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Abst rac t 

Vision systems that have successfully sup­
ported nontrivial tasks have invariably taken 
advantage of constraints derived from the task 
and environment to increase reliability and 
lower the complexity of perception. We pro­
pose that it is possible to build a general pur­
pose vision system, that is, one that can sup-
port a wide variety of tasks, and take advantage 
of such constraints. The central idea within our 
proposed architecture is the reactive skill. Skills 
are concurrent control routines assembled at 
run time using instructions from a symbolic ex­
ecution system. Visual modules are used as re­
sources in the construction of these skills. Skills 
control the agent as continuous feedback loops 
but are constructed using discrete, symbolic in­
structions. The key to general-purpose vision 
is the ability to parametrize the primitive el­
ements of the vision system and to compose 
visual and control routines in a variety of ways. 
We demonstrate the architecture in the context 
of an implemented example task of a robot col­
lecting trash off a floor and depositing it in a 
garbage can. 

1 I n t roduc t i on 
A longstanding goal in computer vision has been to de­
velop general vision that can support a wide variety of 
goals, and inform the observer of the relevant ways in 
which the world does not meet its expectations [Marr, 
1982; Tarr and Black, 1994; Brown, 1994]. On the other 
hand, it is advantageous for working systems to make as 
much use of the task and domain constraints as possible; 
vision systems that have successfully supported nontriv­
ial tasks have invariably done so (see e.g. [Horswill, 1993] 
[Dickmanns and Graefe, 1988]). Our goal is to build a 
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system that is able to take advantage of task and en­
vironmental constraints, and yet is flexible enough to 
respond to dangerous situations and failed expectations, 
and can be quickly reprogrammed to do a different task 
or work in a different environment. The key to doing so 
is to build re-usable components that can be assembled 
in a task and environment specific way. 

We call our proposal the Animate Agent Architecture. 
In the Animate Agent Architecture, visual processing 
is encapsulated in modules called visual routines (af­
ter [Ullman, 1984]) that can be invoked as needed, and 
which are in turn composed of combinations of primitives 
called visual operators. At run-time, visual routines are 
paired with action routines designed to run in a tight 
servo loop with perceptual routines to meet the real-time 
constraints of the task. The resulting process is termed 
a reactive skill [Slack, 1990; Firby, 1994]. Skills are in­
voked and can be terminated by a higher level system, 
that has access to the agent's knowledge of the task and 
environment, and is therefore well-suited to selecting the 
appropriate set of control and perceptual routines. For 
this component, we use the RAP system [Firby, 1989a; 
1994]. In contrast to the tight link between the control 
routines and visual routines, the RAP system commu­
nicates with the skills via a relatively low bandwidth 
message-passing interface; we call the messages signals. 
We illustrate the architecture in the context of a trash 
collection task - one of the tasks of the 1994 AAAI robot 
competition. 

Our design seeks to take advantage of as many con­
straints as possible in any given situation and encode 
the constraints that change from situation to situation 
at a high level, where they are easily changed. These 
constraints allow us to sidestep many of the difficulties 
that increase the complexity and lower the accuracy of 
computer vision algorithms. For example, when looking 
for a trash can, the robot is able to avoid searching over 
all possible views (or, alternatively, using only features 
that are independent of perspective) because we have a 
good idea of the view from which the robot will see the 
trash can (assuming it is sitting upright on the floor). 
We are also able to limit the search to only locations in 
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the scene consistent with an object sitting on the floor, 
and to combine the results of different algorithms to in­
crease the speed and reliability of the search. 

Within this framework, not all sensing is task-driven. 
For instance, a visual operator monitoring possibly ap­
proaching objects to warn of possible collisions (such as 
Nelson's directional divergence operator [Nelson, 1989]) 
can raise a signal if it senses motion that appears danger­
ous. If the taking avoidance action is of higher priority 
than the ongoing task, the RAP system will interrupt the 
ongoing task to respond to the danger. If the response is 
known by the RAP system not to conflict with the on­
going task, it is possible to run the processes in parallel. 
While the current implementation does not implement 
Nelson's algorithm, it does have equivalent signals raised 
by the sonar sensors. 

