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A b s t r a c t 

We introduce a logic-based system which i m ­
proves the performance of intel l igent help sys-
tems by supp ly ing them w i t h plan genera­
t ion and p lan recognit ion components. Bo th 
components work in close mutua l cooperat ion 
There are two modes of cross-talk between 
them, one where plan recognit ion is done on the 
basis of abstract plans provided by the planner 
and the other where op t ima l plans are gener­
ated based on recognit ion results The exam 
pies which are presented are taken f rom an op­
erat ing system doma in , namely f rom the UNIX 
mai l domain 

1 I n t r o d u c t i o n 

Intel l igent help systems a im at prov id ing advanced ac­
t ive help to the users of complex software systems (cf. 
[Breuker, 1990; Thies and Berger, 1992; Norv ig et al., 
1993]), The performance of these help systems can In­
considerably improved if they are supplied w i th plan 
recognition and plan generation capabi l i t ies Observing 
a user and recognizing his goals enables the system to 
help by tak ing in to account the current state of the sys­
tem as well as the users level of education and current 
behavior Moreover, if a p lanning capabi l i ty is available 
user-specific support can be given by proposing appro­
pr iate plans which exact ly is what the PHI system aims 
to achieve1 

P H I (cf. the figure below) is a tool for intel l igent help 
systems. It provides both a plan recognizer and a plan­
ning component and one of its ma in characteristics con­
sists in the close mutua l cooperat ion between the two 
components 

There are several cross-talk modes. The first one is 
devoted to real izing plan recognit ion on the basis of ab­
stract plans produced by the planner Abstract plans 
are those which represent a variety of 'concrete" ob­
servable action sequences by a d m i t t i n g several degrees of 
freedom like variables (abstract ing f rom the objects m 
volved), abstract commands (abstract ing f rom the names 
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of actions which have the same effects), or temporal ab­
straction (abstract ing f r om the po in t in t ime at which 
an act ion occurs). 

The generation of plans is based on standard assump­
tions concerning goals tha t typ ica l ly occur or are specific 
to a certain user. Abst rac t plans are generated f rom 
these formal plan specif ications In doing so, the plan­
ner not only performs p lann ing f rom first principles but 
is able to recuse already exist ing plans which are stored 
in a l ibrary (p lann ing f rom second pr inciples). The 
plans provided serve as plan hypotheses in the recog­
n i t ion process. Tak ing abstract plans instead of con­
crete ones keeps the hypothesis space of manageable size 
The plan hypotheses are passed to the recognit ion com­
ponent, where they are provided w i t h numerical values 
which reflect the probabi l i t ies of their being confirmed 
by the subsequent observations. These a pr ior i probabi l ­
ities mi r ro r a specific users behavior, and are taken f rom 
the user model . Having observed the user's actions step 
by step the plan recognizer consequently tries to conf irm 
the plan hypotheses by prov ing tha t the act ion sequence 
observed up to now is an admissible " instance". Hy­
potheses which are not conf i rmed are rejected and w i t h 
tha t the probab i l i t y d i s t r ibu t ion of the hypothesis space 
changes dynamica l ly . 

In the first cross-talk mode the plan recognizer is able 
to determine the most, l ikely plan a user fol lows by car­
ry ing out appropr iate ' ins tant ia t ions ' 1 on val id plan hy­
potheses Thus, services like semantic plan completion 
can be offered at any t ime dur ing the observation pro­
cess. 

The second cross-talk mode is devoted to prov id ing the 
user w i t h optimal plans whenever subop t ima l behavior 
has been recognized or aid has exp l ic i t l y been sought. 

The system is completely logic-based. It requires a 
proper ax iomat iza t ion of the basic commands of the ap­
p l icat ion system and certain domain constraints. The 
logic L L P which we have developed for tha t purpose 
combines features of bo th t rad i t i ona l p rog ramming and 
tempora l logics The plan generat ion and recognit ion 
components are special purpose inference procedures. 
Plan generation is done deductively using a sequent cal­
culus for LLP , whereas plan recognit ion fol lows an ab-
ductive pr inc ip le. 

