ferent types m a y be percep tua l l y qu i t e s im i l a r , 
and thus d i f f i cu l t to classify on the basis o f perceptua l 
evidence alone. F igure 2 presents two examples of th is . 
In (a ) , the c i rc led Y j u n c t i o n is f la t enough to be qu i te 
s im i l a r to a T j u n c t i o n . I f the j u n c t i o n were misclassi-
f ied th is way, the classical l ine l abe l i ng schemes wou ld be 
worth less. In ( b ) , we see t w o j u n c t i o n types taken f r o m 
[ M a l i k , 1985], an extension o f ear ly l ine l abe l i ng work 
to cover the case of piecewise s m o o t h curved objects . 
T h e t w o j u n c t i o n types are pe rcep tua l l y very s im i l a r , 
b u t place di f ferent cons t ra in ts on the labels o f the in ­
c o m i n g edges. As M a l i k po in ts o u t , i t i s p robab l y asking 
t oo much of a separate f ron t -end process to be able to 
consistent ly d i s t i ngu ish these. 

T h u s , qu i te apa r t f r o m issues o f edge detect ion and 
j u n c t i o n de tec t ion , th is p r o b l e m o f the perceptua l s im i -
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larity of junction types must be addressed by any work 
which seeks to provide an account of line labeling from 
images. 

2 A Coupled System 
The approach taken by this work is to reformulate the 
line labeling problem in terms of a coupled probabilistic 
system. Under this scheme, we do not assume correctly 
pre-classified junctions, as earlier work has. Instead, the 
issue of perceptual similarity of junction types is ad­
dressed by labeling both lines and junctions. Once lines 
and junctions are detected, external evidence for partic­
ular junction and line labels is extracted from the image, 
and this, together with prior probabilities for given con­
figurations of junction and line labels, gives us a poste­
rior distribution over all possible labelings. The idea is 
to have the system arrive at the labeling with the maxi­
mum a posteriori probability. 

This provides a solution to the problem of perceptual 
similarity of junction types, since any junction in the 
image which is not clearly of a single junction type will 
provide weak evidence for all possible labels. For ex­
ample, in Figure 2(a), the circled junction will provide 
weak evidence for both the "T" label and the "Y" label. 
The "Y" label will eventually be chosen since it is more 
consistent with the rest of the image, i.e. because there 
exists a resulting overall labeling with higher a posteri­
ori probability than any overall labeling in which that 
junction is labeled as a "T" . Note that since the a poste­
riori distribution over labelings is derived through Bayes' 
rule from the a priori distribution, we are actually let­
ting the prior probabilities of particular configurations 
of line and junction labels help us determine the label 
for junctions like this, rather than relying on perceptual 
evidence alone. 

Line labels are determined in the same fashion. 

3 Markov Random Fields 
Markov random fields (MRFs) are used to implement 
the above ideas. This formalism has found several 
uses in machine vision recently [Cross and Jain, 1983; 
Geman and Geman, 1984; Chou and Raman, 1987; 
Cooper, 1989]. Before proceeding to outline the details 
of the system, we present a brief introduction to MRFs, 
as used here. 

Let S be a set of sites connected through an undi­
rected graph, called the neighborhood graph, and let 

be a set of random variables indexed 
by S. Adjacent vertices in the graph correspond to neigh­
boring MRF elements. We assume, without loss of gen­
erality, that there exists a state space (or label space) L 
common to all the variables, such that the value of 
X, is in L. The term denotes an assignment of some 
value from L to each element of X, and is referred to as 
a configuration. 

X is a Markov random field if and only if the proba-
bility distribution is a Gibbs distribution 

Figure 3: System Architecture 

where T is the temperature, U is an energy term, and 
Z is a normalizing constant. U is obtained by summing 
over applicable clique potentials; it is through assigning 
potentials to cliques1 in the neighborhood graph of the 
MRF that one specifies constraints governing local label 
configurations. Each time a clique matches a subgraph 
of the neighborhood graph, its clique potential is added 
to the sum U. 