The entire trash collection task is described below, af­
ter a description of the proposed architecture and the 
robot that accomplishes the task. 

2 The A n i m a t e Agent Arch i tec ture 
The overall system design for the Animate Agent Archi­
tecture consists of two components: the RAP reactive 
plan executor, and a control system based on reactive 
skills. The executor executes sketchy plans, that is, plans 
that leave many steps to be chosen as the actual situa­
tion unfolds. It makes these choices at run time when 
the true state of the world can be sensed. The output 
from the executor is a detailed set of instructions for con­
figuring the skills that make use of the agent's sensors 
and effectors. 

2.1 The RAP Execution System 
The RAP system expands vague plan steps into detailed 
instructions at run time by choosing an appropriate 
method for the next step from a preexisting library. By 
waiting until run time, knowledge of the situation will 
be direct rather than predicted and much of the uncer­
tainty and incompleteness plaguing the planner will have 
disappeared. However, some uncertainty will always re­
main and incorrect methods will sometimes be chosen. 
The RAP system copes with these problems by checking 
to make sure that each method achieves its intended goal 
and, if it doesn't, choosing another method and trying 
again. 

In the RAP system a task is described by a Reactive 
Action Package (RAP) which is effectively a context sen­
sitive program for carrying out the task. The RAP can 
also be thought of as describing a variety of plans for 
achieving the task in different situation. 

The RAP system [Firby, 1987; 1989b] carries out tasks 
using the following algorithm. First, a task is selected 
for execution and if it represents a primitive action, it 
is executed directly, otherwise its corresponding RAP is 
looked up in the library. Next, that RAP'S check for 
success is used as a query to the situation description 

and, if satisfied, the task is considered complete and the 
next task can be run. However, if the task has not yet 
been satisfied, its method-applicability tests are checked 
and one of the methods with a satisfied test is selected. 
Finally, the subtasks of the chosen method are queued for 
execution in place of the task being executed, and that 
task is suspended until the chosen method is complete. 
When all subtasks in the method have been executed, 
the task is reactivated and its completion test is checked 
again. If all went well the completion condition will now 
be satisfied and execution can proceed to the next task. 
If not, method selection is repeated and another method 
is attempted. 

2.2 Reactive Skills 

The RAP system refines tasks into detailed discrete ac­
tions at run time. However, one of the primary lessons 
of both recent AI research into robot control [Agre 
and Chapman, 1987] and recent vision research into ac­
tive perception [Bajcsy, 1988] is that actions must be 
dynamic processes tolerant of sensor error and chang­
ing surroundings: they must be reactive. It is not 
useful for a planning system to control a robot with 
steps like "move forward 10 feet" because the loca­
tion of the robot may not be known exactly, the world 
model may be inaccurate, or an obstacle such as a 
person may suddenly appear, and so on. Instead the 
goal must be given relative to something that can be 
sensed in the environment, and flexibility must be built 
in to the action in order to avoid unanticipated unde­
sirable states. Experience also shows that a fruitful 
way to think of such a control system is as a collec­
tion of concurrent, independent behaviors [Brooks, 1986; 
Slack, 1992]. Such behaviors can be enabled in sets that 
correspond to the notion of discrete "primitive steps" 
that will reliably carry out an action in the world over 
some period of time. The RAP system produces goal-
directed behavior using this idea by refining abstract 
plan steps into a sequence of different configurations for 
a process-based control system. 

The resulting interface between reactive execution and 
continuous control is illustrated in Figure 1. It consists 
of instructions to enable, disable, and set the parame­
ters of individual routines. Thus, the RAP system sim­
ply configures the control system and cannot change the 
routines available or the attributes that connect them. 

