
H o w t o U s e L i m i t e d M e m o r y i n H e u r i s t i c S e a r c h

Hermann Ka ind l
Siemens AG Osterreich

Geusaugasse 17
A 1030 Wien, Austria

kaih @siemens.co.at

Gerhard Kainz
Gemeindeberggasse 14

A-1130 Wien
Austria

Angel ika Leeb
MIT Lab. f. Comp. Sc.
545 Technology Square
Cambridge, MA 02139

U.S.A.

Hara ld Smetana
Lerchengasse 12

A 3430 Tulln
Austria

Abst rac t

Traditional best-first search for optimal solu­
tions quickly runs out of space even for prob­
lem instances of moderate size, and linear-
space search has unnecessarily long running
times since it cannot make use of available
memory. For using available memory effec­
tively, we developed a new generic approach to
heuristie search. It integrates various strategies
and includes ideas from bidirectional search.
Due to insights into different utilizations of
available memory, it allows the search to use
limited memory effectively. Instantiations of
this approach for two different benchmark do­
mains showed excellent results that are sta­
tistically significant improvements over previ­
ously reported results: for finding optimal so­
lutions in the 15-Puzzle we achieved the fastest
searches of all those using the Manhattan dis­
tance heuristic as the only knowledge source,
and for a scheduling domain our approach can
solve much more difficult problems than the
best competitor. The most important lessons
we learned from the experiments are first, that
also in domains with symmetric graph topology
selecting the right search direction can be very
important, and second, that memory can—
under certain conditions—be used much more
effectively than by traditional best-first search.

1 In t roduc t ion
Best-first search in the tradition of A* [Hart et a/.,
1968] typically requires exponential space. Therefore,
it quickly runs out of space even for problem instances
of moderate size when searching for optimal solutions.

In contrast, linear-space search like IDA* [Korf, 1985],
RBFS [Korf, 1993] and DFBB [Lawl er and Wood, 1966]
does not suffer from memory limitations. Typically,
there is even much more memory available than needed
by such algorithms. Since they cannot make use of such
memory, however, their running time is unnecessarily
long.

One of the major problems of heuristic search is how to
use available but limited memory effectively. Pure uni­
directional approaches to utilizing limited memory still

did not lead to convincing results [Chakrabarti et al,
1989; Ghosh et ai, 1994; Reinefeld and Marsland, 1994;
Russell, 1992; Sen and Bagchi, 1989]. Therefore, we
propose to consider in addition ideas from bidirectional
search [Kaindl and Khorsand, 1994; Koll and Kaindl,
1993; Kwa, 1989; Pohl, 1971].

In this paper we integrate various unidirectional
strategies and include ideas from bidirectional search in a
generic approach to heuristic search. Due to insights into
different utilizations of available memory, our approach
allows the search to use limited memory effectively.

First, we present our new generic approach to heuristic
search that specifically focuses on using limited memory.
Then we show how this approach can be appropriately
instantiated for two very different domains with few and
many distinct cost values, respectively. For both do­
mains, we report experimental data that represent sig­
nificant improvements over previously published results.
Finally, we compare our approach more generally with
related work.

2 A Generic Approach to Heur is t ic
Search Using L i m i t e d M e m o r y

We developed a new generic approach to heuristic search
that integrates various approaches and typically leads
to hybrid combinations of search algorithms. One of
the main ideas to address the memory problem is to
combine linear-space search with conventional best-first
search in a bidirectional style. Fig. 1 gives an overview
and indicates how our new algorithms integrate ideas
from various approaches in hybrid combinations-—this
will be discussed in detail below. First, we explain the
generic approach generally. Its major steps are:

1. Assign the search directions and the available mem­
ory to the traditional best-first and the linear-space
algorithm, respectively.

2. Perform traditional best-first search using some or
even nearly all of the available memory.

3. Unless the best-first search has already found an op­
timal solution, use a linear-space algorithm in the
reverse direction. Use the memory structure built
up by the previous best-first search, possibly to­
gether with additional memory that is still available.

Note, that the linear-space algorithm per se only re­
quires little memory, but it can utilize additional mem-

236 AUTOMATED REASONING

ory tnrougn direct, access, e.g., via nasning.
Since this approach does not allow for changing the

search direction more than once, it can be viewed as a
non-traditional form of bidirectional search. In particu­
lar, the recently proposed perimeter search [Dillenburg
and Nelson, 1994] fits into it. However, we explicitly do
not propose to use a wave-shaping strategy1 (see also
[do Champeaux, 1983]), since it is inefficient in terms of
running time.

