
P H I — A Logic-Based Too l
for In te l l igent He lp Systems *

M. B a u e r and S . B i u n d o and D. D e n g l e r and J . K o e h l e r and G. P a u l
German Research ('enter for Art i f ic ial Intelligence (D F K I)

Stuhlsatzenhausweg 3, 66123 Saarbriicken
e-mail: {lastname}@dfki.uni-sb.de

A b s t r a c t

We introduce a logic-based system which i m ­
proves the performance of intel l igent help sys-
tems by supp ly ing them w i t h plan genera­
t ion and p lan recognit ion components. Bo th
components work in close mutua l cooperat ion
There are two modes of cross-talk between
them, one where plan recognit ion is done on the
basis of abstract plans provided by the planner
and the other where op t ima l plans are gener­
ated based on recognit ion results The exam
pies which are presented are taken f rom an op­
erat ing system doma in , namely f rom the UNIX
mai l domain

1 I n t r o d u c t i o n

Intel l igent help systems a im at prov id ing advanced ac­
t ive help to the users of complex software systems (cf.
[Breuker, 1990; Thies and Berger, 1992; Norv ig et al.,
1993]), The performance of these help systems can In­
considerably improved if they are supplied w i th plan
recognition and plan generation capabi l i t ies Observing
a user and recognizing his goals enables the system to
help by tak ing in to account the current state of the sys­
tem as well as the users level of education and current
behavior Moreover, if a p lanning capabi l i ty is available
user-specific support can be given by proposing appro­
pr iate plans which exact ly is what the PHI system aims
to achieve1

P H I (cf. the figure below) is a tool for intel l igent help
systems. It provides both a plan recognizer and a plan­
ning component and one of its ma in characteristics con­
sists in the close mutua l cooperat ion between the two
components

There are several cross-talk modes. The first one is
devoted to real izing plan recognit ion on the basis of ab­
stract plans produced by the planner Abstract plans
are those which represent a variety of 'concrete" ob­
servable action sequences by a d m i t t i n g several degrees of
freedom like variables (abstract ing f rom the objects m
volved), abstract commands (abstract ing f rom the names

*This work w;ts supported by the German Ministry for Re­
search and Technology (BMFT) under contract I T W 9000 8
as part of the PHI project.

of actions which have the same effects), or temporal ab­
straction (abstract ing f r om the po in t in t ime at which
an act ion occurs).

The generation of plans is based on standard assump­
tions concerning goals tha t typ ica l ly occur or are specific
to a certain user. Abst rac t plans are generated f rom
these formal plan specif ications In doing so, the plan­
ner not only performs p lann ing f rom first principles but
is able to recuse already exist ing plans which are stored
in a l ibrary (p lann ing f rom second pr inciples). The
plans provided serve as plan hypotheses in the recog­
n i t ion process. Tak ing abstract plans instead of con­
crete ones keeps the hypothesis space of manageable size
The plan hypotheses are passed to the recognit ion com­
ponent, where they are provided w i t h numerical values
which reflect the probabi l i t ies of their being confirmed
by the subsequent observations. These a pr ior i probabi l ­
ities mi r ro r a specific users behavior, and are taken f rom
the user model . Having observed the user's actions step
by step the plan recognizer consequently tries to conf irm
the plan hypotheses by prov ing tha t the act ion sequence
observed up to now is an admissible " instance". Hy­
potheses which are not conf i rmed are rejected and w i t h
tha t the probab i l i t y d i s t r ibu t ion of the hypothesis space
changes dynamica l ly .

In the first cross-talk mode the plan recognizer is able
to determine the most, l ikely plan a user fol lows by car­
ry ing out appropr iate ' ins tant ia t ions ' 1 on val id plan hy­
potheses Thus, services like semantic plan completion
can be offered at any t ime dur ing the observation pro­
cess.

The second cross-talk mode is devoted to prov id ing the
user w i t h optimal plans whenever subop t ima l behavior
has been recognized or aid has exp l ic i t l y been sought.

The system is completely logic-based. It requires a
proper ax iomat iza t ion of the basic commands of the ap­
p l icat ion system and certain domain constraints. The
logic L L P which we have developed for tha t purpose
combines features of bo th t rad i t i ona l p rog ramming and
tempora l logics The plan generat ion and recognit ion
components are special purpose inference procedures.
Plan generation is done deductively using a sequent cal­
culus for LLP , whereas plan recognit ion fol lows an ab-
ductive pr inc ip le.