Control routines communicate with the RAP system 
by sending signals. Signals are typically low bandwidth 
messages such as "I've reached the position I was sup­
posed to get to" or "I haven't made any progress in a 
while." Each routine will have a set of signals it sends 
under various circumstances. Since routines do not typ­
ically know the reason they have been enabled (i.e., the 
goal enabling the routine is known to the RAP system but 
not the control system), the messages they send carry 
very little information when taken out of context. It 
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is up to the RAP system to interpret these messages in 
light of the goals it is pursuing and the routines it has 
enabled. For example, "I cannot move forward", might 
mean failure because there is an obstacle in the way if 
the robot is trying to cross a room; on the other hand, 
the same signal might mean success if the robot is sup­
posed to move down a long hallway until it reaches the 
end. The task expansion structure built up by the RAP 
system during execution is ideal for this interpretation. 

For example, suppose the next routine to be carried 
out is to move to a trash can. This routine can be imple­
mented using the fairly generic action routine "move in a 
given direction while avoiding obstacles." The argument 
to this routine is the direction to move and that can be 
updated in real time by an active sensing routine that 
continually tracks the direction to the can. Possible rou­
tines might track the trash can's shape, color, or motion, 
depending on the situation. It is up to the RAP system to 
choose which is appropriate at run time. Once the action 
and tracking routines have been enabled, the control sys­
tem will move the robot towards the can whatever gets 
in the way. This control state will last indefinitely with­
out further intervention as long as the tracked feature 
stays in view and the path toward it stays reasonably 
clear. 

2.3 Visual Routines 
The visual system is based on a modular set of task-
specific modules, termed visual routines, designed to 
sense the information required by the reactive skills. 
These modules are in turn composed of a sequence of 
primitive visual processing steps called visual operators. 
The operators and routines are designed with re-use in 
mind. The intermediate representations passed between 
operators are designed to be as generic as possible, so 
that they may be shared by multiple operators. With 
a common language of intermediate representations, it 

is posssible to compose many different routines with a 
much smaller number of primitive operators. While the 
routines are designed to be task-specific, as much as pos­
sible the task constraints are input as parameters, rather 
than being coded into the routine. 

The base representation generated by the early visual 
system provided to the routines is a three-band (R,G,B) 
color Gaussian pyramid. Visual routines may access a 
rectangular subset of any level of the pyramid. All fur­
ther representations are created on demand by visual 
operators. 

3 C H I P 
The robot we have constructed as a testbed for our 
ideas is shown schematically in Figure 2. It uses 
a three-wheeled omni-directional mobile base built by 
Real World Interface (RWI). Stereo color cameras are 
mounted on top of the robot on a two degree of freedom 
computer-controlled pan-tilt platform. Video signals are 
processed off-board by Datacube image processing hard­
ware attached to a host Sun SparcStation. The robot 
sensors also include sonar sensors and infrared proxim­
ity sensors. The sonars can be turned to face the surface 
nearest the robot to minimize problems due to specular 
reflection. The infrared sensors are well equipped for de­
tecting obstacles near the robot (their signal drops off 
quickly after about ten centimeters), and have failure 
modes that are complementary to the sonar sensors. For 
manipulation, CHIP is equipped with a Heathkit Hero 
arm and manipulator. Force and contact sensors on the 
gripper provide tactile feedback. 

Microprocessors mounted on the robot run the sensors, 
do initial processing of the data they create, and skills 
that do not require visual processing, which is done off-
board. The microprocessors share a small amount of 
memory to allow communication and synchronization. 
The on-board microprocessors talk via radio modem to 
a Macintosh computer, which runs some control routines 
and the reactive planner. 

The robot can be run in either a tethered mode or a 
non-tethered mode in which the cameras transmit video 
to the Datacube and the Macintosh workstation com­
municates with the on-board microprocessors via a radio 
link. 

