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Abst rac t 

Traditional best-first search for optimal solu­
tions quickly runs out of space even for prob­
lem instances of moderate size, and linear-
space search has unnecessarily long running 
times since it cannot make use of available 
memory. For using available memory effec­
tively, we developed a new generic approach to 
heuristie search. It integrates various strategies 
and includes ideas from bidirectional search. 
Due to insights into different utilizations of 
available memory, it allows the search to use 
limited memory effectively. Instantiations of 
this approach for two different benchmark do­
mains showed excellent results that are sta­
tistically significant improvements over previ­
ously reported results: for finding optimal so­
lutions in the 15-Puzzle we achieved the fastest 
searches of all those using the Manhattan dis­
tance heuristic as the only knowledge source, 
and for a scheduling domain our approach can 
solve much more difficult problems than the 
best competitor. The most important lessons 
we learned from the experiments are first, that 
also in domains with symmetric graph topology 
selecting the right search direction can be very 
important, and second, that memory can— 
under certain conditions—be used much more 
effectively than by traditional best-first search. 

1 In t roduc t ion 
Best-first search in the tradition of A* [Hart et a/., 
1968] typically requires exponential space. Therefore, 
it quickly runs out of space even for problem instances 
of moderate size when searching for optimal solutions. 

In contrast, linear-space search like IDA* [Korf, 1985], 
RBFS [Korf, 1993] and DFBB [Lawl er and Wood, 1966] 
does not suffer from memory limitations. Typically, 
there is even much more memory available than needed 
by such algorithms. Since they cannot make use of such 
memory, however, their running time is unnecessarily 
long. 

One of the major problems of heuristic search is how to 
use available but limited memory effectively. Pure uni­
directional approaches to utilizing limited memory still 

did not lead to convincing results [Chakrabarti et al, 
1989; Ghosh et ai, 1994; Reinefeld and Marsland, 1994; 
Russell, 1992; Sen and Bagchi, 1989]. Therefore, we 
propose to consider in addition ideas from bidirectional 
search [Kaindl and Khorsand, 1994; Koll and Kaindl, 
1993; Kwa, 1989; Pohl, 1971]. 

In this paper we integrate various unidirectional 
strategies and include ideas from bidirectional search in a 
generic approach to heuristic search. Due to insights into 
different utilizations of available memory, our approach 
allows the search to use limited memory effectively. 

First, we present our new generic approach to heuristic 
search that specifically focuses on using limited memory. 
Then we show how this approach can be appropriately 
instantiated for two very different domains with few and 
many distinct cost values, respectively. For both do­
mains, we report experimental data that represent sig­
nificant improvements over previously published results. 
Finally, we compare our approach more generally with 
related work. 

2 A Generic Approach to Heur is t ic 
Search Using L i m i t e d M e m o r y 

We developed a new generic approach to heuristic search 
that integrates various approaches and typically leads 
to hybrid combinations of search algorithms. One of 
the main ideas to address the memory problem is to 
combine linear-space search with conventional best-first 
search in a bidirectional style. Fig. 1 gives an overview 
and indicates how our new algorithms integrate ideas 
from various approaches in hybrid combinations-—this 
will be discussed in detail below. First, we explain the 
generic approach generally. Its major steps are: 

1. Assign the search directions and the available mem­
ory to the traditional best-first and the linear-space 
algorithm, respectively. 

2. Perform traditional best-first search using some or 
even nearly all of the available memory. 

3. Unless the best-first search has already found an op­
timal solution, use a linear-space algorithm in the 
reverse direction. Use the memory structure built 
up by the previous best-first search, possibly to­
gether with additional memory that is still available. 

Note, that the linear-space algorithm per se only re­
quires little memory, but it can utilize additional mem-
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ory tnrougn direct, access, e.g., via nasning. 
Since this approach does not allow for changing the 

search direction more than once, it can be viewed as a 
non-traditional form of bidirectional search. In particu­
lar, the recently proposed perimeter search [Dillenburg 
and Nelson, 1994] fits into it. However, we explicitly do 
not propose to use a wave-shaping strategy1 (see also 
[do Champeaux, 1983]), since it is inefficient in terms of 
running time. 

Under certain circumstances to be discussed below, 
one or more of the steps can also be omitted during in­
stantiation. For instance, if the domain shows a strong 
asymmetry, the search direction is known before the 
search begins. Moreover, our generic approach can also 
be instantiated as unidirectional search. 

Since this generic approach has to be instantiated for 
appropriate use, we must give guidelines for doing so. 
First of all, it is important to understand how given 
memory can be utilized during heuristic search. While 
some of these utilizations appear to be well understood, 
we could not find a clear categorization in the literature. 
Note that item 5(b) given below appears to have been 
previously overlooked. We distinguish the following uti­
lizations of given memory: 

1. for ordering the sequence of node generations: 
traditional best-first search like A* organizes the 
memory as a priority queue for this purpose, while 
more recent linear-space RBFS has to backtrack; 

2. for storing state information of generated nodes: 
for instance, in the well-known 15-Puzzle the con­
figuration of tile positions can be stored; 

3. for finding transpositions" in a directed acyclic 
graph in order to avoid "treeification" during search: 
again, A* is a well-known example, while IDA* 

1 Wave-shaping has to compute heuristic estimates be­
tween all nodes in one search frontier and all nodes in the 
other, i.e., the effort is proportional to the cross product of 
the numbers of nodes in the frontiers. 

