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Abst rac t 

This paper addresses a model of analogy-driven 
theorem proving that is more general and 
cognitively more adequate than previous ap­
proaches. The model works at the level of 
proof-plans. More precisely, we consider ana­
logy as a control strategy in proof planning that 
employs a source proof-plan to guide the con­
struction of a proof-plan for the target prob­
lem. Our approach includes a reformulation of 
the source proof-plan. This is in accordance 
with the well known fact that constructing an 
analogy in maths often amounts to first find­
ing the appropriate representation which brings 
out the similarity of two problems, i.e., finding 
the right concepts and the right level of abstrac­
tion. Several well known theorems were pro­
cessed by our analogy-driven proof-plan con­
struction that could not be proven analogically 
by previous approaches. 

1 I n t roduc t i on 
Theorem proving by analogy finds a proof/proof-plan for 
a target problem guided by a given proof/proof-plan of 
a source problem which is similar to the target prob­
lem. The main use of analogy consists in reducing the 
search (or user interactions) by suggesting target proof 
steps that correspond to the source case. At the same 
time it can propose lemmas to be used in the target case 
that are similar to the source lemmas. Mathematicians 
have clearly recognized the power of analogical reason­
ing in mathematical problem solving [Hadamard, 1945; 
Polya, 1957]. Hence, integrating analogy into theorem 
provers was pointed out as one of the challenging prob­
lems in automated theorem proving in [Bledsoe, 1986; 
Wos, 1988]. 

In this paper a new approach to theorem proving by 
analogy is presented that works at the proof-plan level 
rather than at the actual proof level. First the need 
for a new model is substantiated by contrasting the way 
mathematicians use analogy to previous techniques for 
analogy in automated theorem proving. Then the model 
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is presented, and finally a small example illustrates how 
the analogy-driven proof-plan construction works. 

1.1 The Need for a New Model 
Kling's work [Kling, 1971] was one of the first attempts 
in theorem proving by analogy. His system essentially 
produces mappings between predicate symbols. These 
mappings are applied to the assumptions of the source 
proof to find the assumptions for the target proof. 

[Munyer, 1981] focusses on the formulas derived in 
each proof step. Munyer applies a symbol mapping, con­
structed from the source and target theorem, to these 
formulas in order to obtain the derived formulas in the 
target proof. 

[Owen, 1990] thoroughly analyzed Kling's and Mun­
yer's approaches to theorem proving by analogy and 
showed them inadequate even for many simple analogies. 
Owen's account emphasizes the matcher that recursively 
constructs symbol mappings and argument pairings. He 
transfers single calculus steps, i.e. binary resolution and 
paramodulation, from the source proof to provide steps 
in a target proof. 

In [Brook et a/., 1988] an initial symbol mapping 
and a pairing of definitions and lemmas of the source 
with those of the target is to be provided by the user. 
Focussing on failed constructions of analogous proofs 
some heuristics are used for patching target proofs. In 
the same intellectual tradition Bledsoe continued deal­
ing with the debugging of analogies by his precondition 
prover [Bledsoe, 1995]. 

In summary, computational accounts of theorem prov­
ing by analogy have been dominated by the idea of map­
ping symbols of the source theorem to symbols of the 
target theorem and employing an extended symbol map 
for transferring single proof steps of the source to the 
target1. 

Empirical investigations, however, provided evidence 
that this idea does not appropriately cover many analo­
gies drawn by mathematicians, not even all the analogies 
of a standard textbook [Deussen, 1971] we used for an 
empirical study [Melis, 1993a]. I empirically analyzed 
mathematical theorem proving [Melis, 1994a] and found 
that: 

though Bledsoe transfers larger steps calling an auto­
mated prover but again uses symbol mapping. 

182 AUTOMATED REASONING 



• Theorem proving by analogy is embedded into 
proof planning: Methods, rather than just 
single calculus steps, are transferred analogic­
ally in mathematical theorem proving by ana­
logy-

• For many of these analogies just symbol map­
ping is insufficient. A change of a problem 
representation by, e.g., unfolding a definition, 
can be necessary to reveal the commonality of 
theorems or assumptions, upon which the ana­
logical transfer is based. Other mappings of 
problems and proofs that go beyond symbol 
mapping are necessary as well. For some ana­
logies, first the right level of abstraction has to 
be found before transferring a proof. 