The appl icat ion doma in , f rom which we present exam­
ples, is a subset of the operat ing system UNIX, namely its

460 Intelligent Tutoring Systems

mai l system, where commands l ike type, delete, or save
manipu la te objects l ike messages or mailboxes

The paper is organized as fol lows: After a short in t ro­
duct ion to the fo rma l f ramework in section 2 we describe
the plan generation and recogni t ion components in sec­
tions 3 and 4, respectively We demonstrate by means
of an example how the system works in the first cross­
talk mode. F ina l ly , we conclude w i t h some remarks in
section 5.

2 The Formal Framework
Plan generation and plan recognit ion are carried out on
a common logical basis. The logical language f o r plan-
rung (L L P) [B iundo and Dengler, 1993], which we have
developed for th is purpose, combines features of Choppy
Logic [Rosner and Pnuel i , 1986] w i th the Temporal Logic
fo r Programs [Kroger, 1987] Th is entails the considera-
t ion of plans as programs as has also been proposed by
other authors (cf. [Green, 1969], [B ibe l , 1986], [Manna
and Wald inger , 1987]). L L P is an interval-based modal
temporal logic. I t provides the moda l operators (next) ,

(sometimes), (always), and the b inary moda l opera-
tor ; (chop), which expresses the sequential composi t ion
of formulas. Besides these operators control structures
(e.g., condi t ionals) are also available, as in p rog ramming
logics. Basic actions, which in our example domain are
the elementary ma i l commands, are ax iomat ized like as-
signment statements in p rog ramming logics The state
changes which they per form are reflected in changing
the values of certain variables. The type command, for
example, is represented by the fo l lowing ax iom schema:

Bauer et al. 461

is obtained as a result In a plan recognition example
(cf. section 4) this plan can then serve as one of the plan
hypotheses.

3 Plan Generat ion

The planning system (cf. [Biundo et al., 1992]) works by
using techniques of planning from both first and second
principles. Planning from first principles begins with a
plan specification. The plan is generated on the basis
of the domain knowledge provided. Planning from sec­
ond principles adds the ability to incorporate previously
generated plans and the problem solving knowledge ob-
tained thereby. In the first cross-talk mode, abstract
plans are generated in order to provide the plan recog­
nizer with plan hypotheses. To generate these hypothe­
ses, the planner works from second principles by reusing
formerly generated plans

3.1 P l a n n i n g f r o m F i rs t Pr inc ip les
By using a sequent calculus for LLP (cf. [Biundo and
Dengler, 1993]) the plan generator tries to find a con­
structive proof for the plan specification formula so that
an instantiation for the plan metavariable can be ob­
tained. We thus have a plan the execution of which is
sufficient to reach the goals specified, i.e., a plan which
meets the specification Following the paradigm of tac­
tical theorem proving (cf [Constable, 1986], [lleisel et
al., 1990], [Paulson, 1990]) the proof is guided by special
planning tactics written in a metalogical tactic language.

As for plan specification (1), the proof is carried out by
dividing the specification formula into subformulas, i.e.,
those representing single subgoals which the plan has
to reach We can simultaneously introduce a structure
into the plan metavariable Plan, which states that. Plan
should consist of at least two suhplans:

Let us now consider the generation of a plan for P2
The corresponding subgoal reads

Usually subgoals of tins type are proven by using non-
logical axioms which describe basic actions. Thereby,
the plan metavariable is instantiated by a basic plan for­
mula The instance of the type axiom below is selected
because it can reach the desired goal of setting

The preconditions of this action however must hold in
order to make the axiom applicable. One of these precon­
ditions is missing from the subgoal above. Following a
deductive version of the means-ends analysis (cf [Fikes

and Nilsson, 197l], [Nilsson, 1980]) we therefore intro­
duce an additional subplan which produces the missing
precondition. Thus, P2 becomes the composition of a
one-armed conditional and a subplan P4, respectively:

The new subgoal obtained is:

To properly instantiate P3 an instance of the undelete
action axiom can be used; this tells us that the execution
of undelete(x, M) makes true in the next
state, should it not have held before. In a similar way P4
can now be instantiated by using the type action axiom.

The overall plan which results after the proof tree has
been completed and all plan metavariables have been
instantiated, is the plan given by formula (2) above. It
clearly meets the specification in (1).

