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Abstract

We introduce curbing, a new nonmonotonic technique
of commonsense reasoning that is based on model mi-
nimality but unlike circumscription treats disjunction
inclusively. A finitely axiomatized first-order theory
T is transformed to a formula Curb(T) whose set of
models is defined as the smallest collection of models
which contains all minimal models of T and which is
closed under formation of minimal upper bounds with
respect to inclusion. We first give an intuitive defini-
tion of Curb in third-order logic and then show how
Curb can be equivalently expressed in second-order
logic. We study the complexity of inferencing from a
curbed propositional theory and present a PSPACE
algorithm for this problem. Finally, we address diffe-
rent possibilities to approximate the curb of a theory.

1 Introduction

Circumscription [McCarthy, 1980] looks to many as one
of the most promising principles for formalizing com-
monsense reasoning. However, as recently pointed out
by Raymond Reiter [Reiter, 1992], it runs into problems
in connection with disjunctive information. The mini-
mality principle of circumscription often enforces the ex-
clusive interpretation of a disjunction a V 6 by adopting
the models in which either a or 6 is true but not both.
There are situations in which an inclusive interpretation
is desired and seems more natural. Consider the follo-
wing example due to Reiter. Suppose you throw a coin
into an area which is divided into a black and a white
field. Circumscription applied to

black-field(coin) 'V  white. ..field(coin)

excludes that the coin falls into both fields and tells you
that the coin is either in the white or in the black field.
This is certainly not satisfactory. An extension of this
example is even more impressive. Imagine a handful of
coins thrown onto a chessboard; circumscription tells us
that no coin touches both a black and a white field.
It is not clear whether any of the well-known variants
of circumscription (cf. [Etherington, 1988]) can suitably
handle inclusive disjunction of positive information.

*This is a short version not providing detailed proofs of
all results. Full proofs and more results will appear in an
extended report.
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In this paper we suggest an approach to tackle the
problem pointed out by Reiter. We present the curb me-
thod, which is a generalization of circumscription able
to handle inclusive disjunctions of positive information
properly. Our method relies on the new concept of mi-
nimal upper bound models. Intuitively, a minimal up-
per bound model corresponds to a minimal model for
the inclusive interpretation of disjuncts. Using this con-
cept, we develop the notion of a "good" model of a first-
order theory. Although the concept is more involved
than circumscription, we show that "good" models can
be captured like circumscriptive models in second-order
Iogic.1 Furthermore, inferencing from the good models
of a propositional sentence is feasible in quadratic space;
we show that for a reasonable approximation of the good
models this problem is no harder than inference from cir-
cumscriptive models.

The rest of this paper is organized as follows. Section 2
considers additional examples and introduces informally
the concept of good models. Section 3 provides a formal
definition and a logical description. Section 4 examines
aspects of computational complexity, and Section 5 ad-
dresses approximation issues. Section 6 reviews related
work and concludes the paper.

2 Good models

Let us consider two additional scenarios in which an in-
clusive interpretation of disjunction is desirable. Models
are represented by their positive atoms.

Example 1: Suppose there is a man in a room with a
painting, which he hangs on the wall if he has a hammer
and a nail. It is known that the man has a hammer or a
nail or both. This scenario is represented by the theory
T\ in Figure 1. The desired models are A, n, and hnp,
which are encircled. Circumscribing T\ by minimizing
all variables yields the two minimal models h and n (see
Figure 1). Since p is false in the minimal models, cir-
cumscription tells us that the man does not hang the
painting up. One might argue that the variable p should
not be minimized but fixed when applying circumscrip-
tion. However, starting with the model of Tiwhere h, n

' By using a second-order predicate constant. However, it
is quantification which counts for the order of a formula [van
Benthem and Doets, 1983].