The robot has enough freedom of movement to allow 
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it to navigate through a considerable area within the 
Computer Science Department. Because people work 
within the robot's range of movement, the robot's world 
is always changing. 

CHIP's vision processing is distributed over a Sun 
Sparc-20 workstation and a DataCube MV-200 image 
processing computer with a DigiColor digitizer. The 
DataCube is a pipelined processor that can perform 
many operations including convolutions and histogram­
ming in real-time. The DataCube Server [Kahn, 1993] al­
lows multiple processes to access the DataCube simulta­
neously from any machine on the network. The Server al­
lows us to implement our visual routines as separate pro­
cesses potentially distributed across multiple machines 
while still allowing each visual routine to access data 
from the DataCube. 

There is a set of low-level visual operations that are 
widely used among the visual routines and/or are time-
critical and so have been implemented on the DataCube. 
These operations include the creation of color Gaussian 
and Laplacian pyramids, extracting subregions from a 
level of one of the pyramids, convolution, and histogram­
ming, color histogram backprojection and motion detec­
tion. Visual routines may access a rectangular subset of 
any level of the pyramid. All further representations are 
created on demand by visual operators. 

During each visual routine's initialization a socket con­
nection with the DataCube Server is established. When 
a visual routine requires a computation to be performed 
on the DataCube it sends requests to the DataCube 
Server. The DataCube Server performs the requested 
operation and returns the output. The programming in­
terface to the DataCube Server makes all server requests 
look like normal function calls. Using this interface we 
are able to write visual routines that use the DataCube 
without worrying about its internals. 

Visual routines communicate with the rest of the sys­
tem through a mechanism called the Message Hub [Kahn 
et a/., 1994]. The message hub provides a reliable socket 
based communication link between processes with a sim­
ple programming interface. 

4 Exper imen t : The Trash Col lect ion 
Task 

In one of the 1994 AAAI events, robots competed to 
tidy up an office area littered with soda cans, styrofoam 
cups, and paper wads, collecting and depositing them in 
any nearby trash can. Although CHIP did not win the 
event, it was the only robot to actually pick up a piece 
of trash and put it in a trash can. The RAP system 
made it easy to decompose the task into a set of simpler 
vision, navigation, and manipulation goals, and to add 
new context-dependent methods for achieving them. At 
the top level, CHIP's goal in this example is "put-trash-
in-can". To an outside observer, the behavior looks like 
the sequence: 

(sequence 
( t l (scan-for-object trash)) 
(t2 (go-to-object trash 80)) 
(t3 (orient-to-object trash 40)) 
(t4 (pickup-object trash)) 
(t5 (scan-for-object trash-can)) 
(t6 (go-to-object trash-can 120)) 
(t7 (orient-to-object trash-can 70)) 
(t8 (drop-held-object)))))) 

Figure 3: Method for achieving the top-level goal put-
trash-tn-can, The numbers indicate distances from the 
denoted objects (in cm). 

find trash nearby — move to trash — align with trash 
— pick up trash — find trash can — travel to trash can 
— align with trash can — dump trash in can — turn 
back toward where trash was found — repeat 

The method for achieving this goal is the sequence 
of subgoals in Figure 3. All these goals lead to further 
subgoals; ultimately, primitive goals enable the robot's 
perceptual and behavioral routines. In total, there are 
55 RAPs, five of which are specific to the trash collection 
task. The RAPs invoke a total of 20 reactive skills, five 
of which involve visual processing. The visual processing 
is made specific to the task by the models that are passed 
to the routines. The RAPs are described in more detail 
in [Firby et at., 1995]. 

We'll examine two steps of the method to demonstrate 
CHIP's visual routines, and cooperative on-board/off-
board perceptual and motor processes. For the subgoal 
scan-for-object, CHIP identifies and locates a nearby ob­
ject that can be segmented from the floor. The subgoal 
orient-to-object consists of precisely lining up with it to 
grab it. 