In addition to subgoals whose proof leads to instantia­
tions of the plan metavariables, as in the above examples,
so-called plan assertions must also be proven. These rep­
resent certain properties which are required by the plan
to be generated. A typical example in our case is the
fact that the formula of (M) = T—which acts as a pre­
condition to the whole plan does survive the execution
of subplan P1. This fact is proven by regression where
we generate the weakest preconditions of of(M) = T
w.r.t. all basic actions occurring in P1. In our system,
planning from first principles is, like several other ap­
proaches to deductive planning (cf. [Green, 1969], [Bibel,
1986], [Manna and Waldinger, 1987]) closely related to
work done on deductive program synthesis where pro­
grams are generated by proofs (cf. [Manna and Waldin­
ger, 1980],[Heisel et al, 1991], [Biundo, 1992]).

3.2 P l a n n i n g f r o m Second Pr inc ip les

The ability of a planner to modify a plan is considered as
a valuable tool for improving the efficiency of planning
by avoiding the repetition of the same planning effort
because instead of generating a plan from scratch, plan
reuse tries to exploit knowledge stored in previously gen­
erated plans.

The reuser first takes the current specification and
searches in a plan library for a plan which can be reused
as its solution Since we concentrate on plan modifica­
tion in this paper, we suppose that the search in the
plan library terminates successfully with a plan specifi­
cation and describe how the reuser verifies whether the
plan belonging to it provides a solution to the current
planning problem. The verification is carried out by a
formal proof in which the prover verifies that at least the
preconditions the plan requires hold in the current sit­
uation and that at most the goals achieved by the plan
are required as current goals.

If the proof succeeds, the plan provides a provably
sound solution to the current planning problem; if it fails,
the plan has to be modified.

The modification tactics analyze the failed proof and
modify the plan using information from the generation
process that lead to this plan.

462 Intelligent Tutoring Systems

Let us assume, for example, that specification (3) is
given to the planner in the first cross-talk mode. Plan­
ning from second principle starts and tries to reuse plan

Comparing it with specification (1) it is obvious that
more preconditions are given, but even more goals are
required in (3). In this case, the prover reports a fail­
ure because more goals are required in specification (3)
than are achieved by the plan. The modification tactic
identifies the missing subgoal for which a
subplan has to be generated from first principles Fur­
thermore, it has to inspect the temporal structure of the
plan to be reused in order to determine the point in time
at which this subplan has to be inserted. For this pur­
pose, explicit representations of the temporal models of
both specifications are constructed and compared during
the proof.

A plan is a solution if it achieves at least all the goals
that are required in the current specification, i.e., if the
plan achieves some additional subgoals it is still con­
sidered to be a solution In some applications however,
plans have to be minimal in the sense of achieving exactly
the goals required. The plan reuse component is able to
perform the necessary optimizations in these cases

In the example, the reuser detects that the case analy­
sis in the reused plan is superfluous because the condition
on which it depends is explicitly given in the specifica­
tion. Therefore, the conditional can be deleted from the
plan The result of the modification process is a plan
skeleton for a sequential plan

containing the reusable subplan identified during the
proof and a meta variable Plan1 as a "placeholder'' for
the completing subplan which has to be generated in
order to reach the additional goal.

The generator uses the plan skeleton as a partial in­
stantiation of the plan metavariable Plan in specifica­
tion (3). This simplifies the constructive proof of the
specification: The partial proof tree for which an in­
stantiation of the metavariable is already known can be
easily expanded without further search effort. To re­
place the metavariable Plan1 occurring in the skeleton,
the generator has to plan from first principles leading
to the instantiation The interleaving
of proof tree reconstruction and generation ensures that
the modified plan provides a provably sound solution to
the current plan specification that can be sent to the
plan recognizer as a plan hypothesis.

The approach we follow investigates plan reuse in the
general context of deductive planning and has been de­
scribed in more detail in [Biundo et a/., 1992; Koehler,
1992]. Other current approaches investigate plan reuse
and modification in the framework of classical STRIPS-
like planners, e.g., the hierarchical planner and modifi­
cation system PRIAR [Kambhampati and Hendler, 1992],
or in the framework of case-based reasoning, e.g., the sys­
tems SPA [Hanks and Weld, 1992] or CHEF [Hammond,
1990]. The experiments reported by some of the authors
give evidence that plan reuse might indeed be more effi­
cient than planning from scratch. How far these results

generalize is studied in a complexity-theoretic analysis
of plan modification vs. plan generation by Nebel and
Koehler (cf. these proceedings). In contrast to practical
experiences it turned out that plan modification is not
uniformly as easy as planning from scratch.

3.3 Genera t i ng O p t i m a l Plans

The second cross-talk mode is concerned with the gener­
ation of optimal and user-satisfactory plans. The gener­
ator receives a plan specification which either belongs to
a plan recognized as suboptimal by the plan recognition
component or is derived from a request for passive help.