Under certain circumstances to be discussed below,
one or more of the steps can also be omitted during in­
stantiation. For instance, if the domain shows a strong
asymmetry, the search direction is known before the
search begins. Moreover, our generic approach can also
be instantiated as unidirectional search.

Since this generic approach has to be instantiated for
appropriate use, we must give guidelines for doing so.
First of all, it is important to understand how given
memory can be utilized during heuristic search. While
some of these utilizations appear to be well understood,
we could not find a clear categorization in the literature.
Note that item 5(b) given below appears to have been
previously overlooked. We distinguish the following uti­
lizations of given memory:

1. for ordering the sequence of node generations:
traditional best-first search like A* organizes the
memory as a priority queue for this purpose, while
more recent linear-space RBFS has to backtrack;

2. for storing state information of generated nodes:
for instance, in the well-known 15-Puzzle the con­
figuration of tile positions can be stored;

3. for finding transpositions" in a directed acyclic
graph in order to avoid "treeification" during search:
again, A* is a well-known example, while IDA*

1 Wave-shaping has to compute heuristic estimates be­
tween all nodes in one search frontier and all nodes in the
other, i.e., the effort is proportional to the cross product of
the numbers of nodes in the frontiers.

2Transpositions arise when different paths lead to the
same node.

and DFBB normally cannot recognize transposi­
tions without extra memory (which may also be
used as in [Taylor an d Korf, 1993]);

4. for caching information about heuristic estimates:
three cases can be distinguished here:
(a) static heuristic value:

storing such values avoids recomputation;
(b) more accurate information closer to a goal:

memory-bounded algorithms like MREC [Sen
and Bagchi, 1989] propagate better heuristic es­
timates found during their linear-space searches
back to the stored part of the search graph;

(c) heuristic information computed between two
search frontiers:
wave-shaping approaches to bidirectional search
utilize memory to store such values computed
during the search;

5. for finding solutions:
two cases can be distinguished here:
(a) finding solutions at all:

traditional bidirectional search like BHPA [Pohl,
1971] and IBS* [K611 and Kaindl, 1993] needs
the memory to find solutions by recognizing
meetings of the search frontiers;

(b) finding solutions earlier:
the non-traditional approach to bidirectional
search described below uses memory to find so­
lutions earlier than without the memory.

6. for proving solution quality:
bidirectional heuristic search utilizes given memory
for storing estimates of the optimal solution cost to
be used for proving the quality of a solution found.

The combination of search ideas to be chosen during
an instantiation of our generic approach should utilize
the given memory in several different ways. This typi­
cally leads to higher efficiency since their advantages are
more or less disjoint and nearly add up, while using the
same amount of storage just for one purpose may not
give the same pay-ofT. Fig. 2 shows a useful specializa­
tion of our generic approach that uses memory on both
sides of the search space: a transposition table [Reinefeld
and Marsland, 1994] on one side, and the memory of a
traditional best-first search on the other. The former is
used for finding transpositions and caching more accu­
rate heuristic evaluations closer to the goal. The latter
first of all orders the sequence of node generations and
helps finding transpositions in another part of the search
space, and finally it supports finding solutions earlier.

Of course, an instantiation should make use of any
domain-specific information available. In particular, it
should combine those unidirectional search algorithms

KAINDL, ETAL 237

that best suit the properties of the domain (see, e.g.,
[Rao et al, 1991; Zhang and Korf, 1993]). For instance,
in some domains IDA* is the choice, while in others
DFBB is much better.

3 Ins tan t ia t ing for a Doma in w i t h Few
D is t inc t Cost Values: 15-Puzzle

First we show how our generic approach can be instan­
tiated for a domain that is characterized by having only
few distinct cost values: the well-known 15-Puzzle. Un­
der this condition, it is reasonable to select IDA* for the
linear-space search part.

Moreover, we can assume to have a monotone evalua­
tion function: the Manhattan distance. Since A* makes
good use of monotone heuristics [Dechter and Pearl,
1985], we select it for the part of the best-first search.

