
A n A r c h i t e c t u r e f o r V i s i o n a n d A c t i o n *

R. James Fi rby, Roger E. K a h n ,
Peter N. Prokopowicz and Michael J. Swain

Department of Computer Science
University of Chicago

1100 E. 58th St., Chicago, IL 60637
firby,kahn,peterp,swain@cs.uchicago.edu

Abst rac t

Vision systems that have successfully sup­
ported nontrivial tasks have invariably taken
advantage of constraints derived from the task
and environment to increase reliability and
lower the complexity of perception. We pro­
pose that it is possible to build a general pur­
pose vision system, that is, one that can sup-
port a wide variety of tasks, and take advantage
of such constraints. The central idea within our
proposed architecture is the reactive skill. Skills
are concurrent control routines assembled at
run time using instructions from a symbolic ex­
ecution system. Visual modules are used as re­
sources in the construction of these skills. Skills
control the agent as continuous feedback loops
but are constructed using discrete, symbolic in­
structions. The key to general-purpose vision
is the ability to parametrize the primitive el­
ements of the vision system and to compose
visual and control routines in a variety of ways.
We demonstrate the architecture in the context
of an implemented example task of a robot col­
lecting trash off a floor and depositing it in a
garbage can.

1 I n t roduc t i on
A longstanding goal in computer vision has been to de­
velop general vision that can support a wide variety of
goals, and inform the observer of the relevant ways in
which the world does not meet its expectations [Marr,
1982; Tarr and Black, 1994; Brown, 1994]. On the other
hand, it is advantageous for working systems to make as
much use of the task and domain constraints as possible;
vision systems that have successfully supported nontriv­
ial tasks have invariably done so (see e.g. [Horswill, 1993]
[Dickmanns and Graefe, 1988]). Our goal is to build a

*This work was supported in part by ONR contract
N00014-93-1-0332, ARPA contract N00014-93-1-1394 and
NSF Grant No. IRI-9210763-A01.

system that is able to take advantage of task and en­
vironmental constraints, and yet is flexible enough to
respond to dangerous situations and failed expectations,
and can be quickly reprogrammed to do a different task
or work in a different environment. The key to doing so
is to build re-usable components that can be assembled
in a task and environment specific way.

We call our proposal the Animate Agent Architecture.
In the Animate Agent Architecture, visual processing
is encapsulated in modules called visual routines (af­
ter [Ullman, 1984]) that can be invoked as needed, and
which are in turn composed of combinations of primitives
called visual operators. At run-time, visual routines are
paired with action routines designed to run in a tight
servo loop with perceptual routines to meet the real-time
constraints of the task. The resulting process is termed
a reactive skill [Slack, 1990; Firby, 1994]. Skills are in­
voked and can be terminated by a higher level system,
that has access to the agent's knowledge of the task and
environment, and is therefore well-suited to selecting the
appropriate set of control and perceptual routines. For
this component, we use the RAP system [Firby, 1989a;
1994]. In contrast to the tight link between the control
routines and visual routines, the RAP system commu­
nicates with the skills via a relatively low bandwidth
message-passing interface; we call the messages signals.
We illustrate the architecture in the context of a trash
collection task - one of the tasks of the 1994 AAAI robot
competition.

Our design seeks to take advantage of as many con­
straints as possible in any given situation and encode
the constraints that change from situation to situation
at a high level, where they are easily changed. These
constraints allow us to sidestep many of the difficulties
that increase the complexity and lower the accuracy of
computer vision algorithms. For example, when looking
for a trash can, the robot is able to avoid searching over
all possible views (or, alternatively, using only features
that are independent of perspective) because we have a
good idea of the view from which the robot will see the
trash can (assuming it is sitting upright on the floor).
We are also able to limit the search to only locations in

72 ACTION AND PERCEPTION

the scene consistent with an object sitting on the floor,
and to combine the results of different algorithms to in­
crease the speed and reliability of the search.

Within this framework, not all sensing is task-driven.
For instance, a visual operator monitoring possibly ap­
proaching objects to warn of possible collisions (such as
Nelson's directional divergence operator [Nelson, 1989])
can raise a signal if it senses motion that appears danger­
ous. If the taking avoidance action is of higher priority
than the ongoing task, the RAP system will interrupt the
ongoing task to respond to the danger. If the response is
known by the RAP system not to conflict with the on­
going task, it is possible to run the processes in parallel.
While the current implementation does not implement
Nelson's algorithm, it does have equivalent signals raised
by the sonar sensors.