Planning in this mode is based on a dynamically
changing adjustment of the generation process triggered
by plan quality criteria derived from the user model.
The generator considers, e.g., the user's preferences, his
knowledge about the domain, and his typical behavior in
order to generate satisfactory plans for him. It produces
a user-adapted concrete plan that meets the specifica­
tion and is as short as possible according to the number
of basic actions used. Since planning is done deductively
the adjustment essentially places a restriction on the sets
of nonlogical axioms and rules.

If, on the basis of the current plan quality criteria, no
plan can be found, then the criteria must be minimally
changed in order to generate a plan. The necessary devi­
ations are recorded and can be used by a tutorial system
to teach the user accordingly. In the case of a recognized
suboptimal plan, the generated optimal plan is, e.g., the
basis for an active user support of the help system. Gen­
eration of optimal plans is only carried out from first
principles because the reuse of concrete plans requires
consideration of dynamically changing plan quality cri­
teria which can contradict the aim of making planning
more efficient

4 Plan Recognit ion
The recognition of plans in this logic-based context is
realized by a generalized abductive process with a proba­
bilistic valuation of hypotheses. Starting from plan hy­
potheses synthesized by the plan generation component
and observations of user actions, an attempt is made to
identify a hypothesis describing the user's pursued plan.
The use of probabilistic reasoning allows us to determine
one "best" hypothesis to offer user-specific help, e.g., by
doing semantic plan completion.

4.1 The A b d u c t i v e Recognizer

Plan recognition, which is the identification of a user's
behavior given an observed goal or action, can be viewed
as an inherently abductive problem, if a plan hypothesis
P is interpreted as an assumption explaining the ob­
served action where describes
the domain knowledge (e.g., [Appelt and Pollack 1990],
[Shanahan, 1989], [Helft and Konolige, 1990],[Waern,
1992]) P is required to be a ground instance of an ele-
ment of a set of predefined candidate explanations called
abducibles.1

1 For an introduction to abduction see, for example,
[Peirce, 1931 1958] or [Fann, 1970]. An overview can be found

Bauer et al. 463

[Bauer, 1993] M Bauer Plan recognit ion under uncer­
ta in ty Research Repor t , D F K I , 1993 to appear.

Ben-Ar i et a /., 1982] M Ben-Ar i , J Y Hal pern, and
A Pnueli Determin is t ic proposi t ional dynamic logic:
f in i te models, complex i ty , and completeness Comput.
System Set., 25:402 417, 1982.

[B ibe l , 1986] W Bi bel A deductive solut ion for plan
generat ion. New Generation Comp., 4:115-132, 1986.

[B iundo and Dengler, 1993] S. B iundo and D. Dengler.
The logical language for p lanning L L P . Research Re­
por t , D F K I , 1993. to appear.

[B iundo et a i , 1992] S B iundo, D. Dengler, and
J. Koehler. Deduct ive p lann ing and plan reuse in
a command language envi ronment In Proc. of 10th
E C A I pages 628-632, 1992

[B iundo, 1992] S. B iundo Automatische Synthe.se
rekursiver Programme als Beweisverfahren Springer
I F B 302, Ber l in , Heidelberg, New York , 1992.

[Breuker, 1990] J Breuker. E U R O H E L P D t v d o p i n g
Inte l l igent Help Systems. EC , Kopenhagen, 1990.

[Constable, 1986] R.L Constable Implement inq Math-
ematics wi th tht N u p r l Proof Development System
Prent ice-Hal l , 1986

[Fann, 1970] K . T Farm. Peirce's Theory of Abduct ion
Mar t inus Ni jhoff , The Hague, 1970

[Fikes and Nilsson, 1971] RE Fikcs and N.J Nilsson.
Str ips: A new approach to the appl icat ion of theorem
prov ing to prob lem solv ing. A I 2:189-208, 1971

[Green, 1969] C .Green App l i ca t ion of theorem proving
to prob lem solv ing. In Proc. of 2th J J C A I , pages 219-
239, 1969.

[Hammond , 1990] K. J. H a m m o n d . Exp la in ing and re­
pa i r ing plans tha t fa i l . A I , 45:173 228, 1990.

[Hanks and Weld , 1992] S. Hanks and D S Weld Sys­
temat ic adapta t ion for case-based p lanning. In Proc.
of 1st A IPS , pages 96 105, Washington, D C , 1992
Morgan Kau fmann

[Heisel et al, 1990] M. Heisel, W Reif, and W. Stephan.
Tact ica l theorem prov ing in program ver i f icat ion. In
Proc. of 10th C A D E Springer LNCS 449, 1990

[Heisel et «/., 1991] M. Heisel, W. Reif, and W Stephan.
Formal software development in the K I V system. In
Au tomat ing Software Design, R. McCar tney and M.R.
Lowry (eds.). A A A I Press, 1991.