Based on the key idea of bidirectional search, we let
A* and IDA* search in opposite directions in steps 2 and
3 of our generic approach, respectively. Fig. 1 illustrates
this instantiation that leads to BAI (Bidirectional A* -
IDA*).

According to the idea of using memory in various ways,
we may also give the IDA* search some part of the avail­
able memory as a transposition table. Fig. 2 illustrates
this approach generally. We call this variant of BAI due
to the use of this table BAI-Trans (see also Fig. 1).

If A* cannot find a solution using the given memory,
then IDA* searches in the reverse direction towards the
frontier of the prior search. Since we consider the case
of finding optimal solutions, this search cannot always
terminate immediately after a solution is found. A bet­
ter solution may exist, and the algorithm must find an
optimal one and subsequently prove that it is optimal.

More technically, the IDA* part must be changed
slightly. Instead of having to find the goal node, a solu­
tion is found whenever the depth-first search meets the
frontier of the opposing A* search. If the cost of this so­
lution is smaller than the cost of the best solution found
so far (or if it is the first solution found) then its value is
stored. Of course, the cost of the best solution found so
far may be sub-optimal, or the algorithm does not yet
know that, it is already optimal. However, if the stored
value does not exceed the non-overestimating threshold
of the IDA* part, then its depth-first search is exited
successfully with an optimal solution.

In addition to these necessary changes, the IDA* part
has the advantage to start with an increased initial
threshold based on an admissible estimate of the optimal
solution cost as determined by the A* part. Since we as­
sume a monotone heuristic h, the minimum of / = g + h
for all nodes in OPEN is always an admissible estimate.
Therefore, if this estimate is higher than the usual initial
threshold of IDA*, then it can be used here instead.

Moreover, it is not necessary to have the IDA* part
search again in the space already explored by A*. More
technically, when the depth-first search invoked by IDA*
meets a CLOSED node of the opposing A* search frontier,
this branch can be cut off (meeting an OPEN node is in
general insufficient). We call this nipping according to
an analogous method described in [Kwa, 1989].

In an efficient implementation of the 15-Puzzle even
the effort of hashing at every node causes an overhead
that cannot be ignored. Therefore, we implemented BAI
in such a way that it avoids hashing at those nodes
where—based on the heuristic estimate—it knows that
the frontier of the opposing A* search is yet out of reach.

According to step 1 of our generic approach, the search
directions must be assigned to the A* and the IDA* part,
respectively. For traditional bidirectional search, Pohl
[Pohl, 1971] proposed and used a cardinality criterion
for the problem of determining the frontier from which to
select a node for expansion: continue searching from the
frontier with fewer OPEN nodes. While this is utilized for
each node expansion in traditional bidirectional search
algorithms, BAI has to decide this issue once at the very
beginning of the whole search. When the search space
is sufficiently symmetric, the initial search direction can
be determined at random. When the search space is at
least slightly asymmetric and no specific knowledge for
determining the search direction is available, it seems
reasonable to make shallow probes into the search space
from both sides and to use the idea of the cardinality
criterion. Since BAI incorporates IDA*, using this al­
gorithm also for probing is consistent with the overall
approach. For instance in the 15-Puzzle, the first few
iterations of IDA* are searched from both sides, and the
direction with fewer generated nodes is assigned to the
IDA* part of the overall search, since especially for dif­
ficult problems it will have to search much deeper than
the A* part.

Let us shortly discuss the behavior of BAI. In the best
case, it would seem to be the same as A*. In fact, BAI
can even be better than pure A*. BAI assigns the search
direction dynamically, which can lead to better results
than systematically going in one direction. In the worst
case, BAI has to perform the part of A*, without savings
in the IDA* part (except the effect of nipping).

A key question is how BAI saves effort without having
enough memory available for completing the A* search.
Primarily, it can save one or more of IDA*'s iterations.
Due to the better initial threshold, some of the early it­
erations can be saved. Since the earlier iterations are
comparably cheap, this helps much less than saving the
last iteration. The search can also be terminated after
a complete iteration of IDA* if the cost of the best solu­
tion already found is not larger than the new increased
threshold. Therefore, large savings are possible when
BAI terminates earlier than pure IDA*.