The entire trash collection task is described below, af­
ter a description of the proposed architecture and the
robot that accomplishes the task.

2 The A n i m a t e Agent Arch i tec ture
The overall system design for the Animate Agent Archi­
tecture consists of two components: the RAP reactive
plan executor, and a control system based on reactive
skills. The executor executes sketchy plans, that is, plans
that leave many steps to be chosen as the actual situa­
tion unfolds. It makes these choices at run time when
the true state of the world can be sensed. The output
from the executor is a detailed set of instructions for con­
figuring the skills that make use of the agent's sensors
and effectors.

2.1 The RAP Execution System
The RAP system expands vague plan steps into detailed
instructions at run time by choosing an appropriate
method for the next step from a preexisting library. By
waiting until run time, knowledge of the situation will
be direct rather than predicted and much of the uncer­
tainty and incompleteness plaguing the planner will have
disappeared. However, some uncertainty will always re­
main and incorrect methods will sometimes be chosen.
The RAP system copes with these problems by checking
to make sure that each method achieves its intended goal
and, if it doesn't, choosing another method and trying
again.

In the RAP system a task is described by a Reactive
Action Package (RAP) which is effectively a context sen­
sitive program for carrying out the task. The RAP can
also be thought of as describing a variety of plans for
achieving the task in different situation.

The RAP system [Firby, 1987; 1989b] carries out tasks
using the following algorithm. First, a task is selected
for execution and if it represents a primitive action, it
is executed directly, otherwise its corresponding RAP is
looked up in the library. Next, that RAP'S check for
success is used as a query to the situation description

and, if satisfied, the task is considered complete and the
next task can be run. However, if the task has not yet
been satisfied, its method-applicability tests are checked
and one of the methods with a satisfied test is selected.
Finally, the subtasks of the chosen method are queued for
execution in place of the task being executed, and that
task is suspended until the chosen method is complete.
When all subtasks in the method have been executed,
the task is reactivated and its completion test is checked
again. If all went well the completion condition will now
be satisfied and execution can proceed to the next task.
If not, method selection is repeated and another method
is attempted.

2.2 Reactive Skills

The RAP system refines tasks into detailed discrete ac­
tions at run time. However, one of the primary lessons
of both recent AI research into robot control [Agre
and Chapman, 1987] and recent vision research into ac­
tive perception [Bajcsy, 1988] is that actions must be
dynamic processes tolerant of sensor error and chang­
ing surroundings: they must be reactive. It is not
useful for a planning system to control a robot with
steps like "move forward 10 feet" because the loca­
tion of the robot may not be known exactly, the world
model may be inaccurate, or an obstacle such as a
person may suddenly appear, and so on. Instead the
goal must be given relative to something that can be
sensed in the environment, and flexibility must be built
in to the action in order to avoid unanticipated unde­
sirable states. Experience also shows that a fruitful
way to think of such a control system is as a collec­
tion of concurrent, independent behaviors [Brooks, 1986;
Slack, 1992]. Such behaviors can be enabled in sets that
correspond to the notion of discrete "primitive steps"
that will reliably carry out an action in the world over
some period of time. The RAP system produces goal-
directed behavior using this idea by refining abstract
plan steps into a sequence of different configurations for
a process-based control system.

The resulting interface between reactive execution and
continuous control is illustrated in Figure 1. It consists
of instructions to enable, disable, and set the parame­
ters of individual routines. Thus, the RAP system sim­
ply configures the control system and cannot change the
routines available or the attributes that connect them.

Control routines communicate with the RAP system
by sending signals. Signals are typically low bandwidth
messages such as "I've reached the position I was sup­
posed to get to" or "I haven't made any progress in a
while." Each routine will have a set of signals it sends
under various circumstances. Since routines do not typ­
ically know the reason they have been enabled (i.e., the
goal enabling the routine is known to the RAP system but
not the control system), the messages they send carry
very little information when taken out of context. It

FIRBY, ET AL 73

is up to the RAP system to interpret these messages in
light of the goals it is pursuing and the routines it has
enabled. For example, "I cannot move forward", might
mean failure because there is an obstacle in the way if
the robot is trying to cross a room; on the other hand,
the same signal might mean success if the robot is sup­
posed to move down a long hallway until it reaches the
end. The task expansion structure built up by the RAP
system during execution is ideal for this interpretation.