When searching, CHIP alternates simple exploratory 
movements (e.g., scanning its head) with calls to a visual 
routine, the small object finder, which finds and classi­
fies small objects lying on surfaces with only fine (high 
spatial frequency) texture or none at all. The routine 
uses the DataCube to grab an image, smooth it, and ex­
tract edges. The edges are closed into segments, which 
are then classified with a set of thresholds on size, as­
pect ratio, edge density, and gray-scale brightness. The 
process typically takes under four seconds for a high res­
olution image of a cluttered scene. Accuracy is currently 
at 95 percent on a database of challenging test images, 
and almost perfect in actual runs of the task. 

The distance and bearing of the object are computed 
from a single image using triangulation from the robot's 
known height and assuming that the object is on the 
floor. This calibration is cached for particular tilt angles 
of the camera. 

For the goal orient-to-object, CHIP aligns itself di­
rectly in front of the target, at a distance of less than one 
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Figure 4: Image processing steps for identifying trash. 
Upper left: high-resolution test image; upper right: 
edges from Sobel operator after gaussian smoothing; 
lower left: edges closed into segments; lower right: small 
and large segments removed. 

meter. A visual tracking routine locates a piece trash re­
peatedly and generates a target location with which to 
align. The results are time-averaged to provide a stable 
and accurate reference point with which CHIP can align. 

The tracking routine operates exactly like the object 
finder described above, except that the identification 
procedure operates only on a much smaller window (Fig­
ure 5), at greater than one update per second. The 2D 
frame-to-frame image displacements of the tracked ob­
ject's centroid are fitted to a model of smooth image 
motion that determines placement of the next process­
ing window [Prokopowicz et a/., 1994]. If the object is 
not in the window, the entire scene is searched. The pri­
mary advantage of tracking in this situation is to avoid 
confused behavior that can result from identifying dif­
ferent items at different stages of the routine. 

When the RAP system encouters the goal orient-to-
object , it selects a method for achieving the goal accord­
ing to whether the object involved is a piece of trash or 
a trash can. The method for orienting to a piece of trash 
expands into two parallel goals: primitive-track-small-
object and primitive-orient-to-goal. The RAP method 
for primitive-orient-to-goal enables a routine to watch 
for violations of a safety zone in front of the robot (us­
ing sonars) and a routine to orient the robot's position 
according to an input goal location. The method for 
primitive-track-small-object enables the trash-tracking 
visual routine to update that goal location continuously. 
The routines enabled for these goals run as separate 
processes. The orient-to-goal routines run on-board the 
robot using odometry to drive and turn to a certain dis-

Figure 5: CHIP's view of a can during alignment. Inset: 
the can as it is tracked. Only the image area in the white 
box is processed. 

Figure 6: left: CHIP rolls forward after aligning with 
the can; right: CHIP's view as it picks up a can. 

tance and direction from the goal location. The trash-
tracking visual routine runs off-board and repeatedly 
computes a relative distance to the target which is turned 
into a new goal location and passed to the on-board 
orient-to-goal routine. To orient to the trash can, a dif­
ferent method is chosen by orient-to-object: enabling the 
same action routines used for orienting to trash but a dif­
ferent visual routine for updating the goal location using 
visual operators better for finding trash cans. 

Once CHIP has lined up with the object to be picked 
up, it rolls forward blindly until the LED beam between 
its fingers is broken by an object, or nothing is encoun­
tered within a meter. CHIP is able to align itself and 
roll forward accurately enough to pick up trash almost 
every time (Figure 6). Failures are noticed and retried. 

The trash finder is designed to find easily-segmented 
objects known only by their class membership (e.g. pop 
cans of all types, crumpled paper of various shapes). We 
have developed a different routine for locating and track-
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Figure 7: Edge models, taken from distances of 3 meters to 0.75 meters. 

ing known objects that cannot necessarily be segmented 
from their background. We have had some success in this 
direction using a Hausdorff model-matcher developed at 
Cornell [Huttenlocher and Rucklidge, 1992]. 