The appl icat ion doma in , f rom which we present exam­
ples, is a subset of the operat ing system UNIX, namely its 
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mai l system, where commands l ike type, delete, or save 
manipu la te objects l ike messages or mailboxes 

The paper is organized as fol lows: After a short in t ro­
duct ion to the fo rma l f ramework in section 2 we describe 
the plan generation and recogni t ion components in sec­
tions 3 and 4, respectively We demonstrate by means 
of an example how the system works in the first cross­
talk mode. F ina l ly , we conclude w i t h some remarks in 
section 5. 

2 The Formal Framework 
Plan generation and plan recognit ion are carried out on 
a common logical basis. The logical language f o r plan-
rung ( L L P ) [B iundo and Dengler, 1993], which we have 
developed for th is purpose, combines features of Choppy 
Logic [Rosner and Pnuel i , 1986] w i th the Temporal Logic 
fo r Programs [Kroger, 1987] Th is entails the considera-
t ion of plans as programs as has also been proposed by 
other authors (cf. [Green, 1969], [B ibe l , 1986], [Manna 
and Wald inger , 1987]). L L P is an interval-based modal 
temporal logic. I t provides the moda l operators (next ) , 

(sometimes), (always), and the b inary moda l opera-
tor ; (chop), which expresses the sequential composi t ion 
of formulas. Besides these operators control structures 
(e.g., condi t ionals) are also available, as in p rog ramming 
logics. Basic actions, which in our example domain are 
the elementary ma i l commands, are ax iomat ized like as-
signment statements in p rog ramming logics The state 
changes which they per form are reflected in changing 
the values of certain variables. The type command, for 
example, is represented by the fo l lowing ax iom schema: 
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is obtained as a result In a plan recognition example 
(cf. section 4) this plan can then serve as one of the plan 
hypotheses. 

3 Plan Generat ion 

The planning system (cf. [Biundo et al., 1992]) works by 
using techniques of planning from both first and second 
principles. Planning from first principles begins with a 
plan specification. The plan is generated on the basis 
of the domain knowledge provided. Planning from sec­
ond principles adds the ability to incorporate previously 
generated plans and the problem solving knowledge ob-
tained thereby. In the first cross-talk mode, abstract 
plans are generated in order to provide the plan recog­
nizer with plan hypotheses. To generate these hypothe­
ses, the planner works from second principles by reusing 
formerly generated plans 

3.1 P l a n n i n g f r o m F i rs t Pr inc ip les 
By using a sequent calculus for LLP (cf. [Biundo and 
Dengler, 1993]) the plan generator tries to find a con­
structive proof for the plan specification formula so that 
an instantiation for the plan metavariable can be ob­
tained. We thus have a plan the execution of which is 
sufficient to reach the goals specified, i.e., a plan which 
meets the specification Following the paradigm of tac­
tical theorem proving (cf [Constable, 1986], [lleisel et 
al., 1990], [Paulson, 1990]) the proof is guided by special 
planning tactics written in a metalogical tactic language. 

As for plan specification (1), the proof is carried out by 
dividing the specification formula into subformulas, i.e., 
those representing single subgoals which the plan has 
to reach We can simultaneously introduce a structure 
into the plan metavariable Plan, which states that. Plan 
should consist of at least two suhplans: 

Let us now consider the generation of a plan for P2 
The corresponding subgoal reads 

Usually subgoals of tins type are proven by using non-
logical axioms which describe basic actions. Thereby, 
the plan metavariable is instantiated by a basic plan for­
mula The instance of the type axiom below is selected 
because it can reach the desired goal of setting 

The preconditions of this action however must hold in 
order to make the axiom applicable. One of these precon­
ditions is missing from the subgoal above. Following a 
deductive version of the means-ends analysis (cf [Fikes 

and Nilsson, 197l], [Nilsson, 1980]) we therefore intro­
duce an additional subplan which produces the missing 
precondition. Thus, P2 becomes the composition of a 
one-armed conditional and a subplan P4, respectively: 

The new subgoal obtained is: 

To properly instantiate P3 an instance of the undelete 
action axiom can be used; this tells us that the execution 
of undelete(x, M) makes true in the next 
state, should it not have held before. In a similar way P4 
can now be instantiated by using the type action axiom. 