For example, suppose the next routine to be carried
out is to move to a trash can. This routine can be imple­
mented using the fairly generic action routine "move in a
given direction while avoiding obstacles." The argument
to this routine is the direction to move and that can be
updated in real time by an active sensing routine that
continually tracks the direction to the can. Possible rou­
tines might track the trash can's shape, color, or motion,
depending on the situation. It is up to the RAP system to
choose which is appropriate at run time. Once the action
and tracking routines have been enabled, the control sys­
tem will move the robot towards the can whatever gets
in the way. This control state will last indefinitely with­
out further intervention as long as the tracked feature
stays in view and the path toward it stays reasonably
clear.

2.3 Visual Routines
The visual system is based on a modular set of task-
specific modules, termed visual routines, designed to
sense the information required by the reactive skills.
These modules are in turn composed of a sequence of
primitive visual processing steps called visual operators.
The operators and routines are designed with re-use in
mind. The intermediate representations passed between
operators are designed to be as generic as possible, so
that they may be shared by multiple operators. With
a common language of intermediate representations, it

is posssible to compose many different routines with a
much smaller number of primitive operators. While the
routines are designed to be task-specific, as much as pos­
sible the task constraints are input as parameters, rather
than being coded into the routine.

The base representation generated by the early visual
system provided to the routines is a three-band (R,G,B)
color Gaussian pyramid. Visual routines may access a
rectangular subset of any level of the pyramid. All fur­
ther representations are created on demand by visual
operators.

3 C H I P
The robot we have constructed as a testbed for our
ideas is shown schematically in Figure 2. It uses
a three-wheeled omni-directional mobile base built by
Real World Interface (RWI). Stereo color cameras are
mounted on top of the robot on a two degree of freedom
computer-controlled pan-tilt platform. Video signals are
processed off-board by Datacube image processing hard­
ware attached to a host Sun SparcStation. The robot
sensors also include sonar sensors and infrared proxim­
ity sensors. The sonars can be turned to face the surface
nearest the robot to minimize problems due to specular
reflection. The infrared sensors are well equipped for de­
tecting obstacles near the robot (their signal drops off
quickly after about ten centimeters), and have failure
modes that are complementary to the sonar sensors. For
manipulation, CHIP is equipped with a Heathkit Hero
arm and manipulator. Force and contact sensors on the
gripper provide tactile feedback.

Microprocessors mounted on the robot run the sensors,
do initial processing of the data they create, and skills
that do not require visual processing, which is done off-
board. The microprocessors share a small amount of
memory to allow communication and synchronization.
The on-board microprocessors talk via radio modem to
a Macintosh computer, which runs some control routines
and the reactive planner.

The robot can be run in either a tethered mode or a
non-tethered mode in which the cameras transmit video
to the Datacube and the Macintosh workstation com­
municates with the on-board microprocessors via a radio
link.

The robot has enough freedom of movement to allow

74 ACTION AND PERCEPTION

it to navigate through a considerable area within the
Computer Science Department. Because people work
within the robot's range of movement, the robot's world
is always changing.

CHIP's vision processing is distributed over a Sun
Sparc-20 workstation and a DataCube MV-200 image
processing computer with a DigiColor digitizer. The
DataCube is a pipelined processor that can perform
many operations including convolutions and histogram­
ming in real-time. The DataCube Server [Kahn, 1993] al­
lows multiple processes to access the DataCube simulta­
neously from any machine on the network. The Server al­
lows us to implement our visual routines as separate pro­
cesses potentially distributed across multiple machines
while still allowing each visual routine to access data
from the DataCube.

There is a set of low-level visual operations that are
widely used among the visual routines and/or are time-
critical and so have been implemented on the DataCube.
These operations include the creation of color Gaussian
and Laplacian pyramids, extracting subregions from a
level of one of the pyramids, convolution, and histogram­
ming, color histogram backprojection and motion detec­
tion. Visual routines may access a rectangular subset of
any level of the pyramid. All further representations are
created on demand by visual operators.