4 Ins tan t ia t ing for a Doma in w i t h
M a n y D is t inc t Cost Values: Single
Machine Scheduling

Now let us show how our generic approach can be in­
stantiated for a domain that is characterized by having
many distinct cost values: a scheduling domain described
and used for experiments in [Sen and Bagchi, 1993;
Townsend, 1978].3

3 Since this benchmark domain is not widely known, we
sketch it shortly. It deals with one-machine job sequence
problems of the following form. Jobs J, with processing times

238 AUTOMATED REASONING

For problems with many distinct cost values, IDA* is
known to be much less efficient. But it is reasonable to
select DFBB for the linear-space search part, assuming
that a good upper bound can be determined quickly—
which is the case in this kind of problem.

Again, a monotone evaluation function is available,
so we can analogously to BAJ select A* for the part of
the best-first search. Based on the key idea of bidirec­
tional search, we let A* and DFBB search in opposite
directions in steps 2 and 3 of our generic approach, re­
spectively. Fig. 1 illustrates this instantiation that leads
to BABB (Bidirectional A* depth-first Branch-and-
Bound). Technically, the computation of the heuristic
is different in the backward direction, and the neces­
sary modification is not completely trivial. While in the
forward direction all the jobs on the current path are al­
ready included, in the backward direction the jobs on the
path have not yet been included. The best approach we
found is to define a new problem that excludes all these
jobs, and to compute the heuristic for this problem.

Due to the above mentioned asymmetry of the arc
cost distribution, the better search direction can be de­
termined a priori in this domain. (The reasons are dis­
cussed below.) Therefore, step 1 of our generic approach
can be omitted here.

For the same reason, another possibility to instantiate
our generic approach here is to omit also the best-first
search part completely and to provide all the available
memory in the form of a transposition table. Analo­
gously to its use in IDA*, it both finds transpositions
and caches dynamically acquired heuristic information.
Therefore, we call this algorithm TCBB (Transpose-arid-
Cache - depth-first Branch-and-Bound). Still, the bidi­
rectional idea of starting on either side of the space is
important here, which is illustrated by the dotted arrow
in Fig. 1.

An obvious advantage of both BABB and TCBB over
A* is their ability to continue searching although the
memory is too small to store all the nodes. A much less
obvious advantage of TCBB over A* is that—under cer­
tain conditions—TCBB utilizes available memory much
more effectively. This will be explained together with
empirical results below.

5 Exper imenta l Results
In our experiments, we compared BAI, BAI-Trans,
BABB and TCBB with other algorithms on the task of
finding optimal solutions in two different domains. From
the derivations of our algorithms, it should be intuitively
clear that these algorithms are admissible, i.e., if a so­
lution exists, they terminate with an optimal solution.
Formal proofs can be found in [Kainz, 1995].

a, and penalty constants p, (associated with completing a job
at time ti) are submitted to a one-machine job-shop. ti is the
sum of the times aj of all jobs j on the currently evaluated
path. The penalty function is Gi(t,) = pxt21. All the jobs must
be sequenced on the machine in such a way that the sum
of all penalties is minimized. Important properties of this
domain are a symmetric graph topology and an asymmetric
distribution of arc costs that is due to the quadratic penalty
function.

5.1 15-Puzzle
Now let us have a look on specific experimental results
for finding optimal solutions to a set of (sliding-tile) 15-
Puzzle problems.4 We compare our new algorithms BAI
and BAI-Trans on these problems with other algorithms
that achieve the best results known here yet without us­
ing domain-specific knowledge about the puzzle other
than the Manhattan distance heuristic: IDA*, Trans
[Reinefeld and Marsland, 1994] and IDPS* (perimeter
search) [Dillenburg and Nelson, 1994]. RBFS has the po­
tential to be better than IDA* on the sliding-tile puzzle,
but actually its results are slightly worse on this specific
problem set according to [Korf, 1993] due to noise in the
tie-breaking on the last iteration.

Fig. 3 shows a comparison of these algorithms in terms
of the average number of node generations and their run­
ning times. The data are normalized to the respective
search effort of IDA*. Trans (using 256k nodes of mem­
ory) achieves savings of nearly half of the nodes com­
pared to IDA*, and although the effort for hashing slows
it down, Trans is faster than IDA* since it utilizes its
memory well.6 IDPS* saves even 73 percent of the nodes

4 We used the complete set of 100 instances from [Korf,
1985].

5In an efficient implementation of the 15-Puzzle, even
checking of whether a node generated by IDA* is in the
opposing search frontier means a measurable overhead, al­
though this can be done efficiently via hashing. The reason
is that node generation and evaluation can be done very ef­
ficiently for the sliding-tile puzzles [Korf, 1993]. Even the
machine architecture can influence the relative running time
up to a certain degree. Therefore, we note that our data
were gained using a Convex C3220. On this machine, IDA*
searches 210k nodes per second.