{hvn,
(A & n} -+ p}

Figure 1: The hammer-nail-painting example

and p are all true and then circumscribing with respect
to h and p while keeping p true, we obtain the models
hp and rip, which are not very intuitive. If we allow p
to vary in minimizing h and n, the outcome is the same
as for minimizing all variables. On the other hand, the
model hnp seems plausible. This model corresponds to
the inclusive interpretation of the disjunction hV n. O

Example 2: Suppose you have invited some friends to
a party. You know for certain that one of Alice, Bob,
and Chris will come, but you don't know whether Doug
will come. You know in addition the following habits
of your friends. If Alice and Bob go to a party, then
Chris or Doug will also come; if Bob and Chris go, then
Alice or Doug will go. Furthermore, if Alice and Chris
go, then Bob will also go. This is represented by theory
T2 in Figure 2. Now what can you say about who will

{avbve,

(a & ) — (v Vv d),
(b & c) — (avd),
(@ & ¢)— b}

abed T =

Figure 2: The party example

come to the party? Look at the models of T2 in Figure 2.
Circumscription yields the minimal models a, b, and r,
which interpret the clause a V 6 V ¢ exclusively in the
sense that it is minimally satisfied. However, there arc
other plausible models. For example, abe. This model
embodies an inclusive interpretation of a and b within
aVbVc; it is also minimal in this respect, abd is another
model of this property. Similarly, bcd is a minimal model
for an inclusive interpretation of 6 and c. The models ad,
bd, and cd are not plausible, however, since a scenario
in which Doug and only one of Alice, Bob or Chris are
present does not seem well-supported. O

In the light of these examples, the question arises how
circumscription can be extended to work satisfactory.
An important insight is that such an extension must
take disjunctions of positive events seriously and allow
inclusive (hence nonminimal) models, even if such mo-
dels contain positive information that is not contained
in any minimal model. On the other hand, the fruit-
ful principle of minimality should not be abandoned by
adopting models that are intuitively not concise. Our
idea is the synthesis of both: adopt the minimal inclu-
sive models. That is, adopt for minimal models My M,
any model M which includes both M\ and M, and is

a minimal such model; in other words, M is a minimal
upper bound (mub) for M\ and M,.

To illustrate, in Example 1 hnp is a mub for h and n
(notice that hn is not a model), and in Example 2 abc is
a mub for a and c; abd is another one, so several mub's
can exist. In order to capture general inclusive interpre-
tations, mub's of arbitrary collections M4, M5, M3,... of
minimal models are adopted.

It appears that in general not all "good" models are
obtainable as rnub's of collections of minimal models.
The good model abcd in Example 2 shows this. It is, ho-
wever, a mub of the good models a and bed (as well as of
abe and abd). This suggests that not only mub's of coll-
ections of minimal models, but mub's of any collection
of good models should also be good models.

Our approach to extend circumscription for inclusive
interpretation of disjunctions is thus the following: adopt
as good models the least set of models which contains all
circumscriptive (i.e. minimal) models and which is closed
under including mub's. Notice that this approach yields
in Examples 1 and 2 the sets of intuitively good models,
which are encircled in Figs. 1 and 2.

3 Capturing good models formally

We give in this section a formal semantical definition of
good models of a first-order sentence, and we provide a
jogical sentence which describes the good models. We
assume ZFC, 1.e. Zermelo-Fracnkel Set Theory with the
Axiom of Choice, as a standard metamathematical frame
{Suppes, 1972].

As for circumscription, we need a language of higher-
order logic (cf. [van Benthem and Doets, 1983]) over a
set of predicate and function symbols, i.e. variables and
constants of finite arity » > 0 of suitable type. Recall
that 0-ary predicate symbols ate identified with propo-
sitional symbols.

We use sel notation for predicate membership and in-
clusion. ¢ € p means that p(q) is true, p C ¢ that p im-
plies ¢, and p C ¢ that p strictly implies q. (Ip#g)(...)
denotes Ap(pfg & ...) where 8 1s €,C, or ; similarly
(Vpfg)l...) denotes ¥p(pfg — ...). A sentence is a for-
mula in which no variable occurs free; it is of order n+1
if the order of any quantified symbol occurring in it is
<n [van Benthem and Doets, 1983].

A structure M consists of a nonempty set |M| and an
assignment T{ M} of predicales, i.e. relations (resp. func-
tions), of suitable type over |M| to the predicate (resp.
function) constants. The object assigned to constant C,
i.e. the extension of € in M, is denoted by [C],, or
simply € if this is clear from the context. Equality is
interpreted as identity. A model for a sentence g is any
structure M such that ¢ is true in M (M k= ).