In the work presented here, we wish to take into ac­
count not only the prior probabilities of particular con­
figurations, but also external evidence. The external ev­
idence for a particular label ws at a site s after an obser-
vation Os is given by the likelihood We make 
the assumption that these likelihoods are conditionally 
independent. This allows us to derive the following for­
mula for the posterior Gibbs energy after an observation 
O: 

(2) 

where the Vc's are the clique potentials. 
[Chou and Raman, 1987] present a deterministic 

method, the "Highest Confidence First" (HCF) algo-
rithm, for constructing a configuration with a local min-
imal a posteriori energy measure, giving an estimate to 
the configuration with maximal a posteriori probability 

. The basic intuition behind the algorithm is that 
initially, all nodes take the null label, and after that, the 
first sites to be labeled should be those for which the evi­
dence is most decisive in favor of a particular label. HCF 
tends to provide fast convergence, requiring an average 
of around one update per node. This is the algorithm 
used in the work presented here. 

4 Architecture 
The architecture of the line and junction labeling system 
is presented in Figure 3. It consists of three stages: line 
and junction detection, extraction of lines and junctions 
from the image, and line and junction labeling. The final 
stage, highlighted with a dotted outline in the figure, is 
the coupled system that this paper focuses on. 

4.1 Detect ion and Ext rac t ion of Lines and 
Junctions 

The detection and extraction mechanisms are covered 
in detail in [Regier, 1990]. Because of considerations of 

(1) 1 Recall that a clique is a completely connected subgraph. 
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Figure 4: Line Roles for Different Junction Types 

space, only a brief overview of their operation is pre-
sented here. 

4.1.1 D e t e c t i o n o f L ines a n d J u n c t i o n s 
The line and junct ion detection mechanism accepts 

a greyscale image of trihedral objects on a dark back­
ground, and produces an array of labels, such that each 
pixel has been labeled as belonging to either the fore-
ground, the background, a line of one of 12 orientations, 
or a junct ion. This stage is implemented as an MRF. 

4.1.2 E x t r a c t i o n o f L ines a n d J u n c t i o n s 
The line and junct ion extraction mechanism is respon­

sible for translating the output of the first stage into a 
format suitable for the final one. It accepts as input the 
pixel-based array of labels computed by the detection 
mechanism, and produces a neighborhood graph for the 
line and junct ion labeling MRF, in which nodes wil l rep­
resent individual junctions and lines, rather than pixels. 
It also outputs likelihoods for the various labels of the 
final MRF. This is done by searching through the pixel-
based output of the first stage, looking for individual 
junctions and lines. It must then 

• Create a junct ion node for each junct ion found. 

• Create a line node for each line found. 

• Set up the neighborhood graph so that each junct ion 
node is connected to the line nodes that correspond 
to lines touching that junct ion, and so that each line 
node is connected to the two junct ion nodes corre­
sponding to the junctions which that line touches. 

• Produce likelihoods for the various node and junc­
t ion labels in the final MRF. 

4.1.3 L i n e a n d J u n c t i o n Ro les 
Figure 4 illustrates the roles that lines may play rel­

ative to junctions. There are three possible roles, ro, 
r1, and r2, which are assigned as shown in the figure. 
This assignment is easily done by measuring the angles 
between adjacent lines at a junct ion, as follows: 

ro is that line for which the clockwise arc dis­
tance to the next line is greatest, r1 is that next 
line, and r2 is the next line after that. If there 
are only two lines meeting at the junct ion, r2 
is nul l . 

These roles serve to let us differentiate one line from 
another at a junct ion. This wi l l be crucial when design­
ing cliques for the MRF itself. Note that we do not assign 
junct ion labels to junctions at this point; that is done by 
the M R F . The idea behind this is to give us enough in-
formation to solve the labeling problem without rigidly 
classifying a given junction prematurely. 

