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Abst ract 

Interpreting spectral images requires compar­
ing known patterns with input data (images) 
to identify which patterns are contained in the 
input data. In practice, however, it is hard to 
identify any pattern when the inaccuracy of in­
put data is not slight. In this paper, we present 
a method for interpreting spectral images by 
using qualitative reasoning. First, we put for­
ward a new concept called support coefficient 
function (SCF) which can be used to extract, 
represent, and calculate qualitative correlations 
among data. Then, we introduce an approach 
to determining dynamic shift intervals of inac­
curate data on the basis of qualitative corre­
lations. Finally, we discuss how to use quali­
tative correlations as evidence of enhancing or 
depressing hypotheses for inaccurate data. The 
method has been applied to a practical sys­
tem for interpreting infrared spectral images. 
We have fully tested the system against sev­
eral hundred real spectral images. The rate of 
identification (RI) and the rate of correctness 
(RC) are near 90% and 74% respectively, and 
the latter is the highest among known systems. 

1 I n t roduc t i on 
Interpreting spectral images is a special problem of diag­
nosis. The problem requires comparing known patterns 
with input spectral images to identify which patterns 
may be contained by the images [Anand et a/., 1991; 
Sadtler, 1988]. Because spectral data are always inaccu­
rate, one difficult task is to deal with uncertain evidence. 

Currently known methods and systems of spectral im­
age interpretation are primarily based on quantitative 
analysis [Culthup et a/., 1990; Sadtler, 1988]. The es­
sential principle of quantitative analysis is to determine 
the possibility that a pattern may be contained by an 
image by calculating the difference between the pattern 
and the parts of the image. In practice, however, a crit­
ical problem of applying quantitative analysis is that it 
is hard to identify any pattern when the inaccuracy of 
input data is not slight. Fuzzy logic and probability the­
ory can partially solve the problem [Duda and Nilsson, 

1976; Zadeh, 1978], but they can not consider qualita­
tive correlations among data1 which are very important 
and effective in spectral image interpretation. 

We present a novel method for interpreting spectral 
images by using qualitative reasoning. The method 
draws inferences on the basis of qualitative features of 
spectral images, and uses qualitative correlations among 
data as evidence when input data are inaccurate. 

We put forward a new concept called support coef­
ficient function (SCF). SCF can be used to extract, 
represent, and calculate qualitative correlations among 
data. On the basis of qualitative correlations and dy­
namically obtained information, shift intervals of inaccu­
rate data can be dynamically determined. When input 
data are inaccurate, qualitative correlations can provide 
evidence to enhance or depress hypotheses for inaccurate 
data [Zhao and Nishida, 1994], 

We have developed a practical system on infrared spec­
tral image interpretation by using the method, and have 
fully tested the system against several hundred real spec­
tral images. The experimental results with the system 
are excellent. Both the rate of correctness (RC) and the 
rate of identification (RI) increase significantly by using 
the method2. 

In the following sections, we first describe the problem 
of spectral image interpretation in section 2. Then in sec­
tion 3, we address the essentials of our method including 
some useful definitions. In section 4, we introduce our 
method for interpreting inaccurate spectral data by con­
sidering qualitative correlations among data. Section 5 
demonstrates the application of the method to a system 
on infrared spectral image interpretation, and shows the 
experimental results with the system. Related work is 
discussed in section 6. Our ongoing research is briefly 
introduced in section 7. Conclusions are addressed in 
section 8. 

2 M o t i v a t i n g Prob lem 
The primary task of spectral image interpretation is to 
identify what patterns a spectral image contains by inter-

1 Detailed definition will be given in section 3.1. 
2RC and RI are two important metrics for evaluating the 

solutions of infrared spectral image interpretation. We will 
give the detailed definitions of RC and RI, and show the 
experimental results of our system in section 5.2. 
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preting the spectral image. In the rest of the paper, we 
limit the problem to interpreting infrared spectral images 
of unknown compounds to identify what partial compo­
nents {PC) the unknown compounds contain without 
loss of generality. 

Briefly, the infrared spectral image of an unknown 
compound can be thresholded and represented as a set 
of peaks: 

where every peak consists of its frequency position (/), 
strength (s), and width (w) respectively: 

The patterns of known partial components can be rep­
resented in the following form: 

which means if is contained by a compound, then 
on the spectral image of the compound, there will be 
peak 

Ideally, if all peaks on spectral images are accurate, 
the process of interpreting infrared spectral images of 
unknown compounds can be simply described in the fol­
lowing way. 