During each visual routine's initialization a socket con­
nection with the DataCube Server is established. When
a visual routine requires a computation to be performed
on the DataCube it sends requests to the DataCube
Server. The DataCube Server performs the requested
operation and returns the output. The programming in­
terface to the DataCube Server makes all server requests
look like normal function calls. Using this interface we
are able to write visual routines that use the DataCube
without worrying about its internals.

Visual routines communicate with the rest of the sys­
tem through a mechanism called the Message Hub [Kahn
et a/., 1994]. The message hub provides a reliable socket
based communication link between processes with a sim­
ple programming interface.

4 Exper imen t : The Trash Col lect ion
Task

In one of the 1994 AAAI events, robots competed to
tidy up an office area littered with soda cans, styrofoam
cups, and paper wads, collecting and depositing them in
any nearby trash can. Although CHIP did not win the
event, it was the only robot to actually pick up a piece
of trash and put it in a trash can. The RAP system
made it easy to decompose the task into a set of simpler
vision, navigation, and manipulation goals, and to add
new context-dependent methods for achieving them. At
the top level, CHIP's goal in this example is "put-trash-
in-can". To an outside observer, the behavior looks like
the sequence:

(sequence
(t l (scan-for-object trash))
(t2 (go-to-object trash 80))
(t3 (orient-to-object trash 40))
(t4 (pickup-object trash))
(t5 (scan-for-object trash-can))
(t6 (go-to-object trash-can 120))
(t7 (orient-to-object trash-can 70))
(t8 (drop-held-object))))))

Figure 3: Method for achieving the top-level goal put-
trash-tn-can, The numbers indicate distances from the
denoted objects (in cm).

find trash nearby — move to trash — align with trash
— pick up trash — find trash can — travel to trash can
— align with trash can — dump trash in can — turn
back toward where trash was found — repeat

The method for achieving this goal is the sequence
of subgoals in Figure 3. All these goals lead to further
subgoals; ultimately, primitive goals enable the robot's
perceptual and behavioral routines. In total, there are
55 RAPs, five of which are specific to the trash collection
task. The RAPs invoke a total of 20 reactive skills, five
of which involve visual processing. The visual processing
is made specific to the task by the models that are passed
to the routines. The RAPs are described in more detail
in [Firby et at., 1995].

We'll examine two steps of the method to demonstrate
CHIP's visual routines, and cooperative on-board/off-
board perceptual and motor processes. For the subgoal
scan-for-object, CHIP identifies and locates a nearby ob­
ject that can be segmented from the floor. The subgoal
orient-to-object consists of precisely lining up with it to
grab it.

When searching, CHIP alternates simple exploratory
movements (e.g., scanning its head) with calls to a visual
routine, the small object finder, which finds and classi­
fies small objects lying on surfaces with only fine (high
spatial frequency) texture or none at all. The routine
uses the DataCube to grab an image, smooth it, and ex­
tract edges. The edges are closed into segments, which
are then classified with a set of thresholds on size, as­
pect ratio, edge density, and gray-scale brightness. The
process typically takes under four seconds for a high res­
olution image of a cluttered scene. Accuracy is currently
at 95 percent on a database of challenging test images,
and almost perfect in actual runs of the task.

The distance and bearing of the object are computed
from a single image using triangulation from the robot's
known height and assuming that the object is on the
floor. This calibration is cached for particular tilt angles
of the camera.

For the goal orient-to-object, CHIP aligns itself di­
rectly in front of the target, at a distance of less than one

FIRBY, ETAL 75

Figure 4: Image processing steps for identifying trash.
Upper left: high-resolution test image; upper right:
edges from Sobel operator after gaussian smoothing;
lower left: edges closed into segments; lower right: small
and large segments removed.

meter. A visual tracking routine locates a piece trash re­
peatedly and generates a target location with which to
align. The results are time-averaged to provide a stable
and accurate reference point with which CHIP can align.

The tracking routine operates exactly like the object
finder described above, except that the identification
procedure operates only on a much smaller window (Fig­
ure 5), at greater than one update per second. The 2D
frame-to-frame image displacements of the tracked ob­
ject's centroid are fitted to a model of smooth image
motion that determines placement of the next process­
ing window [Prokopowicz et a/., 1994]. If the object is
not in the window, the entire scene is searched. The pri­
mary advantage of tracking in this situation is to avoid
confused behavior that can result from identifying dif­
ferent items at different stages of the routine.