Figure 5: Computing Junction Likelihoods 

There are also roles relative to lines. The extraction 
mechanism assigns a role to each of the two junctions 
that a given line connects: these are jo and ji. There 
is no particular significance to the numbering here; it 
is important simply to keep the two distinct. This, to-
gether with the other connectivity information described 
above, is enough to allow us to build the neighborhood 
graph for the MRF, which wi l l be presented below. 

4.1.4 E x t e r n a l Ev i dence 
There is one last thing the extraction mechanism must 

do: determine the evidence for each of the possible junc-
tion and node labels for each node in the M R F being 
bui l t . The evidence is currently based on relatively ad 
hoc personal judgments of what would be appropriate 
likelihoods, given a particular feature of the image. The 
values given here have consistently yielded good results. 

The label set for junctions is 

(3) 

In the determination of likelihoods for these labels, we 
examine two cases, depending on the number of lines at 
a given junct ion: 

T w o l ines : In this case, the junct ion has to be an " L " , 
so we set  

T h r e e l i nes : In this case, we let be the largest 
clockwise arc distance from any of the three lines to the 
next, and compute the likelihoods for each of the three-
line labels as a function of as shown in Figure 5. We 
also set P(Os\L) = 0.01. 

The label set for lines is 

(4) 

i.e. lines can be labeled as either convex, concave, or 
occluding. 

N o t e : It is important to point out that this line label 
set is not identical to the original Huffman/Clowes for­
mulat ion. In particular, in the case of occluding edges, 
the original formulation marked which side of the edge 
the foreground of the object was on; this label set does 
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not capture that distinction. Thus, we have a collapsed 
label set, and the solutions found are underspecified in 
the sense that they do not indicate what is being oc­
cluded by what. The decision was made to use this label 
set since it simplified the graph structure of the final 
MRF somewhat. Current work is directed at updating 
this system so as to capture the missing distinction. 

Given this, it is straightforward to compute reason­
able likelihood estimates for the line labels. For a given 
line, we let be the fraction of the length of the line 
which borders the background; this is computed during 
the line-tracing process described above. Then 

This reflects the fact that if the edge is either convex 
or concave, we know it wi l l not border the background, 
while if it is an occluding edge, it may or may not. 

4.2 L i n e a n d J u n c t i o n L a b e l i n g 

As there are separate label sets for lines and junctions 
in the line and junct ion labeling M R F , this is in fact 
a coupled MRF . We consider first the structure of the 
neighborhood graph2 for this MRF, and then the cliques 
used. 

4.2.1 T h e N e i g h b o r h o o d G r a p h 
Figure 6 should serve to give a feel for the interplay 

between junct ion nodes and line nodes in this coupled 
system. Figure 6(a) shows a portion of some trihedral 
object, wi th two junctions and four edges shown. 

Figure 6(b) indicates which line nodes are neighbors 
of the two junct ion nodes, e and /. As described above, 
the structure of a junct ion node's neighborhood reflects 
the structure of the junct ion in the original image, in 
that the roles (r0 , r1,r2) are filled appropriately. For 
example, since the clockwise arc distance from B to A 
in (a) is greater than that from A to B, junct ion e's r0 
neighbor is B. 

Figure 6(c) indicates which nodes are neighbors of line 
node A. Recall that junctions are assigned roles relative 
to lines, as well; junct ion e fills role jo relative to line A 
while junct ion / fills role j1. 

Note that line nodes also have, as immediate neigh­
bors, the neighbors of neighboring junct ion nodes. Thus, 
the graph constructed by the extraction process also 
causes line node A to have, as neighbors, each of the line 
nodes which play roles relative to A's junct ion neighbors. 
The neighbor filling the j0 r0 role for A is that line which 
fills the r0 role for A's jo neighbor. This is line node B. 