We assume: 

1. color and edge models of the object from likely views 
(Figure 7) 

2. the object sits upright on the floor, and is shorter 
than the robot 

3. the floor is flat 

4. the robot's view of the the object suffers at most 
minor occlusion 

This last assumption is less limiting than one might ex­
pect, since the robot is free to roam about the room in 
search of the object. 

Using this approach, we are able to avoid searching 
over all possible views. We search locations in the scene 
consistent with an object sitting on the floor, and we 
combine the results of different algorithms to speed the 
search. 

The solution is as follows: 

1. Using RAPs, scan the room from left to right, 
changing view enough to leave a reasonable overlap 
between views 

2. For each view, enable a visual routine that: 

(a) Finds all regions of interest using color [Swain 
and Ballard, 199l] 

(b) Runs a HausdorfF edge matcher [Huttenlocher 
and Rucklidge, 1992] in each region of interest 

The robot takes advantage of the assumption that the 
object is on the floor by restricting the region searched 
vertically, according to the height of the object and the 
distance to the nearest model in the set. It also takes ad­
vantage of this assumption to restrict the range of scale 
searched by the edge matcher within each region of in­
terest returned by the color matcher. Doing so relies on 

the distance calibration over the image for the floor at 
the angle of view of the camera during the search. 

The HausdorfF metric allows one to measure the match 
of a template to an image, allowing minor deformations. 
The Cornell software searches efficiently over all trans­
lations and scalings of the template (within controllable 
limits) to find the best fit. We have found that the pro-
cess works somewhat more reliably if the range of scales 
is limited (to between 100 and 75 percent, in our case) 
and more models are used to span the scales actually 
encountered. We have had good results with match cri­
teria that at least 80 percent of the scaled and translated 
model points lie within one pixel (across or diagonally) 
of some image point. A reverse match criteria that at 
least half the image edge points covered by the model 
lie within one pixel of some model point reduces false 
matches in dense parts of the edge image. 

As efficient as the Cornell software is, we have found 
it too slow over large, cluttered scenes, except at very 
low resolutions or with unrealistically tight match crite-
ria. The relatively high complexity of the edge matching 
motivated our use of color, to screen possible locations 
prior to edge matching. The histogram back-projection 
technique assigns to each color pixel a rating accord­
ing to how well it indicates the presence of the model. 
The histogram is computed in an 8 bit hue, saturation, 
value color space, with 3 bits resolution of hue and sat­
uration, and 2 of value. The pixel saliency ratings are 
then averaged over 4x4 neighborhoods, and the peaks 
above a threshold are found. An area around the peak 
is cropped until the smoothed saliency value falls under 
10 percent of the peak value. Most of the image has 
values at or near zero (figure 8L), so the edge match­
ing phase is greatly speeded up. The back-projection 
and edge-detection is computed on the DataCube, and 
region cropping is done on the workstation, taking to­
gether less than 0.2 seconds. In a typical scene as shown 
here, matching against all models of a target (we use up 
to six) takes about 0.5 seconds. 

In Table 1 the search times and results are given as the 
task constraints are added one by one. In all cases, the 
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Figure 8: Top left: Back-projected color model of a trash can into medium-resolution image; top right: peaks in 
image extracted for matching to edge models; bottom: model found. 

Table 1: Cost and accuracy of a 360-degree high resolu­
tion search for a trash can. Each search used 8 overlap­
ping views. Image grabbing and color processing were 
done on a Datacube image processor; edge matching on 
a Sparc 20. Times shown are elapsed seconds, including 
the time to re-orient the camera. 

trash can was correctly identified, but with fewer con­
straints the search took longer and resulted in more false 
positives. The technique is reliable, requires only modest 
computing resources, and can be extended to arbitrary 
objects - provided the task constraints hold, which are 
that the object is of restricted size, and sits on the floor 
in one of a small number of possible orientations. 