6 The data in the figure were gained using a re-
implementation of Trans based on efficient code provided by
Jonathan Shaeffer. Note the different way of presenting the
results: absolute data in our figure vs. relative to problem
difficulty in [Reinefeld and Marsland, 1994]. We had to re­
implement Trans, since the detailed data in terms of node
generation numbers provided by Alexander Reinefeld and the
data reported in [Reinefeld and Marsland, 1994] were insuffi­
cient to get comparable data on the running times. Actually,
Trans+Move is the best algorithm described in [Reinefeld
and Marsland, 1994], but its absolute results are less than
one percent better than those of Trans. Therefore, we did

KAINDLETAL 239

generated by IDA*, but due to its wave-shaping overhead
only 33 percent of the running time.7

The results of our new algorithms shown in Fig. 3
were generated by giving them also 256k nodes of mem­
ory, and determining the search direction via probing
through IDA* searching its first three iterations (this
generates only very few nodes but already indicates the
better search direction with a relatively high reliability
of 80 percent). BAIsaves more nodes than Trans, and it
is also faster. The overhead through hashing is smaller
due to our strategy of avoiding it if possible. Our combi­
nation BAI-Trans saves three quarters of IDA*ys nodes
and 61 percent of its running time. This shows that the
respective advantages of using memory in these differ­
ent ways nearly add up, although the available memory
for each of its parts is just half of the memory given
to each BAI and Trans, i.e., BAI-Trans altogether has
256k nodes of memory available here. Although BAI-
Trans does not use wave shaping, it generates slightly
fewer nodes than IDPS* with perimeter depth 2. Be­
cause of avoiding the overhead of wave shaping, BAI-
Trans is clearly faster than IDPS* (although with this
perimeter depth this overhead is relatively very small).
In order to make sure that these results are not due to
chance fluctuations, we performed statistic tests.8 The
superiority of BAI- Trans in terms of running time over
pure IDA*, pure Trans and IDPS* as shown in the figure
is statistically significant.

Although the search space of the sliding-tile puzzle ap­
pears to be quite symmetric, it is interesting to see how
much can be gained here just by selecting the search di­
rection dynamically. Therefore, we conducted a special
experiment with a variant of IDA* that just uses our ap­
proach for selecting the search direction: IDA*-Probing.
Fig. 3 shows that even this simple linear-space algorithm
is slightly faster than Trans, since it has no overhead in
running time. Moreover, the advantage of IDA*-Probing
over pure IDA* is statistically significant. In order to
see how well probing via three iterations already indi­
cates the better search direction, we compared its re­
sult with that of a perfect oracle. Using it would still
generate 64 percent of IDA*'s nodes, i.e., IDA*-Probing
with an overhead in generated nodes for determining the

not re-implement Trans+ Move a.nd cannot include it into the
figure, lacking data on the running times.

7The results reported in [Dillenburg and Nelson, 1994]
are based on runs using a different sample set of the 15-
Puzzle, and a different perimeter depth. Using the same
perimeter depth (4), the results on Korf's set with our re-
implementation are even better in terms of the number of
node generations, but very much slower in terms of running
time (even slower than IDA*). In personal communication
with John Dillenburg it turned out that their implementa­
tion of IDA* is slower than Korf's one that we are using by a
factor of about 60 per generated node. In such an implemen­
tation the overhead especially of wave shaping does not show
up that clearly as it does in an efficient one. Since smaller
perimeter depth means fewer stored nodes and therefore less
overhead through wave shaping, the perimeter depth 2 re­
sults in better running time, and consequently we show these
data in our figure.

8 More details on the statistic tests used can be found in
[Kaindl et a/., 1994; Kaindl and Smetana, 1994].

Figure 4: Comparison on the Scheduling Problems.

search direction of only less than 0.1 percent is overall
just 3 percent worse than this. Systematically searching
in the backward direction, however, is not significantly
better due to high standard deviations, although it saves
17 percent over systematically searching in the forward
direction.