1. Select a peak from Sp. Retrieve all partial compo­
nents whose patterns have the same peak, and put 
the partial components in a candidate list: CL; 

2.Select a partial component, , from CL. If 
Sp, then put the partial components in a 

solution list: SL; otherwise, delete the partial com­
ponent from CL; 

3. Goto 2 until all partial components in CL are 
checked; 

4. Goto 1 until all peaks on Sp are identified; 
5. Delete conflicts (overlaps) among partial compo­

nents in SL, and output SL as the solution3. 
The overview of the process is shown in Figure 1. 

Figure 1: Overview of interpretation process 

In practice, however, spectral data are often inaccu­
rate due to various reasons most of which are unforeseen, 

3 We will not discuss conflict-resolving in this paper, but 
concentrate on the method for identifying inaccurate data. 

or unknown at all. Therefore, the peaks created by a par­
tial component on real spectral images are often different 
from the peaks described by the pattern of the partial 
component. 

Fuzzy logic provides mathematical fundamentals of 
representation and calculation of inaccurate data [Bowen 
et a/., 1992; Negoita and Ralescu, 1987; Zadeh, 1978]. 
For example, peaks in the patterns of partial components 
may be described in a fuzzy fashion like fa, is around 

(not is equal to and a fuzzy region may also 
be defined to represent the peaks like 
Probabilistic reasoning provides a practical framework 
for reasoning under uncertainty and reasoning with in-
accurate data [Dempster, 1968; Pearl, 1987]. In many 
systems, subjective statements are used to take the place 
of statistics of data or evidence when statistical sam­
ples are insufficient or absent, such as certainty factors 
in MYCIN [Shortliffe, 1976] and prior probabilities in 
PROSPECT [Duda and Nilsson, 1976]. 

However, both fuzzy logic and probability theory are 
based on quantitative features, but in many cases, espe­
cially when data are seriously inaccurate, qualitative fea­
tures are much more important than quantitative ones. 
Figure 2 shows two simple cases. The quantitative dif­
ference between the two spectral images in (a) is smaller 
than that between the two spectral images in (b). By 
conventional fuzzy or probabilistic methods, the two im­
ages in (a) should be closer than those in (b). Actually, 
the two spectral images in (b) may be created by the 
same partial component in some cases, while the two 
spectral images in (a) are definitely created by two dif­
ferent partial components because the number of peaks 
is different. Here, the number of peaks on spectral im­
ages is a critical qualitative feature. 
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We propose a novel method to interpret infrared spec­
tral images by using qualitative reasoning. The method 
draws inferences on the basis of qualitative features of 
spectral images, and uses qualitative correlations among 
data as confirmatory or disconfirmatory evidence when 
input data are inaccurate. 

Suppose P(a) represents the possibility that two im­
ages in (a) are created by the same partial component, 
and P(b) represents the possibility that two images in 
(b) are created by the same partial component. At the 
beginning, P(a) > P(b), but with the obtaining of qual­
itative correlations among data, P(b) will increase, and 
P(a) will decrease. 

By our method, the above ideal process can be briefly 
expressed as the following predicate calculus: 



3 Prel iminar ies 
3.1 Qualitative Correlations among Data 
Definition 3.1 Related data: If data d1, d2, ..., and dm 
describe a common phenomenon altogether, or they refer 
to the same behavior simultaneously, then they can be 
treated as related data. 

In infrared spectral image interpretation, there are two 
types of related data: (1) as far as a single peak is con­
cerned, the frequency /, strength s, and width w of the 
peak are related data; (2) if the pattern of a partial com­
ponent is considered, all the peaks in the pattern are 
related data. 
Definition 3.2 Qualitative correlations among related 
data: If dj and dj are two related data, then the presence 
of d{ somewhat (qualitatively) enhances the presence of 
d j , and the absence of di somewhat (qualitatively) de­
presses the presence of dj. The above effects are called 
qualitative correlations among related data. 

In infrared spectral image interpretation, if data gath­
ered from spectral images look like, but are not exactly 
the same as, the data described in the patterns of partial 
components, considering qualitative correlations among 
related data can obtain qualitative evidence. For exam­
ple, suppose the frequency position of a peak is different 
from that in a pattern, but both the strength and width 
of the peak are the same as described in the pattern, then 
the frequency position of the peak may still be identified 
because both of its related data support it. Similarly, if 
peaks at low frequency sections are inaccurate, consid­
ering their related peaks at high frequency sections may 
help identify these peaks, and vice versa. 
3.2 Support Coefficient Function 
Definition 3.3 Support coefficient junction (SCF): If 
there are m - 1 data related to di, then the support co­
efficient function of di calculates the total effects from 
the related data by considering the qualitative correla­
tions between di and each of its related data. 