When the RAP system encouters the goal orient-to-
object , it selects a method for achieving the goal accord­
ing to whether the object involved is a piece of trash or
a trash can. The method for orienting to a piece of trash
expands into two parallel goals: primitive-track-small-
object and primitive-orient-to-goal. The RAP method
for primitive-orient-to-goal enables a routine to watch
for violations of a safety zone in front of the robot (us­
ing sonars) and a routine to orient the robot's position
according to an input goal location. The method for
primitive-track-small-object enables the trash-tracking
visual routine to update that goal location continuously.
The routines enabled for these goals run as separate
processes. The orient-to-goal routines run on-board the
robot using odometry to drive and turn to a certain dis-

Figure 5: CHIP's view of a can during alignment. Inset:
the can as it is tracked. Only the image area in the white
box is processed.

Figure 6: left: CHIP rolls forward after aligning with
the can; right: CHIP's view as it picks up a can.

tance and direction from the goal location. The trash-
tracking visual routine runs off-board and repeatedly
computes a relative distance to the target which is turned
into a new goal location and passed to the on-board
orient-to-goal routine. To orient to the trash can, a dif­
ferent method is chosen by orient-to-object: enabling the
same action routines used for orienting to trash but a dif­
ferent visual routine for updating the goal location using
visual operators better for finding trash cans.

Once CHIP has lined up with the object to be picked
up, it rolls forward blindly until the LED beam between
its fingers is broken by an object, or nothing is encoun­
tered within a meter. CHIP is able to align itself and
roll forward accurately enough to pick up trash almost
every time (Figure 6). Failures are noticed and retried.

The trash finder is designed to find easily-segmented
objects known only by their class membership (e.g. pop
cans of all types, crumpled paper of various shapes). We
have developed a different routine for locating and track-

76 ACTION AND PERCEPTION

Figure 7: Edge models, taken from distances of 3 meters to 0.75 meters.

ing known objects that cannot necessarily be segmented
from their background. We have had some success in this
direction using a Hausdorff model-matcher developed at
Cornell [Huttenlocher and Rucklidge, 1992].

We assume:

1. color and edge models of the object from likely views
(Figure 7)

2. the object sits upright on the floor, and is shorter
than the robot

3. the floor is flat

4. the robot's view of the the object suffers at most
minor occlusion

This last assumption is less limiting than one might ex­
pect, since the robot is free to roam about the room in
search of the object.

Using this approach, we are able to avoid searching
over all possible views. We search locations in the scene
consistent with an object sitting on the floor, and we
combine the results of different algorithms to speed the
search.

The solution is as follows:

1. Using RAPs, scan the room from left to right,
changing view enough to leave a reasonable overlap
between views

2. For each view, enable a visual routine that:

(a) Finds all regions of interest using color [Swain
and Ballard, 199l]

(b) Runs a HausdorfF edge matcher [Huttenlocher
and Rucklidge, 1992] in each region of interest

The robot takes advantage of the assumption that the
object is on the floor by restricting the region searched
vertically, according to the height of the object and the
distance to the nearest model in the set. It also takes ad­
vantage of this assumption to restrict the range of scale
searched by the edge matcher within each region of in­
terest returned by the color matcher. Doing so relies on

the distance calibration over the image for the floor at
the angle of view of the camera during the search.

The HausdorfF metric allows one to measure the match
of a template to an image, allowing minor deformations.
The Cornell software searches efficiently over all trans­
lations and scalings of the template (within controllable
limits) to find the best fit. We have found that the pro-
cess works somewhat more reliably if the range of scales
is limited (to between 100 and 75 percent, in our case)
and more models are used to span the scales actually
encountered. We have had good results with match cri­
teria that at least 80 percent of the scaled and translated
model points lie within one pixel (across or diagonally)
of some image point. A reverse match criteria that at
least half the image edge points covered by the model
lie within one pixel of some model point reduces false
matches in dense parts of the edge image.