In summary, instantiating our generic approach as de­
scribed lead to the fastest searches for finding optimal so­
lutions on the 15-Puzzle of all those using the Manhattan
distance heuristic as the only knowledge source. While
saving 61 percent of the running time of pure IDA*
may not seem impressive, the difficulty of significantly
improving its results may be appreciated when looking
at the many less successful attempts with various algo­
rithms (see the section on related work below).

5.2 Single Machine Scheduling
The best results yet reported for the scheduling problem
that we chose for our experiments are those of A* that
searches systematically in the forward direction: finding
optimal solutions to random problems of 28 jobs in an
average of some few seconds each with less than 300k
nodes of memory. As compared in [Sen and Bagchi,
1993], these results signified a very strong improvement
over previous approaches that did not utilize the graph
structure of the search space.

Fig. 4 shows A* data and the results of DFBB in com­
parison to the results that we achieved through instanti­
ating our generic approach appropriately. Except DFBB
and DFBB-Reverse, all the algorithms were given the
same amount of memory: 16k nodes.9 The data point

9 We chose this amount of memory for showing the high
efficiency of TCBB in regard to memory utilization. We
used the same 100 randomly generated problem instances
per "number of jobs" as [Sen and Bagchi, 1993], since Anup
Sen made the generator available to us. The figure shows the
results in terms of running time, but the numbers of gener­
ated nodes are quite the same, since computing the heuristic
values dominates the running time. Note, that the data are
shown on a logarithmic scale.

240 AUTOMATED REASONING

annotated in the figure via "A*" indicates the result with
the previously best method. The main discovery was
that systematically searching in the reverse direction—
from the goal to the start—yields much better results:
see the data of DFBB-Reverse and A*-Reverse. These
results are very surprising since the graph topology of
the search space is symmetric. According to current the­
ory, such a strong effect of reversing the search direction
would have been attributed to a strong asymmetry of
the graph topology.

Actually, the reason for this phenomenon is due to
the asymmetric distribution of arc costs induced by the
quadratic penalty function in these problems. In order
to find this reason, we made special experiments, and
since this phenomenon also occurs without using heuris­
tic values, it is at least not primarily related to their
accuracy. We can explain it as follows: when searching
in the forward direction, many nodes must be generated
in order to find that a path is bad since the arc costs
are initially small; in the backward direction, however,
the arc costs are initially large and vary strongly, which
allows the identification of bad paths already after rela­
tively few node generations.

Independently of search direction, A* still runs out of
space with increasing problem difficulty, and pure DFBB
cannot recognize transpositions and has excessive run­
ning times due to the huge number of nodes searched.
Our algorithm BABE is better than A* insofar as it can
continue searching when A* already has to quit due to
lack of memory on difficult problems with many jobs.
However, it does not utilize the given resources opti­
mally.

Although A* is slightly faster than TCBB due to gen­
erating slightly fewer nodes, our new algorithm TCBB
utilizes its memory much better than A* (and BABB).
While A* runs out of 16k nodes of memory (in the for­
ward direction) even for problems with more than 20
jobs, TCBB needs no more memory for problems of 32
jobs. Even when it cannot store all of the searched nodes
on more difficult problems, it still finds solutions.

One reason for the better utilization of memory by
TCBB compared to A* in this domain is that it is pos­
sible here for TCBB to find a good upper bound quickly
that avoids storing all the nodes with a higher estimated
cost. In contrast, A* is unaware of an upper bound and
stores many nodes with bad values. Another reason is
that in these problems the branching degree is relatively
high, and TCBB can avoid storing many nodes, which
reinforces the effect above. In contrast, A* stores all of
them due to its strategy of generating and storing all the
successors at once at node expansion.

Due to the strong asymmetry of the arc cost distribu­
tion, this unidirectional search algorithm is even much
better in the reverse direction: TCBB-Reverse—but the
bidirectional view was necessary to discover the strong
asymmetry in this domain. TCBB-Reverse can solve
even problems with 60 jobs in an average of about 100
seconds, which shows how well our approach scales up.
While A*-Reverse is much better than A* in the for­
ward direction, it still runs out of 16k nodes of memory
for problems with more than 36 jobs.