Suppose represents the qualitative correla­
tion between di and dj, then the support coefficient func­
tion of di can be defined as: 

SCFi should directly depend on how many and how 
much related data support dt. When SCFi is greater 
than a certain value given by domain experts, the related 
data tend to support di otherwise, the related data tend 
to depress di. 

3.3 Evidence Based on SCF 
In section 2, we used to express that pi can 
be qualitatively identified from Realizing 
requires to define a shift interval for 

and then to determine the possibility of 
The above formula is similar to that in fuzzy logic, but 

contains completely different meanings. The primary 
difference is that the shift intervals are dynamically de­
termined by SCFi. , while in fuzzy logic, the fuzzy regions 
are usually provided by domain experts in advance. 
Definition 3.4 Shift interval: Shift interval is a dy­
namic region for inaccurate data. Given a standard 
fuzzy region for inaccurate di, the shift interval of di 
varies around the standard fuzzy region on the basis of 
SCFi. When SCFi shows that the related data support 
di the shift interval of di becomes wider than the stan­
dard fuzzy region. On the other hand, when SCFi shows 
that the related data do not support di, the shift interval 
of di becomes narrower than the standard fuzzy region. 
Definition 3.5 Evidence based on SCF: SCFi deter­
mines the shift interval of di, that is, SCFi determines 
how widely di is allowed to shift. The wider the shift in­
terval, the more easily di is identified. Therefore, SCFi 
provides confirmatory or disconfirmatory evidence for 
identifying d j. 

4 Qual i ta t ive ly In te rp re t ing Spectra l 
Images 

As described in section 3, there are two types of related 
data in infrared spectral image interpretation. First, all 
the features of a peak are related data. Second, all the 
peaks created by the same partial component are also 
related data. For making our introduction brief, in this 
section, we omit the process of considering the former 
type of related data, and directly introduce the process 
of considering the latter one. 

Suppose m peaks (p1, p2, ..., Pm) may be created by 
the same partial component, and d0 is the standard fuzzy 
region for real peaks, then our method can be described 
as the following steps. 
[Step 1] Defining support coefficient function 

First, we define the qualitative correlation between 
two related peaks, pi and pj, as: 

where Ci(pj) expresses the qualitative effect of pj on pi'. 
Ci(pj)=l means that pi is enhanced since its related data 
item pj can be identified; ' )=0 means that pi is de­
presses since its related data item pj can not be iden­
tified. Ci(pj) provides dynamic information for making 
interpretation. The definition of Ci(pj) is simply based 
on the consideration that if a peak of a partial compo­
nent has been identified, then the peak will support the 
coexisting peaks (related peaks) that the partial compo­
nent may create at the same time. 

Based on Ci(pj) (j = 1, 2, ..., , we define the 
support coefficient function of pi in the following way. 
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Figure 3: Data flow diagram of the system 

Because inferences are based on qualitative features 
and qualitative correlations among related data, the sys­
tem can obtain very high correct interpretation perfor­
mance with noisy images or images of mixed compounds. 

5.2 Experimental Results 
We have compared two methods in the experiments. 
The first method (called "AF") is a conventional fuzzy 
method which is used by most similar systems [Clerc et 
a/., 1986]. AF adopts empirical fuzzy regions, and does 
not use SCF. The second method (called ''AF*'') is the 
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method proposed in this paper which uses SCF to pro­
vide qualitative evidence for identifying inaccurate data. 

We have tested AF and AF* against several hundred 
real infrared spectral images of organic compounds. The 
experimental results show that AF* is significantly bet­
ter than AF. 

Table 1 lists part of the experimental results in which 
the first column shows the correct solutions; the second 
column indicates the solutions obtained by AF] and the 
third column shows the solutions obtained by AF*. 

terns on spectral images, the rate that it can identify 
all patterns on spectral images is low because in prac­
tice there are always some partial components whose real 
peaks seriously shift from the expected values. 

Table 1: Experimental results with AF & AF* 

There are two important standard metrics for evaluat­
ing the solutions of infrared spectral image interpretation 
for unknown compounds: 
Definition 5.1 Rate of correctness (RC): the rate that 
the identified partial component set is exactly the same 
as the partial component set in the correct solutions. 
Definition 5.2 Rate of identification (RI): the rate that 
the partial components in the correct solutions are iden­
tified. 