As efficient as the Cornell software is, we have found
it too slow over large, cluttered scenes, except at very
low resolutions or with unrealistically tight match crite-
ria. The relatively high complexity of the edge matching
motivated our use of color, to screen possible locations
prior to edge matching. The histogram back-projection
technique assigns to each color pixel a rating accord­
ing to how well it indicates the presence of the model.
The histogram is computed in an 8 bit hue, saturation,
value color space, with 3 bits resolution of hue and sat­
uration, and 2 of value. The pixel saliency ratings are
then averaged over 4x4 neighborhoods, and the peaks
above a threshold are found. An area around the peak
is cropped until the smoothed saliency value falls under
10 percent of the peak value. Most of the image has
values at or near zero (figure 8L), so the edge match­
ing phase is greatly speeded up. The back-projection
and edge-detection is computed on the DataCube, and
region cropping is done on the workstation, taking to­
gether less than 0.2 seconds. In a typical scene as shown
here, matching against all models of a target (we use up
to six) takes about 0.5 seconds.

In Table 1 the search times and results are given as the
task constraints are added one by one. In all cases, the

FIRBY, ET AL 77

Figure 8: Top left: Back-projected color model of a trash can into medium-resolution image; top right: peaks in
image extracted for matching to edge models; bottom: model found.

Table 1: Cost and accuracy of a 360-degree high resolu­
tion search for a trash can. Each search used 8 overlap­
ping views. Image grabbing and color processing were
done on a Datacube image processor; edge matching on
a Sparc 20. Times shown are elapsed seconds, including
the time to re-orient the camera.

trash can was correctly identified, but with fewer con­
straints the search took longer and resulted in more false
positives. The technique is reliable, requires only modest
computing resources, and can be extended to arbitrary
objects - provided the task constraints hold, which are
that the object is of restricted size, and sits on the floor
in one of a small number of possible orientations.

The distance to an object found with the Hausdorff
matcher can be easily computed using the known dis­
tance to the original picture of the model and the scale
at which the model matched the image. We compare
this distance to the triangulated distance judged from
the location of the model in the image, assuming that
the object is on the floor with the robot. Matches whose
distances don't agree within 25 percent are rejected.

The robot has successfully found, picked up, and
thrown away hundreds of pieces of trash, at rate of about
12 pieces per hour. We have been able to demonstrate
increasing if not perfect reliability. One major impedi­
ment to high reliability in our current system is its rudi­
mentary navigation abilities. CHIP does not try to re­
member where trash has been seen before and ignores
small objects on the floor while moving around. These
capabilities are being added now.

Figure 9: CHIP's view of a trash-can during alignment.
Inset: match made to an edge model of the trash-can.

5 Related Work

Kosecka and Bajcsy [Kosecka and Bajcsy, 1993] have
studied synthesizing complex behaviors from simpler
components. They model their components using Dis­
crete Events Systems (DES) theory, which allows them
to predict the controllability of composite behaviors, that
is, whether or not it is possible to reach a goal state
from a given state in the system. We leave the decision
of how to combine multiple concurrent skills to the pro­
grammer, and instead concentrate on languages to con­
veniently express which skills should be run in sequence
or in parallel, and to build natural interfaces that allow
visual operators and control routines to be parametrized
and composed to perform a variety of tasks. Aloimonos
[Aloimonos, 1990; 1994] has been an outspoken advo­
cate of what he calls the purposive approach to achiev­
ing general-purpose vision, which is generally consistent
with the approach we have taken here.

6 Conclusion and Future W o r k
This paper describes the design of an implemented archi­
tecture that both enables the use of context from the task

78 ACTION AND PERCEPTION

and environment to simplify vision problems, and allows
the components (visual operators and control routines)
to be reconfigured to solve a variety of tasks with mini­
mal reprogramming. It provides a framework for build­
ing vision systems that are robust and timely, and can
be utilized for a variety of tasks. We have demonstrated
an implemented system (important parts of which are
available to others) that works on a trash collection task
in an office environment, and have explained why the
components can be re-used in another task or environ­
ment.

We are using the architecture to encode a number of
different robot skills, including fetching tools and other
objects under human guidance, and delivering items to
people's desks. But one of the first tasks is to prepare
for the next robot competition, in which the task will
be to expanded to sorting recyclables from the trash.
Reprogramming CHIP to perform this task will involve
merely acquiring models for the recycling bin, and mod­
ifying the put-trash-in-can RA P to choose a destination
depending on the identity of the object picked up.

References
[Agre and Chapman, 1987] Philip E. Agre and David Chap­

man. Pengi: An implementation of a theory of activity. In
Sixth National Conference on Artificial Intelligence, Seat­
tle, WA, July 1987. AAAI.

[Aloimonos, 1990] John Aloimonos. Purposive and qualita­
tive active vision. In International Conference on Pattern
Recognition, pages 346-360, 1990.