Let p = p1,...,ps be alist of first-order predicate con-
stants and 2 = z1,..., zm a list of first-order predicate
or function constants disjoint with p. For any structure
M, let Mf,‘._z be the class of structures M' such that

M| = M|, and [Cly = [C]y for every constant C
not occurting in p or z. The pre-order gf,’;, on M"p‘;s
is defined by M, Si",‘iz My ifl [pi]lyy, € [pilag, for all
1 < i € n. The pre-order <p.z is the union of all Sg;z
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over all structures. We write Mg etc. if z is empty; Sg

and <p are partial orders on Mf resp. all structures.

The circumscription of p in a first-order sentence
o(p,z) with z fioating is the second-order sentence {Lif-
schitz, 1985]

p(p.z) & -3p’ 2'(p(p’.2) & (p' C p))

which will be dencted by Cire(o(p, 2)) (p and z will be
always presupposed). Here p’, z’ are lists of predicate
and function variables matching p and z and p C p’
stands for (p’ C p) & (p’ # p), where (p’ C p) is the
conjunction of all (p] C p;), 1 € i < n. The following is
a straightforward consequence of the definitions.

Proposition 3.1 [Lifschitz, 1985] M [ Circ(p(p, z))
iff M is <p.g-mimmal among the models of p(p, z).

3.1 formal definition and logical description

We formally define the concept of a “good” model as
follows. First define the property that a set of models is
closed under minimal upper bounds.

Definition 3.1 Let p(p,z) be o first-order sentence.
A set M of models of p(p,2) 15 <pg-closed iff. for
every M' C M and any model M of p(p.2), if M s
< ’z-mm:maf among the models of p(p, 2} which salisfy
hﬁgp;z M for allM' € M’ then M € M.

Clearly the set of all models is closed. Further, every
closed set must contain all <pz-minimal models of
e(p.2z) (let M" = @); the empty set is closed ifl p(p,z)
has no minimal medel. We define goodness as foilows.

Definition 3.2 A model M of o(p.z) is good with re-
spect to p;z tff M belongs to the least p;z-closed set of

models of p(p,2).

Notice that good models only exist if a unique smallest
closed set exists. The latter is immediately evident from
the following characterization of goodness.

Proposition 3.2 A model M of o(p,z) is good with re-
spect to p; 2 iff M belongs to the interseclion of all p; 2-
closed seis.

In the rest of this section we show how to capture
goodness by a logical sentence Curb(w(p,2); p,2) whose
models are precisely the good models of p(p,2). Similar
to circumscription, p are the minimized predicates (here
under the inclusive interpretation of disjunction}, z are
the floating predicates, and all other predicales are fixed.

For ease of.exposition, we restrict ourselves here to
the simplest case where p contains a single unary pre-
dicate p (hence the domain D of p is [M]' = |M|) and
z is empty. The generalization to arbitrary p and z is
straightforward.

We consider in the following an arbitrary but fixed as-
signment to all constant symbols except p over a fixed
universe, i.e. we consider structures in some fixed M;‘.
We assume that p' ¢',+',... range over the extensi-
ons [p]M. in the models M’ of p(p) from MY, and
that p?,¢%,r2, ... range over families of such extensions.
Techmca.l]y, this can be asserted by adding tp(p ), wlg')

etc. and Yg € p*(p(q)), ¥g € ¢*(p(g)) etc. in suitable
places.
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We now express a mub of the family p? as the formal
expression Mub, which says that ¢! is a minimal upper
bound of p2.

Mub(p?,¢") =4 (Wlepir'ce) &

vsi(s' c¢' — (3t € ) € 5')).
The formula Ci(p*) says that p? is closed under minimal
upper bounds.
Cl{p®) =4 ¥r¥¥g' (»7 C p* & Mub(r® ¢') — ¢' € p?).
Remark. M | Ci(p?) & Circ{p(p')) implies p! € p? as
Mub(®, p') holds. a
Using Cl(p®), we define a formula Good(p®) as the
smallest p;2-closed set, which intuilively captures the
good models of (p) from MM

Good(p®) =45 Cl(p?) & ¥r¥(Clr?) — p? C r?).
Good(p?) is true within MY for a unique p?.
Lemma 3.3 For every M,