[Helft and Konol ige, 1990] N Helft and K. Konol ige.
Plan recognit ion as abduct ion and relevance. Draf t
version, AI Center, SRI In te rna t iona l , Menlo Park,
1990

[Kakas tt al . , 1992] A C Kakas, HA K owalski , and
F. Ton i . Abduc t i ve logic p rog ramming Draft ver­
sion, Depar tment of Computer Science, Universi ty
of Cyprus , Nicosia, and Imper ia l College of Science,
Technology and Medicine, London, 1992.

[Kambhampa t i and Hendler, 1992] S K a m b h a m p a t i
and J. A. Hendler. A val idat ion-structure-based the­
ory of p lan modi f ica t ion and reuse. A I , 55:193 - 258,
1992

[Koehler, 1992] J Koehler Towards a logical t reatment
of plan reuse. In Proc. of 1st A IPS, pages 285-286,
Washington, D C , 1992. Morgan K a u f m a n n .

[Kroger, 1987] F. Kroger. Temporal Logic of Programs.
Springer, Heidelberg, 1987.

[Kruse tt a i , 1991] R. Kruse, E. Schwecke, and J. Hein-
sohn. Uncertainty and Vagueness tn Knowledge Based
Systems. Springer, 1991.

[Manna and Wald inger , 1980] Z M anna and R. Wald in ­
ger A deductive approach to program synthesis.
A C M Transactions on Programming Languages and
Systems, 2 :90-121, 1980.

[Manna and Waldinger, 1987] Z. Manna and R. Wa ld in ­
ger How to clear a block: Plan fo rma t ion in si tua­
t ional logic. Journa l of Automated Reasoning, 3:343-
377, 1987.

[Nilsson, 1980] N.J. Ni lsson. Pr inc ip les of A r t i f i c i a l I n ­
telligence. Springer, New York , 1980.

[Norv ig et a i , 1993] P. Norv ig , W. Wahlster, and
R Wi lensky. Inte l l igent Help Systems f o r U N I X -
Case Studies in A r t i f i c i a l Intel l igence. Springer, Hei­
delberg, 1993 to appear.

[Paul, 1993a] G. Paul . Approaches to abduct ive reason­
ing - an overview AI Review, 1993. to appear.

[Paul, 1993l>] G. Paul A generalized abduct ive pr in ­
ciple for a moda l tempora l logic. Research Report ,
D F K I , 1993 to appear

[Paulson, 1990] L. Paulson Isabelle: The next 700 the­
orem provers. In P. Od i f red i , edi tor , Logic and Corn-
puter Science. Academic Press, 1990.

[Peirce, 1931 1958] C.S. Peirce. Collected Papers of
Charles Sanders Peirce (eds. C. Hartshorne et a i) .
Harvard Univers i ty Press, 1931-1958.

[Pra t t , 1979] V. P ra t t Models of p rogram logics. In
Proc. of 20th Annua l I E E E Symposium on Founda-
tions of Computer Science, pages 115-122, 1979.

[Rosner and Pnuel i , 1986] R R.osner and A. Pnuel i . A
choppy logic In Symposium on Logic in Computer
Science, Cambr idge, Massachusetts, 1986.

[Shafer and Pearl , 1990] G. Shafer and J. Pearl , editors.
Readings in Uncertain Reasoning. Morgan Kau fmann
Publishers, Los A l tos , 1990.

[Shafer, 1976] G. Shafer. A Mathemat ica l Theory of Ev-
idence. Pr inceton Univers i ty Press, Pr inceton, 1976.

[Shan ah an, 1989] M. Shanahan. Predic t ion is deduct ion
but exp lanat ion is abduc t ion . In Proc. of 11th I J C A I ,
pages 1055-1060,1989.

[Tines and Berger, 1992] M A . Thies and F. Berger.
Plan-based graphical help in object-or iented user in ­
terfaces. In Proc. of the In te rna t i ona l Workshop on
Advanced Visual Interfaces', Rome, I ta ly , 1992.

[Waern, 1992] A. Waern. Reactive abduct ion . In Proc.
of 10th E C A I , pages 159-163, 1992.

[Wolper, 1985] P. Wolper . The tableau method for tem­
poral logic: an overview. Logique et Ana l . , 28:119—
136, 1985.

466 Intelligent Tutoring Systems