• Many proofs by analogy result from transfer­
ring parts of the source proof to parts of the 
target proof, and some proofs by analogy trans­
fer only the proof idea, while others transfer a 
detailed proof. 

2 The M o d e l 
Our approach takes into account the above mentioned 
empirical findings and incorporates 

• the analogical transfer of proof-plans, 
• a reformulation of proof-plans that includes 

abstraction2 and other reformulations that go 
beyond symbol mapping. 

• the restructuring of proof-plans. 
Proof-plans, defined below, were introduced in 

[Bundy, 1988]. To motivate the analogical transfer of 
proof-plans rather than of proofs: Proof-plans are high 
level representations of proofs that consist of methods. 
We postulate that the transfer of plans by using and 
transforming their methods is the right level of abstrac­
tion at which to draw analogies: If methods are named, 
like, e.g., the Diagonalization method [Melis, 1994b], 
then mathematicians claim to prove the theorem by the 
same method. If no name is established for the way a 
theorem is proved, then they just say that the proof is 
done analogously. Proof-plans are better suited for ana­
logical transfer than formal proofs which are often too 
brittle to apply a transformation in general3. But still 
proof-plans contain enough information to construct a 
concrete proof for a given problem. Proof-plans encode 
the structure of a proof because they consist of general 
methods encoding a proof idea and of more specific, de­
tailed methods. Hence, analogies at different levels of 
details can be realized by analogically transferring to the 
target the transferable methods of a source proof-plan. 
In maths, as in all complicated domains, control know­
ledge, as part of mathematician's expertise, plays an im­
portant role by drastically restricting the search and by 
guiding problem solving. As opposed to actual proofs, 
proof-plans may record justifications for the proof plan­
ning decisions, e.g. the relevant control knowledge, and 

this information can be reused for constructing a tar­
get proof-plan. In our derivational analogy (see below) 
a decision in the target is made correspondingly to the 
decision in the source only if the justifications of the 
decision hold in the target as well. Thereby the require­
ment of a semantic justification of analogical reasoning 
[Russell, 1988] can be met. Proof-plans may record user 
interactions and thus avoid the tedious user-supplied 
guidance in theorem proving, that is usually necessary 
to produce a complicated proof,4 by reusing a great deal 
of the previous user decisions. We integrate the call of 
an automated theorem prover (atp) into our plan oper­
ators and thus obtain another advantage of transferring 
proof-plans, namely the suggestion of proof steps likely 
to be feasible for an atp within a given time limit. 

The description of the top level procedure will be gen­
eral enough to cover analogy for different proof planners. 
Of course, the concrete implementation depends on the 
respective planner and its operators. For instance, for 
employing the full range of reformulations, the operator 
representation has to be mainly declarative. Therefore 
we refer to the operators designed for -MKRP [Huang 
et a/., 1994a]. We briefly review how these operators 
and plans are defined, introduce reformulation and de­
composition, and discuss the analogy procedure. 

Operators 
Sequents P = (A f- F), are pairs of a set A of formulas 
and a formula F in an object language that is extended 
by meta-variables for functions, relations, formulas, sets 
of formulas, and terms. 

Our planning operators, called methods, are frame-
like structures defined in [Huang et a/., 1994b] with pre-
and postconditions just as the common planning oper­
ators. More specifically, methods M have the follow­
ing slots: parameter, preconditions (pre(M)), postcon­
dition (post(M)), constraints, proof schema and proced­
ure. pre(M) is a set of sequents from which the applic­
ation of the method derives post(M) which is a sequent 
as well. pre(M) and post(M) both are needed for plan­
ning. The constraints are formulated in a meta-language 
and serve to restrict the search during planning, e.g., re­
strictions of pre(M), post(M), or of the parameters. The 
proof schema is a declarative schematic representation of 
proofs in the object logic, relying on the Natural Deduc­
tion (ND) calculus and on invoking automated theorem 
provers such as OTTER [McCune, 1990]. The standard 
program in the slot procedure executes the application 
of the proof schema. 