The distance to an object found with the Hausdorff 
matcher can be easily computed using the known dis­
tance to the original picture of the model and the scale 
at which the model matched the image. We compare 
this distance to the triangulated distance judged from 
the location of the model in the image, assuming that 
the object is on the floor with the robot. Matches whose 
distances don't agree within 25 percent are rejected. 

The robot has successfully found, picked up, and 
thrown away hundreds of pieces of trash, at rate of about 
12 pieces per hour. We have been able to demonstrate 
increasing if not perfect reliability. One major impedi­
ment to high reliability in our current system is its rudi­
mentary navigation abilities. CHIP does not try to re­
member where trash has been seen before and ignores 
small objects on the floor while moving around. These 
capabilities are being added now. 

Figure 9: CHIP's view of a trash-can during alignment. 
Inset: match made to an edge model of the trash-can. 

5 Related Work 

Kosecka and Bajcsy [Kosecka and Bajcsy, 1993] have 
studied synthesizing complex behaviors from simpler 
components. They model their components using Dis­
crete Events Systems (DES) theory, which allows them 
to predict the controllability of composite behaviors, that 
is, whether or not it is possible to reach a goal state 
from a given state in the system. We leave the decision 
of how to combine multiple concurrent skills to the pro­
grammer, and instead concentrate on languages to con­
veniently express which skills should be run in sequence 
or in parallel, and to build natural interfaces that allow 
visual operators and control routines to be parametrized 
and composed to perform a variety of tasks. Aloimonos 
[Aloimonos, 1990; 1994] has been an outspoken advo­
cate of what he calls the purposive approach to achiev­
ing general-purpose vision, which is generally consistent 
with the approach we have taken here. 

6 Conclusion and Future W o r k 
This paper describes the design of an implemented archi­
tecture that both enables the use of context from the task 
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and environment to simplify vision problems, and allows 
the components (visual operators and control routines) 
to be reconfigured to solve a variety of tasks with mini­
mal reprogramming. It provides a framework for build­
ing vision systems that are robust and timely, and can 
be utilized for a variety of tasks. We have demonstrated 
an implemented system (important parts of which are 
available to others) that works on a trash collection task 
in an office environment, and have explained why the 
components can be re-used in another task or environ­
ment. 

We are using the architecture to encode a number of 
different robot skills, including fetching tools and other 
objects under human guidance, and delivering items to 
people's desks. But one of the first tasks is to prepare 
for the next robot competition, in which the task will 
be to expanded to sorting recyclables from the trash. 
Reprogramming CHIP to perform this task will involve 
merely acquiring models for the recycling bin, and mod­
ifying the put-trash-in-can RA P to choose a destination 
depending on the identity of the object picked up. 

References 
[Agre and Chapman, 1987] Philip E. Agre and David Chap­

man. Pengi: An implementation of a theory of activity. In 
Sixth National Conference on Artificial Intelligence, Seat­
tle, WA, July 1987. AAAI. 

[Aloimonos, 1990] John Aloimonos. Purposive and qualita­
tive active vision. In International Conference on Pattern 
Recognition, pages 346-360, 1990. 

[Aloimonos, 1994] Yiannis Aloimonos. What I have learned. 
CVGIP: Image Understanding, 60:74-85, 1994. 

[Bajcsy, 1988] R. Bajcsy. Active perception. Proceedings of 
the JEEE, 76:996-1005, 1988. 

[Brooks, 1986] Rodney A. Brooks. A robust layered control 
system for a mobile robot. IEEE Journal of Robotics and 
Automation, RA-2:14-23, 1986. 

[Brown, 1994] Christopher M. Brown. Toward general vi­
sion. CVGIP: Image Understanding, 60:89-91, 1994. 