In summary, we achieved very strong overall improve­

ments with our approach in this scheduling domain com­
pared to the best results reported in the literature. In
particular, our approach can solve much more difficult
problems with the same amount of memory and within
reasonable time.

6 Related work
Originally, bidirectional heuristic search did not work as
expected [de Champeaux, 1983; Kwa, 1989; Pohl, 1971].
Recent results show that bidirectional search has the po­
tential to improve on unidirectional search [Kaindl and
Khorsand, 1994; Koll and Kaindl, 1993]. Unfortunately,
traditional bidirectional search requires rather compli­
cated mechanisms that make it difficult to implement.
Moreover, in domains that can be implemented with fast
node generation and computation of the heuristic func­
tion like the 15-Puzzle, these mechanisms imply a cer­
tain overhead. Therefore, the generic approach in this
paper tries to utilize key ideas of bidirectional search in
an efficient manner.

A bidirectional algorithm sketched in [Korf, 1985] em­
ploys DFID (depth-first iterative-deepening without us­
ing heuristic knowledge). Since its space requirement is
still 0(6d/2), it cannot solve difficult problems.

Perimeter search [Dillenburg and Nelson, 1994] is a
non-traditional approach to bidirectional search that
may look very similar to our algorithm BA1. However,
the key difference is the use of a form of wave shaping
in perimeter search, that makes it inefficient in terms of
running time.

Apart from bidirectional search there are some rela­
tions to unidirectional search algorithms with reduced
space requirements: MREC [Sen and Bagchi, 1989], MA*
[Chakrabarti et al., 1989], SMA* [Russell, 1992], ITS
[Ghosh et a/., 1994], and the approach of using certain
tables for IDA* [Reinefeld and Marsland, 1994]. From
these, Trans and Trans-\-Move [Reinefeld and Marsland,
1994] gave the best results on the 15-Puzzle in terms of
running time that we are aware of. Similarly to some of
this referenced work, our BAI algorithm can be viewed
as saving nodes otherwise searched by IDA*. Our new
algorithm TCBB is clearly analogous to Trans, but due
to including DFBB instead of IDA* it is much more effi­
cient in domains with many distinct cost values and the
possibility of getting reasonable upper bounds on the
solution cost.

7 Conclusion
Our approach makes use of some known ideas and algo­
rithms. However, this paper contains several new ideas
and results:

• We developed a generic approach to heuristic search
that utilizes limited memory effectively.

• We categorize several different utilizations of given
memory for heuristic search and identify a new one
in our approach.

• During experiments with instantiations of our ap­
proach in two different domains, we learned that
even for nearly symmetric graph topology, selecting
the search direction can be important. Especially
the distribution of arc costs can be crucial.

KAINDL, ETAL 241

• We found that—under certain conditions—available
memory can be utilized much more effectively than
by A*.

* In both selected domains—the 15-Puzzle and a spe­
cial scheduling domain—we achieved significantly
better results with our approach than those previ­
ously reported in the literature.

In summary, our new generic approach to heuristic
search integrates various strategies and includes ideas
from bidirectional search. Due to insights into different
utilizations of available memory, it allows the search to
utilize limited memory effectively.

Acknowledgments
Our implementations are based on the very efficient code
of IDA* and A* for the puzzle made available by Richard
Korf and an efficient hashing schema by Jonathan Sha-
effer, as well as on code of A* and DFBB for the schedul­
ing domain by Anup Sen. Alexander Reinefeld and Tony
Marsland provided the data on the generated nodes for
Trans and Trans+Move as well as comments on an ear­
lier draft of this paper. Finally, we acknowledge the
useful comments on an earlier draft by Wilhelm Barth,
Wolfgang Schmid and Anup Sen.

References
[Chakrabarti et ai, 1989] P.P. Chakrabarti, S. Ghose,

A. Acharya, and S.C. DeSarkar. Heuristic search in
restricted memory. Artificial Intelligence, 41 (2): 197-
221, 1989.

[de Champeaux, 1983] D. de Champeaux. Bidirectional
heuristic search again. J. ACM, 30:22-32, 1983.

[Dechter and Pearl, 1985] R. Dechter and J. Pearl. Gen­
eralized best-first strategies and the optimality of A*.
J. ACM, 32(3):505-536, 1985.