Our methods mainly differ from those in [Bundy, 1988] 
in that the tactic slot is replaced by a declarative proof 
schema and a procedure interpreting this schema5. The 
intention behind this difference is to enable reformula­
tions of methods. 

A method is verifiable if, given pre(M), then the 
method yields a correct proof of post(M) for every in-

2Including abstraction into analogy has also been pro-
posed in [Plaisted, 1981; Villafiorita and Sebastiani, 1994]. 

3Personal communication with Bob Harper concerning 
transformational tactics in Nuprl. 

4 For instance, 1741 lemmas had to be user supplied in 
Shankar's proof/verification of Godel's First Incompleteness 
theorem[Boyer and Moore, 1988] . 

5Besides, the slots are renamed, e.g., our preconditions 
are named input there. 
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2.1 Analogy-Driven Proof-Plan 
Construction 

Problem solving by analogy transfers the way a prob­
lem is solved (derivational analogy) or the final solu­
tion (transformational analogy). Derivational analogy 
in [Carbonell, 1986; Veloso, 1994] stores problem solv­
ing decisions and their justifications in the source plan 
and replays them for the target. Transformational ana­
logy in [Carbonell, 1983] takes the source solution and 
transforms it into the target solution. 

Our analogy-driven proof-plan construction can be 
considered a combination of derivational with transform­
ational analogy.8 Basically it is a derivational analogy, 
however, it also transforms the source plan. Actually, 
it is a control strategy for proof planning that extends 
the derivational analogy of [Veloso, 1994] by reformu­
lation, decomposition, and bidirectional planning. The 
general idea of our analogy model is to use the linear­
ized source proof-plan together with its justifications as 
a guide for constructing an analogous target proof-plan 
and to transfer methods (and sequents) of a reformulated 
source proof-plan to the target proof-plan. 

7Add-Arguments is applicable to a proof-plan if a func­
tion / with n arguments is to be mapped to an /' with 
n + m arguments, where the m arguments to be duplicated 
are specified out of the n arguments of / as parameters of 
the meta-method. The meta-method replaces the / by /' 
in goals, assumptions, and methods and yields additional re­
lated changes in methods. 

8For example, "initial-segment concatenation" and "final-
segment concatenation" in transformational analogy corres­
pond to some normalizing reformulations. 

Table 1 shows the top-level procedure of our analogy-
driven proof-plan construction. Given a parametrized, 
linearized source proof-plan, target assumptions, and a 
target goal (the first open goal), the output of the pro­
cedure is a target proof-plan. Steps 5 - 7 are those that 
are relevant for a planner with backward search only. 
Steps 8-10 cover the transfer of f-methods. The former 
matches a source goal and transfers a b-method whereas 
the latter matches as many source assumptions as pos­
sible to target assumptions and transfers an f-method. 
\missing means9 that less than n precondi­
tions of the currently treated reformulated f-method M 
do not match a target assumption. 

input: linearized source plan, (open) target goal 
output: (linearized) target plan 

Table 1: Outline of the analogy-driven proof-plan con­
struction 

The first goal of the linearized source plan, usually the 
source problem P5, is chosen in 3. If Ps can be reformu­
lated by a p such that it matches the target problem PT, 
then p will be applied to the (current) source plan and 
the method M with post(M) = is a candidate for 
the transfer to the target. If P5 cannot be reformulated 
by a p to PT, then decomposition is applied in order 

9For missing(M) := set of preconditions of M that do 
not match a current target assumption. The sequents of 
missing(p'M) become new open goals if p' is an acceptable 
reformulation. 
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to find a submethod M1 of M that can be transferred. 
If in 5 or 9 a decomposition is not possible, then the 
plan stays unchanged. After the decomposition a new 
reformulation p and match of post(M1) is tried and 6. 
suggests pM1 as a candidate a target method. 7. checks 
whether the justifications of the source method hold in 
the target for pM1 and if so, its verifiability is checked. 
The latter test is necessary because reformulation does 
not necessarily preserve verifiability. If pM1 is not veri­
fiable, then a promising modification is applied (either 
decomposing the method in order to obtain a verifiable 
submethod or calculating additional preconditions of the 
method yielding verifiability.). In table 1 verify/modify 
M abbreviates: 