[Dickmanns and Graefe, 1988] Ernst Dieter Dickmanns and 
Volker Graefe. Dynamic monocular machine vision. Ma­
chine Vision and Applications, 1:223-240, 1988. 

[Firby et ai, 1995] R. James Firby, Peter N. Prokopowicz, 
and Michael J. Swain. Plan representations for picking up 
trash. Technical report, Department of Computer Science, 
University of Chicago, 1995. 

[Firby, 1987] R. James Firby. An investigation into reac­
tive planning in complex domains. In Sixth National Con­
ference on Artificial Intelligence, Seattle, WA, July 1987. 
AAAI. 

[Firby, 1989a] R. James Firby. Adaptive execution in com­
plex dynamic worlds. Technical Report YALEU/CSD/RR 
672, Department of Computer Science, Yale University, 
1989. 

[Firby, 1989b] R. James Firby. Adaptive execution in com­
plex dynamic worlds. Technical Report YALEU/CSD/RR 
#672, Computer Science Department, Yale University, 
January 1989. 

[Firby, 1994] R. James Firby. Task networks for controlling 
continuous processes. In Proceedings of the Second Inter­
national Conference on AI Planning Systems, pages 49-54, 
1994. 

[Horswill, 1993] Ian D. Horswill. Specialization of Perceptual 
Processes. PhD thesis, Dept. of EE & CS, Massachusetts 
Institute of Technology, 1993. 

[Huttenlocher and Rucklidge, 1992] Daniel P. Huttenlocher 
and William J. Rucklidge. A multi-resolution technique 
for comparing images using the hausdorff distance. Tech­
nical Report CUCS TR 92-1321, Department of Computer 
Science, Cornell University, 1992. 

[Kahn et ai, 1994] Roger E. Kahn, R. James Firby, and 
Michael J. Swain. The message hub. Animate Agent 
Project Working Note 4, University of Chicago, April 1994. 

[Kahn, 1993] Ari Kahn. Using the datacube client class. 
The University of Chicago, Computer Science Department, 
1993. 

[Kosecka and Bajcsy, 1993] Jana Kosecka and Ruzena Ba­
jcsy. Cooperation of visually guided behaviors. In IEEE 
International Conference on Computer Vision, pages 502-
506, 1993. 

[Marr, 1982] D.C. Marr. Vision. Freeman, 1982. 

[Nelson, 1989] R. C. Nelson. Using flow field divergence 
for obstacle avoidance in visual navigation. IEEE Trans­
actions on Pattern Analysis and Machine Intelligence, 
11:1102-1106, 1989. 

[Prokopowicz et al, 1994] Peter N. Prokopowicz, Michael J. 
Swain, and Roger E. Kahn. Task and environment-
sensitive tracking. In Proceedings of the I APR/IEEE 
Workshop on Visual Behaviors, 1994. 

[Slack, 1990] Marc G. Slack. Situationally driven local nav­
igation for mobile robots. Technical Report JPL Publica­
tion 90-17, Jet Propulsion Laboratory, April 1990. 

[Slack, 1992] M.G. Slack. Sequencing formally defined reac­
tions for robotic activity: Integrating raps and gapps. In 
Vol. 1828 Sensor Fusion V: Simple Sensing for Complex 
Action, Boston, MA, November 1992. SPIE. 

[Swain and Ballard, 199l] Michael J. Swain and Dana H. 
Ballard. Color indexing. International Journal of Com­
puter Vision, 7:11-32, 1991. 

[Tarr and Black, 1994] Michael J. Tarr and Michael J. Black. 
A computational and evolutionary perspective on the role 
of representation in vision. CVGIP: Image Understanding, 
60:65-73, 1994. 

[Ullman, 1984] Shimon Ullman. Visual routines. Cognition, 
18:97-159, 1984. 

FIRBY, ET AL 79 