M EYp2Y¢* (Good(p?) & Good(q?) — p* = ¢%).
Proof. Assume this is false for some M, 1e. M |=
Good(p*) &' Food(q ) for some p?, g% such that p # q
Let r* = p? N g% Clearly M Cl(r Since r2 C
or r> C ¢%, it holds that M F Cl(r ) L-(p2Cr ),
say. This implies M £ Good(p*). This gives the desired
contradiction. D

Using Good(p?), we define the curd of @(p) as the
sentence Curd(e(p); p):

Curb((p)ip} =ur #(p) & Ip°(Good(p®) & p € 1°).
Theorem 3.4 A model M of w(p) is good with respeci
to p ff M |E Curb{y(p); p).

It should be clear how Curb(p(p);p) generalizes to
Curb(p{p;2z), p,z) for arbitrary p and z.

3.2 second-order definition of Curb(p(p,z);p,2)

Notice that Curd(p(p) 2’p) is a third-order sentence
(due to 3p?(---) and ¥r¥(---} within Good(p?)), while
Circ(p(p)) is second-order. We present in this section an
equivalent definition in terms of a second-order sentence
Curb* (¢(p), p) which characterizes the good models of
o(p). A second-order sentence Curb”(¢(p,z);p,2z) for
arbitrary p and z is oblained analogously.

The rationale of what we are going o do in this section
15 as follows. We first define the metalinguistic notion of
a-goodness for all ordinal numbers o. Roughly speaking,
a model of a first-order theory T is a-good if it can be
obtained [rom the minimal models by iteratively adding
o times all minimal upper bounds. The notion of a-
goodness of a model can be expressed in a two-sorted
second-order logic whose one sort are the ordinal num-
bers. We show that in each structure, it is sufficient to
consider only those ordinals o for which it holds that
[le]] < )| D], where D is the domain of p. But precisely
these ordinals are isomorphic to well-orderings of parts
of [) and are thus expressible in second-order logic. Our
last step thus consists in converting the two-sorted de-
finition of goodness into plain second-order logic (with
no specially interpreted predicates) by replacing ordinals
with well-orderings.



Definition 3.3  good(p') —4 3a.a-good(p'), where

0-good(p') «—4 Cire(p(p')). and for o >0,
a-good(p') g 3¢7 (Mub(¢®,p') &

(vr! € ¢¥)(38 < a). B-good(r')).
For a>0, strictly-a-good{p') ~g o= inf{# : B-good(p')}.

We show that this notion of goodness is ecquivalent to
the one captured by Curb(p(p);p).

Lemma 3.5 A model M of p(p) 15 good with respret to
p iff good([p}y,) holds true.

Proof. (Sketch) Let ¢% = {p1 good(p!)}. (i) We
show that M | Cl(r?) |mp11es ¢? C r2. Prove by in-
duction on a, that for every r? such that M £ CI{(r?),
r? contains every o- good rl. (#) We show that M
Clig®). Suppose r? C q and M = Mub(r?,¢*). Define
B8 = sup{rx rler? s stnrtly a-good}. It follows
that gl is (3 +1)- good hence ¢' € ¢2. (i) and (&) imply
M | Good(¢?). The resuit follows from Lemma 3.3 and
Theorem 3.4. D

An important observation is that goodness of any p!

is equivalent to a-goodness for an @ which depends on
the domain D of M.

Lemma 3.6 For cvery domain [J there exisls an ordi-
nal ap such thet good(p') — ap-good{(p') for every p'.
Moreover, |lap|| < ||D||

Proof. (Sketch) Show by induction on o, that if p*
strictly-a-good then ||p'{] > {le||. The Jetnma follows. O

Now consider the extension of second-order logic
where it is allowed to use ordinals of cardinality < ||1|.
Formally, one can think about a two-sorted structure.
Greek letters range over ordinals. We define recursively
a second-order predicate constant Gla,p'), which cap-
tures a-goodness within the logical language.

Gle,p') —y (V¢ cph(Bd<a)

IGA Y& (S & (P ')

In particular, G(0,p') — Circ(p(p')). W G{B.r'} s
equivalent to S-goodness of r! for 4 < o, then G(a,p')
says thai there is no ¢! € p! such thal every (< o) good
subset r! of p' is also a subset of ¢!,

Lemma 3.7 G{a,p') is frue iff p' is a-good.