Table 2 shows the comparison between AF and AF* 
with the two standard metrics. The comparison demon­
strates that both the RC and the RI increase by inte­
grating SCF, and the RC increases more significantly. 
The reason is that although AF can identify most pat-

So far as we know, the RC of our system is the highest 
among the similar systems, and the RI of our system is 
higher than that of many similar systems [Clerc et a/., 
1986; Hasenoehrl et a/., 1992; Puskar and Levine, 1986; 
Sadtler, 1988], 

5.3 An Example 
It is interesting to discuss the following example shown 
in Figure 4. 

Figure 4: An example of spectral image interpretation 

Figure 4 shows a spectral image of an unknown com­
pound (Anisole). The peak with an arrow is created by 
partial component CH3. However, the peak can not be 
identified by conventional methods because the peak of 
CH3 at this frequency position should be a strong peak 
(i.e., s > 1.000), but in this example, the strength of 
this peak is very weak (5 < 0.130). So the membership 
degree of this peak is very close to zero, if not equal to. 
By using our method, the peak is identified as the peak 
of CH3 because the support coefficient of this peak is 
very high (SCF = 0.93). 

6 Compar ison w i t h Rela ted W o r k 
Traditional methods and systems of spectral image in­
terpretation are based on numerical analysis which iden­
tify partial components by calculating the quantitative 
similarity or closeness between the patterns of known 
partial components and the input spectral images [Clerc 
et a/., 1986; Culthup et a/., 1990; Sadtler, 1988]. As 
we have discussed in section 2, in most cases especially 
when the inaccuracy of data is not slight, qualitative fea­
tures of spectral images are much more important and 
effective than quantitative ones. In other words, the 
similarity/difference between two spectral images does 
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not strictly reflect the similarity /difference between two 
structures. Therefore, in general, the solutions of the 
systems based on numerical analysis are only a series of 
candidates from which users have to finally decide the 
possible ones by themselves. 

Many recently known methods and systems are based 
on AI techniques [Anand et al, 1991; Hasenoehrl et al, 
1992; Puskar and Levines, 1986]. Common techniques 
mainly include production systems, fuzzy logic and neu­
ral networks. Although various reasoning and interpret­
ing methods have been studied, the approaches to deal­
ing with inaccurate data in this kind of methods and 
systems are almost the same, i.e., reference values and 
fuzzy regions of inaccurate data are empirically provided 
in advance. Thus, qualitative correlations among data 
and dynamic information can not be used properly. As 
a result, compared with our system, the limitation of 
this kind of methods and systems is that, generally, they 
are only effective for a class of compounds, or pure com­
pounds because when image data are seriously inaccu­
rate, many useful inferences can not be drawn. 

7 Ongoing Research 
The reasons causing image data inaccurate are vari­
ous. However, the interaction among partial components 
themselves is an important factor or, in other words, the 
influence from coexisting partial components may be a 
chief reason to cause the peaks of a partial component 
to shift from their theoretical values. In practice, spec-
troscopists frequently use the knowledge like: "if C6H6 
coexists with CH3, then the peaks of CH3 around 2900 
cm-l may shift.", or "if -C-O-C- has been identified, 
then the pattern of CH3 may change." Therefore, it is 
possible to update the possibilities of identified partial 
components by considering the interaction among them 
after qualitative interpretation has been made. 

Take the spectral image shown in Figure 4. The image 
contains partial component C6H5- (benzene-ring), -C-O-
C-, CH3 and others. On the spectral image, the peak 
of CH3 around 2900 cm"1 is seriously inaccurate due 
to the influence of C6H5- and -C-0-C-. Although CH3 
is identified based on qualitative correlations among re­
lated data, the possibility of CH3 being contained by the 
image is not high {P(CH3) = 55%). 

By Bayes rules associated with subjective statements, 
we can get P(CH3 | C6H5-) and P{CH3 \-C-0-C-) re­
spectively. And finally, P(CH3) may be updated with 
P(CH3 I 5), where 5 stands for all relevant observations. 

Theoretical and experimental work on the issue is in 
progress. 

8 Conclusions 
We have presented a novel method for interpreting spec­
tral images on the basis of qualitative features of spectral 
images and qualitative correlations among related data. 
We first put forward a new concept called support coef­
ficient function (SCF). Then we proposed an approach 
to determining dynamic shift intervals, and an approach 
to calculating possibility of identifying inaccurate data, 
respectively. A triple, (pi, p j . , ui), is used to represent 

the hypothesis that pi can be accepted as pj based on 
qualitative evidence provided by SCF. 

We have also introduced a knowledge-based system on 
infrared spectral image interpretation which is developed 
by applying the proposed method. The system can suc­
cessfully identify partial components that unknown im­
ages may contain. Several hundred real spectral images 
have been identified, and the results of implementation 
are quite encouraging (the RI and the RC are about 
0.90 and 0.74 respectively). 
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