[Aloimonos, 1994] Yiannis Aloimonos. What I have learned.
CVGIP: Image Understanding, 60:74-85, 1994.

[Bajcsy, 1988] R. Bajcsy. Active perception. Proceedings of
the JEEE, 76:996-1005, 1988.

[Brooks, 1986] Rodney A. Brooks. A robust layered control
system for a mobile robot. IEEE Journal of Robotics and
Automation, RA-2:14-23, 1986.

[Brown, 1994] Christopher M. Brown. Toward general vi­
sion. CVGIP: Image Understanding, 60:89-91, 1994.

[Dickmanns and Graefe, 1988] Ernst Dieter Dickmanns and
Volker Graefe. Dynamic monocular machine vision. Ma­
chine Vision and Applications, 1:223-240, 1988.

[Firby et ai, 1995] R. James Firby, Peter N. Prokopowicz,
and Michael J. Swain. Plan representations for picking up
trash. Technical report, Department of Computer Science,
University of Chicago, 1995.

[Firby, 1987] R. James Firby. An investigation into reac­
tive planning in complex domains. In Sixth National Con­
ference on Artificial Intelligence, Seattle, WA, July 1987.
AAAI.

[Firby, 1989a] R. James Firby. Adaptive execution in com­
plex dynamic worlds. Technical Report YALEU/CSD/RR
672, Department of Computer Science, Yale University,
1989.

[Firby, 1989b] R. James Firby. Adaptive execution in com­
plex dynamic worlds. Technical Report YALEU/CSD/RR
#672, Computer Science Department, Yale University,
January 1989.

[Firby, 1994] R. James Firby. Task networks for controlling
continuous processes. In Proceedings of the Second Inter­
national Conference on AI Planning Systems, pages 49-54,
1994.

[Horswill, 1993] Ian D. Horswill. Specialization of Perceptual
Processes. PhD thesis, Dept. of EE & CS, Massachusetts
Institute of Technology, 1993.

[Huttenlocher and Rucklidge, 1992] Daniel P. Huttenlocher
and William J. Rucklidge. A multi-resolution technique
for comparing images using the hausdorff distance. Tech­
nical Report CUCS TR 92-1321, Department of Computer
Science, Cornell University, 1992.

[Kahn et ai, 1994] Roger E. Kahn, R. James Firby, and
Michael J. Swain. The message hub. Animate Agent
Project Working Note 4, University of Chicago, April 1994.

[Kahn, 1993] Ari Kahn. Using the datacube client class.
The University of Chicago, Computer Science Department,
1993.

[Kosecka and Bajcsy, 1993] Jana Kosecka and Ruzena Ba­
jcsy. Cooperation of visually guided behaviors. In IEEE
International Conference on Computer Vision, pages 502-
506, 1993.

[Marr, 1982] D.C. Marr. Vision. Freeman, 1982.

[Nelson, 1989] R. C. Nelson. Using flow field divergence
for obstacle avoidance in visual navigation. IEEE Trans­
actions on Pattern Analysis and Machine Intelligence,
11:1102-1106, 1989.

[Prokopowicz et al, 1994] Peter N. Prokopowicz, Michael J.
Swain, and Roger E. Kahn. Task and environment-
sensitive tracking. In Proceedings of the I APR/IEEE
Workshop on Visual Behaviors, 1994.

[Slack, 1990] Marc G. Slack. Situationally driven local nav­
igation for mobile robots. Technical Report JPL Publica­
tion 90-17, Jet Propulsion Laboratory, April 1990.

[Slack, 1992] M.G. Slack. Sequencing formally defined reac­
tions for robotic activity: Integrating raps and gapps. In
Vol. 1828 Sensor Fusion V: Simple Sensing for Complex
Action, Boston, MA, November 1992. SPIE.

[Swain and Ballard, 199l] Michael J. Swain and Dana H.
Ballard. Color indexing. International Journal of Com­
puter Vision, 7:11-32, 1991.

[Tarr and Black, 1994] Michael J. Tarr and Michael J. Black.
A computational and evolutionary perspective on the role
of representation in vision. CVGIP: Image Understanding,
60:65-73, 1994.

[Ullman, 1984] Shimon Ullman. Visual routines. Cognition,
18:97-159, 1984.

FIRBY, ET AL 79