2Transpositions arise when different paths lead to the 
same node. 

and DFBB normally cannot recognize transposi­
tions without extra memory (which may also be 
used as in [Taylor an d Korf, 1993]); 

4. for caching information about heuristic estimates: 
three cases can be distinguished here: 
(a) static heuristic value: 

storing such values avoids recomputation; 
(b) more accurate information closer to a goal: 

memory-bounded algorithms like MREC [Sen 
and Bagchi, 1989] propagate better heuristic es­
timates found during their linear-space searches 
back to the stored part of the search graph; 

(c) heuristic information computed between two 
search frontiers: 
wave-shaping approaches to bidirectional search 
utilize memory to store such values computed 
during the search; 

5. for finding solutions: 
two cases can be distinguished here: 
(a) finding solutions at all: 

traditional bidirectional search like BHPA [Pohl, 
1971] and IBS* [K611 and Kaindl, 1993] needs 
the memory to find solutions by recognizing 
meetings of the search frontiers; 

(b) finding solutions earlier: 
the non-traditional approach to bidirectional 
search described below uses memory to find so­
lutions earlier than without the memory. 

6. for proving solution quality: 
bidirectional heuristic search utilizes given memory 
for storing estimates of the optimal solution cost to 
be used for proving the quality of a solution found. 

The combination of search ideas to be chosen during 
an instantiation of our generic approach should utilize 
the given memory in several different ways. This typi­
cally leads to higher efficiency since their advantages are 
more or less disjoint and nearly add up, while using the 
same amount of storage just for one purpose may not 
give the same pay-ofT. Fig. 2 shows a useful specializa­
tion of our generic approach that uses memory on both 
sides of the search space: a transposition table [Reinefeld 
and Marsland, 1994] on one side, and the memory of a 
traditional best-first search on the other. The former is 
used for finding transpositions and caching more accu­
rate heuristic evaluations closer to the goal. The latter 
first of all orders the sequence of node generations and 
helps finding transpositions in another part of the search 
space, and finally it supports finding solutions earlier. 

Of course, an instantiation should make use of any 
domain-specific information available. In particular, it 
should combine those unidirectional search algorithms 
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that best suit the properties of the domain (see, e.g., 
[Rao et al, 1991; Zhang and Korf, 1993]). For instance, 
in some domains IDA* is the choice, while in others 
DFBB is much better. 

3 Ins tan t ia t ing for a Doma in w i t h Few 
D is t inc t Cost Values: 15-Puzzle 

First we show how our generic approach can be instan­
tiated for a domain that is characterized by having only 
few distinct cost values: the well-known 15-Puzzle. Un­
der this condition, it is reasonable to select IDA* for the 
linear-space search part. 

Moreover, we can assume to have a monotone evalua­
tion function: the Manhattan distance. Since A* makes 
good use of monotone heuristics [Dechter and Pearl, 
1985], we select it for the part of the best-first search. 

Based on the key idea of bidirectional search, we let 
A* and IDA* search in opposite directions in steps 2 and 
3 of our generic approach, respectively. Fig. 1 illustrates 
this instantiation that leads to BAI (Bidirectional A* -
IDA*). 

According to the idea of using memory in various ways, 
we may also give the IDA* search some part of the avail­
able memory as a transposition table. Fig. 2 illustrates 
this approach generally. We call this variant of BAI due 
to the use of this table BAI-Trans (see also Fig. 1). 

If A* cannot find a solution using the given memory, 
then IDA* searches in the reverse direction towards the 
frontier of the prior search. Since we consider the case 
of finding optimal solutions, this search cannot always 
terminate immediately after a solution is found. A bet­
ter solution may exist, and the algorithm must find an 
optimal one and subsequently prove that it is optimal. 

More technically, the IDA* part must be changed 
slightly. Instead of having to find the goal node, a solu­
tion is found whenever the depth-first search meets the 
frontier of the opposing A* search. If the cost of this so­
lution is smaller than the cost of the best solution found 
so far (or if it is the first solution found) then its value is 
stored. Of course, the cost of the best solution found so 
far may be sub-optimal, or the algorithm does not yet 
know that, it is already optimal. However, if the stored 
value does not exceed the non-overestimating threshold 
of the IDA* part, then its depth-first search is exited 
successfully with an optimal solution. 

In addition to these necessary changes, the IDA* part 
has the advantage to start with an increased initial 
threshold based on an admissible estimate of the optimal 
solution cost as determined by the A* part. Since we as­
sume a monotone heuristic h, the minimum of / = g + h 
for all nodes in OPEN is always an admissible estimate. 
Therefore, if this estimate is higher than the usual initial 
threshold of IDA*, then it can be used here instead. 