The overall plan which results after the proof tree has 
been completed and all plan metavariables have been 
instantiated, is the plan given by formula (2) above. It 
clearly meets the specification in (1). 

In addition to subgoals whose proof leads to instantia­
tions of the plan metavariables, as in the above examples, 
so-called plan assertions must also be proven. These rep­
resent certain properties which are required by the plan 
to be generated. A typical example in our case is the 
fact that the formula of (M) = T—which acts as a pre­
condition to the whole plan does survive the execution 
of subplan P1. This fact is proven by regression where 
we generate the weakest preconditions of of(M) = T 
w.r.t. all basic actions occurring in P1. In our system, 
planning from first principles is, like several other ap­
proaches to deductive planning (cf. [Green, 1969], [Bibel, 
1986], [Manna and Waldinger, 1987]) closely related to 
work done on deductive program synthesis where pro­
grams are generated by proofs (cf. [Manna and Waldin­
ger, 1980],[Heisel et al, 1991], [Biundo, 1992]). 

3.2 P l a n n i n g f r o m Second Pr inc ip les 

The ability of a planner to modify a plan is considered as 
a valuable tool for improving the efficiency of planning 
by avoiding the repetition of the same planning effort 
because instead of generating a plan from scratch, plan 
reuse tries to exploit knowledge stored in previously gen­
erated plans. 

The reuser first takes the current specification and 
searches in a plan library for a plan which can be reused 
as its solution Since we concentrate on plan modifica­
tion in this paper, we suppose that the search in the 
plan library terminates successfully with a plan specifi­
cation and describe how the reuser verifies whether the 
plan belonging to it provides a solution to the current 
planning problem. The verification is carried out by a 
formal proof in which the prover verifies that at least the 
preconditions the plan requires hold in the current sit­
uation and that at most the goals achieved by the plan 
are required as current goals. 

If the proof succeeds, the plan provides a provably 
sound solution to the current planning problem; if it fails, 
the plan has to be modified. 

The modification tactics analyze the failed proof and 
modify the plan using information from the generation 
process that lead to this plan. 
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Let us assume, for example, that specification (3) is 
given to the planner in the first cross-talk mode. Plan­
ning from second principle starts and tries to reuse plan 

Comparing it with specification (1) it is obvious that 
more preconditions are given, but even more goals are 
required in (3). In this case, the prover reports a fail­
ure because more goals are required in specification (3) 
than are achieved by the plan. The modification tactic 
identifies the missing subgoal for which a 
subplan has to be generated from first principles Fur­
thermore, it has to inspect the temporal structure of the 
plan to be reused in order to determine the point in time 
at which this subplan has to be inserted. For this pur­
pose, explicit representations of the temporal models of 
both specifications are constructed and compared during 
the proof. 

A plan is a solution if it achieves at least all the goals 
that are required in the current specification, i.e., if the 
plan achieves some additional subgoals it is still con­
sidered to be a solution In some applications however, 
plans have to be minimal in the sense of achieving exactly 
the goals required. The plan reuse component is able to 
perform the necessary optimizations in these cases 

In the example, the reuser detects that the case analy­
sis in the reused plan is superfluous because the condition 
on which it depends is explicitly given in the specifica­
tion. Therefore, the conditional can be deleted from the 
plan The result of the modification process is a plan 
skeleton for a sequential plan 

containing the reusable subplan identified during the 
proof and a meta variable Plan1 as a "placeholder'' for 
the completing subplan which has to be generated in 
order to reach the additional goal. 