Under this scheme, one would expect A's jor1 neighbor 
to be A itself, since the r1 neighbor of A's jo neighbor 
(e) is A. Instead, the fact that a particular role of A is 
filled by A itself is encoded by having the corresponding 
neighbor of A be a special node permanently labeled 
"Self". I.e. the "Self" node denotes the fact that a 
node's neighbor is meant to be the node itself. This is 

2Recall that this is the graph over which the MRF is de­
fined. "Neighbors" are adjacent nodes in this graph. 
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Figure 7: Junction Catalog (adapted from Huffman) 

done for reasons that will be made clear when discussing 
the cliques over this graph. 

Since each line node has two junction neighbors, and 
since each of these junction neighbors has the original 
line node as a neighbor, the "Self" node is pointed to 
twice by each line node in the system. 

4.2.2 Cliques Used in Line Label ing 
Figure 7 presents the junction catalog which the 

cliques of this M R F embody. It has been adapted from 
the original, as we are currently not capturing the direc­
tionality of occluding edges. 

Figure 8 presents three sample cliques from the set 
used here. The node being currently examined is marked 
by the symbol "?" in each of these. As is usual in the 
MRF formalism, we try to match each clique against 
subgraphs of the neighborhood graph. 

Figure 8(a) expresses the knowledge that if the current 
line is in role r2 relative to a junction which has been 
labeled "Arrow", and if roles r1 and ro of that junction 
are lines which have been labeled " + " , then it is favored3 

that this line node take on the label "-". 
Note how the "Self" node is used. We can check to see 

if the r2 neighbor of the current node's jo neighbor is the 
current node itself, simply by checking to see if the label 
on the jo r2 neighbor is "Self . It is crucial to be able 
to do this, since we need to be sure that the line node 
we are currently examining is in fact the middle line in 
an arrow junction. It is, if the jo neighbor is labeled 
"Arrow", and the jor2 neighbor is labeled "Self". 

Referring back to Figure 7, and focusing on the junc­
tion highlighted by a dashed outline, we find that the 

3Recall equations 1 and 2. In general, a low value for a 
clique potential indicates that the corresponding clique is a 
relatively acceptable (probable) configuration, while higher 
values indicate less likely configurations. 

Figure 8: Cliques for Line Labeling 

clique corresponds to the assertion that the middle 
branch of the arrow should be labeled "-" if the junc­
tion has been labeled as an arrow, and if the other two 
branches of the junction have been labeled " + " . Since 
this clique covers only junctions which are in relation 
jo to the line in question, we require a similar clique to 
take care of the corresponding case when the junction 
fills role j1. 

While considerations of space preclude the inclusion 
here of a complete listing of the cliques used by the sys­
tem, most are of the type shown in (a), and encode very 
specific pieces of knowledge from the catalog, regarding 
what line labels are acceptable in what configurations. 

Figure 8(b) encodes the knowledge that if all three 
lines touching a junction are " + " , it is appropriate to 
favor labeling the junction "Y". Conversely, (c) encodes 
the knowledge that if the line filling the role r0 for some 
junction is labeled something other than "—►", the junc­
tion should probably not be labeled "T". 

It is the inclusion in the system of cliques of this latter 
sort, governing the appropriateness of particular junc­
tion labels, that makes this work something more than 
just an M R F implementation of a standard line-labeling 
algorithm. Through these cliques, the system is able to 
perform junction labeling which is not just a direct re­
flection of the evidence, so that ambiguous or misleading 
evidence can be overcome, resulting in a globally consis­
tent solution. 
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Figure 9: Example Results 

(a ) ( b ) 

Figure 10: Overriding Misleading Evidence 

5 R e s u l t s 

Figure 9 presents correct labelings produced by the 
system for a pair of trihedral objects.4 

In both cases, the number of node updates required 
was equal to one per node. Recall that the HCF algo-
r i thm first updates those nodes which have strong evi­
dence in favor of a particular label. Thus, " L " junctions 
and occluding edges tend to be marked first, as there is 
always strong evidence for each of them.5 These deci­
sions then influence the other choices, eventually result­
ing in a complete labeling. 