Proof. By induction on «. The case & = 0 18 trivial.

Suppose o > 0.
“—": Suppose p! is o- good By definition of «o-
goodness, there is a colle rt:on g* that witnesses thls fact.
In pa.rtlcula.r Mub(q®,p') holds. Suppose that q ‘ul.l is-
fies ¢! C p'. By the definition of Mub(¢? p) plois
a rmmmal extension of p -auch that i C p! for everv
rl € g% Thuq there exists r' € ¢7 such that r' € ¢'.
Since r! € ¢°, is #-good for some < . By the
hypothesis, (“‘(,6 r‘) s Irue Hence G(o, p') is Lrue.
et Suppose G(o,p') is true. Take ¢* = {r' :
rt € plor! la A-good for some 8 < a}. Check
that Mub{q ,P') holds true. By contradiction suppose
Mub(q?,p') fails. Clearly p' is an upper bound of ¢°.

Consequently, p! is not a minimal upper bound. Hence

t.here exlst.s g¢' such that ¢* C p! and for every r € ¢,
r! C ¢'. By the hypothesns for every such r there exists
af< a such that G(8,r!) is true. Thus ¢! contradicts
Gla, p ) It follows from the definition of a-goodness
that p! is a-good. O

Corollary 3.8 p! is good iff there ezists an ordinal o
such that |lo|| < [|D|| and G(a,p') is true.

Ordinals of cardinality < ||D]| can be expressed as
well-orderings of a part of I within second-order logic,
however. A well-ordering 12 on a set 5 is a total ordering
which is well-founded, i.e. R satisfies

(VX CS)X#£0—(3xe X)(Yy e X). R(z,y)}

(every nonempty subset X of S has the first element.)
The following proposition is well-known.

Proposition 3.9 Lel S be q sel. For every ordinal o
such that {jafl < ||S|| there is a well-ordering R(z,y) of
a subset £ C S which is isomorphic lo o, ie. (E R} =
({#:8 < a}.<).

Now let. WO(R) be a formula which states that Ris a
well-ordering of a part of the domain, and let IS{R,, Rs)
be a formula which says that the well-ordering Ry is
a strict mitial segment of the well-ordering R, hence
a(Hz} < a(R)) where a(R) 15 the ordinal represented
by f. Formulating WO and IS in second-order logic
15 easy. Using WO and IS, the predicate constant G2,
which is infortnally equivalent to (4, is defined as follows.

G*(R.q) —q WO(R)& ¢(q) & (Yq' C q).
3R, I (GH(Ru,rY) & IS(R, Ry) &
~(r' C ) & (r Cp))
Now Curb®(p(p); p) is defined by
Curd(p(p); p) =4y IR.G*(R.p).

Theorem 3.10 M | Curd™(p(p);p) ff M 15 a model
of p(p) which is good with respect to p.

Proof. M is a good model of p(p) — good([p])
holds true «— there exists an a such that |la|| < [|D||
and GG{a,p) holds «— there exists a well-ordering R of
E C D. where 115 the domain of p, such that G(a(R), p)
is true — there exists an K such that G*(R,p) is true —
Curb™(p(p);p) is true. O

Remark: Curd®((p); p) involves a second-order predi-
cate constant GZ; it can be eliminated by a more invol-
vedd construction, at least over all infinite structures.

4 Computational complexity

An important aspect of any reasoning method is, of
course, its computational complexity (cf. [Garey and
Johnson, 1979] for basic concepts and definitions). It
is clear that our method is in the full first-order case
highly undecidable, just as any of the well-known me-
thods in nonmonotonic reasoning. We give here a more
detailed account of the propositional case. Notice that
in this case, a structure M is a truth-value assignment
to the propositional variables and p and z are sets of
propositional variables. In particular, we consider the
inference problem.
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Problem: CURB-INFERENCE

Instance:  Disjoint sets P, Z of propositional vari-
ables and propositional formulas ¥, (.

Question: Does Curd(F, P, Z) imply G ?