The generator uses the plan skeleton as a partial in­
stantiation of the plan metavariable Plan in specifica­
tion (3). This simplifies the constructive proof of the 
specification: The partial proof tree for which an in­
stantiation of the metavariable is already known can be 
easily expanded without further search effort. To re­
place the metavariable Plan1 occurring in the skeleton, 
the generator has to plan from first principles leading 
to the instantiation The interleaving 
of proof tree reconstruction and generation ensures that 
the modified plan provides a provably sound solution to 
the current plan specification that can be sent to the 
plan recognizer as a plan hypothesis. 

The approach we follow investigates plan reuse in the 
general context of deductive planning and has been de­
scribed in more detail in [Biundo et a/., 1992; Koehler, 
1992]. Other current approaches investigate plan reuse 
and modification in the framework of classical STRIPS-
like planners, e.g., the hierarchical planner and modifi­
cation system PRIAR [Kambhampati and Hendler, 1992], 
or in the framework of case-based reasoning, e.g., the sys­
tems SPA [Hanks and Weld, 1992] or CHEF [Hammond, 
1990]. The experiments reported by some of the authors 
give evidence that plan reuse might indeed be more effi­
cient than planning from scratch. How far these results 

generalize is studied in a complexity-theoretic analysis 
of plan modification vs. plan generation by Nebel and 
Koehler (cf. these proceedings). In contrast to practical 
experiences it turned out that plan modification is not 
uniformly as easy as planning from scratch. 

3.3 Genera t i ng O p t i m a l Plans 

The second cross-talk mode is concerned with the gener­
ation of optimal and user-satisfactory plans. The gener­
ator receives a plan specification which either belongs to 
a plan recognized as suboptimal by the plan recognition 
component or is derived from a request for passive help. 

Planning in this mode is based on a dynamically 
changing adjustment of the generation process triggered 
by plan quality criteria derived from the user model. 
The generator considers, e.g., the user's preferences, his 
knowledge about the domain, and his typical behavior in 
order to generate satisfactory plans for him. It produces 
a user-adapted concrete plan that meets the specifica­
tion and is as short as possible according to the number 
of basic actions used. Since planning is done deductively 
the adjustment essentially places a restriction on the sets 
of nonlogical axioms and rules. 

If, on the basis of the current plan quality criteria, no 
plan can be found, then the criteria must be minimally 
changed in order to generate a plan. The necessary devi­
ations are recorded and can be used by a tutorial system 
to teach the user accordingly. In the case of a recognized 
suboptimal plan, the generated optimal plan is, e.g., the 
basis for an active user support of the help system. Gen­
eration of optimal plans is only carried out from first 
principles because the reuse of concrete plans requires 
consideration of dynamically changing plan quality cri­
teria which can contradict the aim of making planning 
more efficient 

4 Plan Recognit ion 
The recognition of plans in this logic-based context is 
realized by a generalized abductive process with a proba­
bilistic valuation of hypotheses. Starting from plan hy­
potheses synthesized by the plan generation component 
and observations of user actions, an attempt is made to 
identify a hypothesis describing the user's pursued plan. 
The use of probabilistic reasoning allows us to determine 
one "best" hypothesis to offer user-specific help, e.g., by 
doing semantic plan completion. 

4.1 The A b d u c t i v e Recognizer 

Plan recognition, which is the identification of a user's 
behavior given an observed goal or action, can be viewed 
as an inherently abductive problem, if a plan hypothesis 
P is interpreted as an assumption explaining the ob­
served action where describes 
the domain knowledge (e.g., [Appelt and Pollack 1990], 
[Shanahan, 1989], [Helft and Konolige, 1990],[Waern, 
1992]) P is required to be a ground instance of an ele-
ment of a set of predefined candidate explanations called 
abducibles.1 

1 For an introduction to abduction see, for example, 
[Peirce, 1931 1958] or [Fann, 1970]. An overview can be found 
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