[Dillenburg and Nelson, 1994] J.F. Dillenburg and P.C.
Nelson. Perimeter search. Artificial Intelligence,
65:165-178, 1994.

[Ghosh et ai, 1994] S. Ghosh, A. Mahanti, and D.S.
Nau. ITS: an efficient limited-memory heuristic tree
search algorithm. In Proc. AAAI-94, pages 1353-1358,
1994.

[Hart et ai, 1968] P.E. Hart, N.J. Nilsson, and B.
Raphael. A formal basis for the heuristic determi­
nation of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics (SSC), SSC-
4(2):100-107, 1968.

[Kaindl and Khorsand, 1994] H. Kaindl and A.
Khorsand. Memory-bounded bidirectional search. In
Proc. AAAI-94, pages 1359-1364, 1994.

[Kaindl and Smetana, 1994] H. Kaindl and H. Smetana.
Experimental comparison of heuristic search algo­
rithms. In AAAI-94 Workshop on Experimental Eval­
uation of Reasoning and Search Methods, pages 11-14,
1994.

[Kaindl et ai, 1994] H. Kaindl, A. Leeb, and H.
Smetana. Improvements on linear-space search algo-
rithms. In Proc. ECAI-94, pages 155-159, 1994.

[Kainz, 1995] G. Kainz. Heuristische Suche mit begrenz-
tem Speicherbedarf. Doctoral dissertation, Technische
Universitat Wien, 1995. Forthcoming.

[Koll and Kaindl, 1993] A.L. Koll and H. Kaindl. Bidi­
rectional best-first search with bounded error: Sum­
mary of results. In Proc. IJCAI-93, pages 217 223,
Chambery, France, 1993.

[Korf, 1985] R.E. Korf. Depth-first iterative deepening:
An optimal admissible tree search. Artificial Intelli­
gence, 27(1):97-109, 1985.

[Korf, 1993] R.E. Korf. Linear-space best-first search.
Artificial Intelligence, 62(l):41-78, 1993.

[Kwa, 1989] J.B.H. Kwa. BS*: An Admissible Bidirec­
tional Staged Heuristic Search Algorithm. Artificial
Intelligence, 38(2):95-109, 1989.

[Lawler and Wood, 1966] E.L. Lawler and D. Wood.
Branch-and-bound methods: a survey. Operations Re­
search, 14:699-719,1966.

[Pohl, 1971] I. Pohl. Bi-directional search. In Ma­
chine Intelligence 6, pages 127 140, Edinburgh, 1971.
Edinburgh University Press.

[Rao et ai, 1991] V.N. Rao, V. Kumar, and R.E. Korf.
Depth-first vs best-first search. In Proc. AAAI-91
pages 434-440, Anaheim, 1991. Los Altos, CA.: Kauf-
mann.

[Reinefeld and Marsland, 1994] A. Reinefeld and T.A.
Marsland. Enhanced iterative-deepening search.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 16(12):701-709, July 1994.

[Russell, 1992] S. Russell. Efficient memory-bounded
search methods. In Proc. ECAI-92, pages 1-5, Vienna,
Austria, 1992. Chichester: Wiley.

[Sen and Bagchi, 1989] A.K. Sen and A. Bagchi. Fast
recursive formulations for best-first search that allow
controlled use of memory. In Proc. IJCAI-89, pages
297 302,1989.

[Sen and Bagchi, 1993] A.K. Sen and A. Bagchi. Job se­
quencing with quadratic penalties: an A*-based graph
search approach. In Proc. CAIA-93, pages 190 196,
Orlando, FL, March 1993.

[Taylor and Korf, 1993] L.A. Taylor and R.E. Korf.
Pruning duplicate nodes in depth-first search. In Proc.
AAAI-93, pages 756-761, Washington, D.C., 1993.
Los Altos, CA.: Kaufmann.

[Townsend, 1978] W. Townsend. The single machine
problem with quadratic penalty function of comple­
tion times: a branch-and-bound solution. Manage­
ment Science, 24(5):530-534, 1978.

[Zhang and Korf, 1993] W. Zhang and R.E. Korf.
Depth-first vs. best-first search: new results. In Proc.
AAAI-93, pages 769-775, Washington, D.C., 1993.
Los Altos, CA.: Kaufmann.

242 AUTOMATED REASONING