This problem can be easily shown to be coNP-hard,
as here Curb(F,P,Z) is consistent iff F is consistent;
hence, it is intractable. It may seem at first glance that
the problem needs exponential space, in particular since
checking whether a truth-value assignment is a good mo-
del seems difficult. The straightforward algorithm, try-
ing to generate this model starting from the minimal
models by iteratively including minimal upper bounds,
is clearly exponential in both time and space. Howe-
ver, the algorithm GOOD in Table 1 below shows that
model checking is feasible in polynomial space. The cor-

ALGORITHM GOOD(M, F, P, Z} : boolean;

input: truth-value assignment M, propositional formula
F, sets P, Z of propositional variables, PN 2Z = @.
output: “true” if M is wrt Lo P, Z a good model of F.

if (M & F) then return false;
mimamal ;= true;
for each M, <p 2z M do
if (M, E F) then mirtmal ;= false;
if minimal then return true;
for each M\, My <p M, M, £p 2 Mz, Magp z M, do
if GOOD(M,, F, P, Z) then
if GOOD(M:, F.P, Z) then
begin mub = true;
for each M, with M, M; <pz My <pz M do
if GOOD{M,, F, P, 2) then mub := faise;
if mub then return frue;
end;
return false;

Table 1: Algorithm for the good model property

rectness of GOOD follows from Theorem 5.2 of the next
section, which implies that we can limit ourselves to con-
sider minimal upper bounds of patrs of models, GOOD
can be straightforwardly implemented such that its body
uses only space linear in the input size. Furthermore, it
is easily shown by induction that the recursive depth is
bounded by |P|. Consequently, the algorithm runs in
quadratic space.

Theorem 4.1 CURB-INFERENCE 15 feasible in qua-
dralic space.

Proof. Curb(F(P,Z}; P, Z) £ G iff there exists a mo-
del M of ¥’ which is good with respect to P; Z, such Lhat
M JE G. Cycling through all truth assignments to find
such an M using GQOD is clearly possible in quadratic
space; henee the result. 0O

5 Approximation

In this section we briefly address possibilities to approxi-
mate the full set of good models by a subset. A suitable
approximation may even be mote intuitive than the full
set of good models. The assumption that a “good” sel
of models accepted by an agent is closed under mini-
mal upper bounds is, of coutse, an idealization. Which
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inclusive models the agent accepts will depend on the
particular situation; finding a general rationale for this
is cleary difficult. We consider here the two possibilities
of building inclusive models within bounded depth and
from a bounded number of disjuncts.

5.1 bounded depth

The first approximation is to limit iterated inclusion of
minimal upper bounds. Informally, we choose only the
models that are a-good for some a such that |lafl <
18], where the ordinal  is a limit on the depth in
butlding minimal upper bounds. The results of Sec-
tion 3.2 make it clear that the good models within
depth & can be captured by a second-order sentence
C‘urbé(tp(p, z);p,#) as long as & is second-order expressi-
ble. Notice that circumscription appears as the case § =
0,1.c. Curb®((p,2);p, 2} is equivalent to Circ(v(p, 2)).

Concerning computational complexity, the inference
problem is in the propositional case for finite constant &
as easy (and as hard) as citcumscription.

Theorem 5.1 The b-bounded version of CURB-INFE-
RENCE, i.c. deciding if Curb®(F(P, Z); P, Z) implies G,
for & a fintle constant 1s complele for the l’l{,> level of the
polynomial hierarchy [Meyer and Stockmeyer, 1972].

Proof. We sketch a proof of membership in 1§.
Curb®(F(P.Z),P,Z) | ( iff there is a é-good model
M of F such that M £ (. Guess M and < |P| wit-
nesses My, ..., M, for M {i.e., good models such that
M is a minimal upper bound), and for each M; witnes-
ses ete. to a recursive depth < 4. The guess consista of
< |P[® truth-value assignments, and is thus polynomial
in the input size. Checking whether M is a minimal
upper bound of M;,..., M,, etc. is possible in polyno-
mial time with an NP oracle. Consequently, deciding if
Curb®(F(,2); P,Z) £ G is in NPNP = ©F which im-
plies that “Inference” is in ¥ I1£-hardness for § = 0
{i.e. circumscription) was shown in [Eiter and Gottlob,
1991]. The construction used in the proof can be easily
gencralized (o arbitrary finite constant 6. O

5.2 bounded disjunctions

Another attempt is to limit the cardinality of model sets
from which minimal upper bounds are formed. Intui-
tively, this corresponds to limiting the number of inclu-
sively interpreted disjuncts by a cardinal x > 0. The
concept of closed, set is defined by adding in the defini-
tion of closed set the condition “||AM’|] < «”; goodness,
15 the relative nolion of goodness.