• test verifiability of M 
• if M is not verified, then modify M to a verifi­

able (sub)method10 
• update open target goals and assumptions 
• link the verifiable method to source plan. 
The analogy procedure is repeated, first testing ter­

mination conditions (l.,2.). Base-level planning is ac­
tivated when the guidance by the source proof-plan is 
exhausted in order to prove the remaining open goals. 
Superfluous steps in the target plan are skipped in 4. 
This procedure yields a target plan with verified meth­
ods. The target plan may have open goals. 

Phrased in the terminology of case-based reasoning, 
adaptation takes place via reformulation of proof-plans, 
through modifying not verifiable methods, skipping su­
perfluous methods, and through closing gaps in the tar­
get plan by base-level planning. 

The possible objection that every new example 
would need a new set of meta-method did not turn 
out to be true. Reformulation focussed on altera­
tion and, unexpectedly, Restricted Term-Mapping and 
Add-Argument were used quite often. 

Controll ing the Search for Reformulations 
So far we have only few meta-methods available and thus 
search is restricted. As the set of meta-methods expands, 
however, the following control features become more im­
portant: 

• The application of meta-methods is controlled 
by their application-conditions. 

• The reformulation of source plans is guided 
by the target goals and assumptions to be 
matched. 

• The following fixed sequence of reformulations 
proved most useful: normalization, abstraction, 
alteration, reversion and should thus be super­
imposed upon search. 

• User-supplied correspondence tables for rela­
tions and functions in specific maths areas 
carry semantic information and provide addi­
tional guidance for reformulations. A corres­
pondence table helps to relate source to target 
assumptions and may prescribe the mapping of 
function or relation symbols. 

With a growing variety of reformulations it will be ne­
cessary to meta-plan the application of meta-methods 

No result if no verifiable (sub)method exists. 
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4 Conclusion and Future Work 
Analogy in theorem proving does not work as a stand 
alone problem solver but works very much in connec­
tion with ordinary theorem proving, for instance, to val­
idate details which are left as open goals. Besides, a 
source proof-plan has to be provided using proof plan­
ning. There are neither guaranteed success nor com­
pleteness claims in this context because analogy is a 
heuristic strategy that is tentative. 

Our approach combines ideas of previous systems for 
theorem proving by analogy with derivational and trans­
formational analogy. It works in a planning frame-
work and incorporates reformulation, and thus, it is 
more widely applicable than previous approaches which 
did not attempt to re-represent the source problem 
and, hence, their results were highly dependent on the 
actual representation of theorems and proof assump­
tions. Wider applicability is documented by several ex­
periments with the analogy-driven proof-plan construc­
tion on real mathematical theorems which succeeded in 
providing analogous proofs where other approaches did 
not. The experiments dealt with theorems from a stand­
ard text [Melis, 1993b], the pumping lemma for context 
free languages [Melis and Veloso, 1994], and a Heine-
Borel theorem [Melis, 1995]. These theorems provide a 
small but quite a representative sample. Furthermore 
as discussed above, the approach is cognitively more ad-
equat: Among others, [Melis, 1995] has shown that the 
interpretation of parameters, that might be necessary for 
completing an analogous proof, corresponds to situations 
observable for a mathematician's use of analogy. 

In general there will be a tradeoff between the higher 
flexibility and the search needed for reformulation in 
automatic analogy-driven proof-plan construction. Since 
usually only few reformulations are needed, however, the 
search for appropriate reformulations is much less than 
the search usually needed for a proof. 

Currently some reformulations are implemented but 
chosen by the user. The retrieval of source proof-plans 
has not yet been approached. Hence, up to now we model 
common situations in which the source is given only. Be­
sides further implementation future work is necessary to 
retrieve the source proof-plan automatically, to automat­
ically control the application of reformulations, and to 
discover more, frequently used maths reformulations. 
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