More interestingly, Figure 10 presents a situation in 
which misleading evidence (the apparent " T " junct ion 
in (a)) is outweighed by constraints placed on the junc­
tion label by the adjacent line labels. Thus, the solu­
tion arrived at in (b) is one in which what looked like a 
" T " junct ion has been labeled as a "Y " junct ion.6 This 
extreme case indicates the system's abil i ty to overcome 
the problem of perceptual similari ty of different junct ion 
types, since in this example, a junct ion which had evi­
dence identical to that for a " T " was labeled as a T 
since that was the node label which resulted in an overall 
labeling wi th maximum a posteriori probability. 

As one might expect, the " Y " junct ion is the last to be 
labeled, as it is the identity of the three convex lines that 
touch it that force it to take that label (recall Figure 8(b) 
and (c)). This is in contrast to the first figure in Figure 9, 

4Input to the coupled MRF was constructed by hand for 
the second of the two objects shown, on the basis of what 
the extraction mechanism would have produced for such an 
object. 

5The presence of only two lines at a junction is strong 
evidence for an L, and the presence of a stretch of background 
bordering an edge is strong evidence for an occluding edge 
(though an occluding edge need not border the background). 

8Input to the MRF was constructed by hand for this case 
as well. 

in which the " Y " had strong evidence, and was labeled 
relatively early. 

6 C o n c l u s i o n s 

The problem of perceptual simi lar i ty of different junct ion 
types, in producing a line labeling from a real image, is 
addressed through a system which performs both line 
labeling and junct ion labeling, in a coupled probabilistic 
system. Lines and junctions are first detected in the 
image, and then extracted and used to bui ld a graph for 
a coupled MRF. This M R F then produces the labeling. 

Extensions to this work are currently under consider­
ation. Among the extensions being looked into are (a) 
marking occluding edges for directionality, which wi l l 
require some minor modifications of the neighborhood 
graph structure for the M R F , and (b) using other junc­
t ion catalogs, covering more than simply trihedral ob­
jects. In particular, the junct ion catalog of [Malik, 1985] 
has features that seem to require some of the abilities 
of this system, as we have seen. This would thus be an 
appropriate direction for extension. 

R e f e r e n c e s 

[Chou and Raman, 1987] Paul Chou and Rajeev Ra­
man, "On Relaxation Algori thms Based on Markov 
Random Fields," Technical Report 212, Computer 
Science Department, University of Rochester, 1987. 

[Clowes, 1971] M.B. Clowes, "On Seeing Things," Arti­
ficial Intelligence, 2:79-116, 1971. 

[Cooper, 1989] Paul Cooper, "Parallel Object Recog­
nit ion from Structure," Technical Report 301, PhD. 
thesis, Department of Computer Science, University 
of Rochester, July 1989. 

[Cross and Jain, 1983] G. R. Cross and A. K. Jain, 
"Markov Random Field Texture Models," IEEE 
PA MI, 5( l ) :25-39, January 1983. 

[Geman and Geman, 1984] S. Geman and D. Geman, 
"Stochastic Relaxation, Gibbs Distributions, and the 
Bayesian Restoration of Images," IEEE PAMI, 
6(6):721-741, November 1984. 

[Huffman, 1971] D, A, Huffman, "Impossible Objects 
as Nonsense Sentences," Machine Intelligence, 6:295-
323,1971. 

[Malik, 1985] Jitendra Mal ik, "Interpreting Line Draw­
ings of Curved Objects," Technical Report 1099, PhD. 
thesis, Department of Computer Science, Stanford 
University, December 1985. 

[Regier, 1990] Terry Regier, "Line Labeling Using 
Markov Random Fields," Technical report, Inter­
national Computer Science Inst i tute, Berkeley, CA, 
1990, (in preparation). 

[Waltz, 1975] D. Waltz, "Understanding Line Drawings 
of Scenes wi th Shadows," In The Psychology of Com­
puter Vision. McGraw-Hi l l , 1975, edited by P. H. Win ­
ston. 

1310 Vision 