Clearly, goodness; is equivalent to circumscription.
For k > 2, we obtain over finite structures (i.e. |[M] in
finite} the following resuit.

Theorem 5.2 Over finite struciures, for everyk > 2 4
model of p(p,2) 15 good, with respect to p; e iff it is good
with respect to p, 2.

Proof. We show this for p = p, p unaty, and em-
pty % under above notational conventions; the proof
is easily generalized. Show by induction on ||p!|| that
every a-good p' is a-good,. The case ||p!{| = 0 is tri-
vial. For [lp!| > 0, let ¢* = {q" : ¢' C p', good(g")}.



Mub(q®,p') holds. If ¢? = B, the statement trivially
holds. In the other case, let r! € ¢? be maximal with
respect to C. As M| is finite, such an r' exists. Let
s' € g% such that s’ € r'. Such an 5! must exist. Then
Mub({r',s'},p') holds, and by the induction hypothesis
r! and s' are good,; hence, p' is good, and the state-
ment holds. Clearly, every p' which is good, is good.
Hence the result follows. 0O

Theorem 5.2, which fails for arbitrary structures, im-
plies a dichotomous result on the expressivity of K~
bounded disjuncts: Either we get only the minimal mo-
dels or all models obtainable by unbounded disjuncts.
Limiting simultaneously the number of disjuncts and and
the depth in building minimal upper bounds can be used
to cut down the set of good models.

6 Related work and conclusion

Inclusive interpretation of disjunctive models has been
investigated in logic programming [Ross and Topor,
1988; Sakama, 1989; Ross, 1989; Chan, 1991].

The Disjunctive Database Rule (DDR) [Ross and To-
por, 1988] has been proposed to allow cautious deriva-
tion of negative literals from a disjunctive database. The
DDR allows all models in Examples 1 and 2, hence also
the unintuitive ones. Moreover, it depends on syntactical
representation [Chan, 1991], which however is customary
for semantics of logic programming. Thus, the DDR is
basically different from our method.

A more sophisticated approach that allows also to deal
with negative clauses was introduced in [Sakama, 1989;
Chan, 1991] by the equivalent concepts "Possible Mo-
dels Semantics" (PMS) and "Possible Worlds Semantics"
(PWS). This approach has recently been generalized to
cover Negation by Failure [Sakama and Inoue, 1993). In
Examples 1 and 2, PMS and PWS coincide with curb.
However, if the clause h V n V p is added to T4, which
has no effect on the models, then PMS and PWS adopt
all models. Hence, PWS and PMS are syntax-dependent
and basically differ from our method.

Another approach to treat disjunction inclusively is
the weak well-founded semantics (WWF) for disjunc-
tive logic programs in [Ross, 1989]. In case of negation
free programs, this semantics coincides with the DDR
[Ross, 1989], which implies syntax-dependency of WWF.
Hence, WWF is basically different from curb.

In this paper we presented a new approach to nonmo-
notonic commonsense reasoning that seems to be more
appropriate than circumscription in many cases, namely,
when disjunction of positive information is naturally in-
terpreted in an inclusive fashion. Our method of curbing
theories differs significantly from all previous approaches
to treat disjunction inclusively. It is syntax independent
and yields the more intuitive models. We have shown
that Curb is second-order definable and have derived
some relevant complexity results. We also have fostered
two ways of approximating the curb of a theory.

We believe that this new approach deserves further in-
vestigations. On the one hand, it is tempting to find new
and better algorithms for inferencing under curb or its
approximations. On the other hand, the inclusive inter-
pretation of disjunction is not always desired. Sometimes

it seems that a hybrid approach which interprets cer-
tain predicates (or certain connectives) inclusively and
others exclusively is more appropriate, cf. [Ross, 1989:
Sakama, 1989; Chan, 1991]. Our ongoing research deals
with all these topics.
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