Moreover, it is not necessary to have the IDA* part 
search again in the space already explored by A*. More 
technically, when the depth-first search invoked by IDA* 
meets a CLOSED node of the opposing A* search frontier, 
this branch can be cut off (meeting an OPEN node is in 
general insufficient). We call this nipping according to 
an analogous method described in [Kwa, 1989]. 

In an efficient implementation of the 15-Puzzle even 
the effort of hashing at every node causes an overhead 
that cannot be ignored. Therefore, we implemented BAI 
in such a way that it avoids hashing at those nodes 
where—based on the heuristic estimate—it knows that 
the frontier of the opposing A* search is yet out of reach. 

According to step 1 of our generic approach, the search 
directions must be assigned to the A* and the IDA* part, 
respectively. For traditional bidirectional search, Pohl 
[Pohl, 1971] proposed and used a cardinality criterion 
for the problem of determining the frontier from which to 
select a node for expansion: continue searching from the 
frontier with fewer OPEN nodes. While this is utilized for 
each node expansion in traditional bidirectional search 
algorithms, BAI has to decide this issue once at the very 
beginning of the whole search. When the search space 
is sufficiently symmetric, the initial search direction can 
be determined at random. When the search space is at 
least slightly asymmetric and no specific knowledge for 
determining the search direction is available, it seems 
reasonable to make shallow probes into the search space 
from both sides and to use the idea of the cardinality 
criterion. Since BAI incorporates IDA*, using this al­
gorithm also for probing is consistent with the overall 
approach. For instance in the 15-Puzzle, the first few 
iterations of IDA* are searched from both sides, and the 
direction with fewer generated nodes is assigned to the 
IDA* part of the overall search, since especially for dif­
ficult problems it will have to search much deeper than 
the A* part. 

Let us shortly discuss the behavior of BAI. In the best 
case, it would seem to be the same as A*. In fact, BAI 
can even be better than pure A*. BAI assigns the search 
direction dynamically, which can lead to better results 
than systematically going in one direction. In the worst 
case, BAI has to perform the part of A*, without savings 
in the IDA* part (except the effect of nipping). 

A key question is how BAI saves effort without having 
enough memory available for completing the A* search. 
Primarily, it can save one or more of IDA*'s iterations. 
Due to the better initial threshold, some of the early it­
erations can be saved. Since the earlier iterations are 
comparably cheap, this helps much less than saving the 
last iteration. The search can also be terminated after 
a complete iteration of IDA* if the cost of the best solu­
tion already found is not larger than the new increased 
threshold. Therefore, large savings are possible when 
BAI terminates earlier than pure IDA*. 

4 Ins tan t ia t ing for a Doma in w i t h 
M a n y D is t inc t Cost Values: Single 
Machine Scheduling 

Now let us show how our generic approach can be in­
stantiated for a domain that is characterized by having 
many distinct cost values: a scheduling domain described 
and used for experiments in [Sen and Bagchi, 1993; 
Townsend, 1978].3 

3 Since this benchmark domain is not widely known, we 
sketch it shortly. It deals with one-machine job sequence 
problems of the following form. Jobs J, with processing times 
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For problems with many distinct cost values, IDA* is 
known to be much less efficient. But it is reasonable to 
select DFBB for the linear-space search part, assuming 
that a good upper bound can be determined quickly— 
which is the case in this kind of problem. 

Again, a monotone evaluation function is available, 
so we can analogously to BAJ select A* for the part of 
the best-first search. Based on the key idea of bidirec­
tional search, we let A* and DFBB search in opposite 
directions in steps 2 and 3 of our generic approach, re­
spectively. Fig. 1 illustrates this instantiation that leads 
to BABB (Bidirectional A* depth-first Branch-and-
Bound). Technically, the computation of the heuristic 
is different in the backward direction, and the neces­
sary modification is not completely trivial. While in the 
forward direction all the jobs on the current path are al­
ready included, in the backward direction the jobs on the 
path have not yet been included. The best approach we 
found is to define a new problem that excludes all these 
jobs, and to compute the heuristic for this problem. 

Due to the above mentioned asymmetry of the arc 
cost distribution, the better search direction can be de­
termined a priori in this domain. (The reasons are dis­
cussed below.) Therefore, step 1 of our generic approach 
can be omitted here. 

For the same reason, another possibility to instantiate 
our generic approach here is to omit also the best-first 
search part completely and to provide all the available 
memory in the form of a transposition table. Analo­
gously to its use in IDA*, it both finds transpositions 
and caches dynamically acquired heuristic information. 
Therefore, we call this algorithm TCBB ( Transpose-arid-
Cache - depth-first Branch-and-Bound). Still, the bidi­
rectional idea of starting on either side of the space is 
important here, which is illustrated by the dotted arrow 
in Fig. 1. 

An obvious advantage of both BABB and TCBB over 
A* is their ability to continue searching although the 
memory is too small to store all the nodes. A much less 
obvious advantage of TCBB over A* is that—under cer­
tain conditions—TCBB utilizes available memory much 
more effectively. This will be explained together with 
empirical results below. 

5 Exper imenta l Results 
In our experiments, we compared BAI, BAI-Trans, 
BABB and TCBB with other algorithms on the task of 
finding optimal solutions in two different domains. From 
the derivations of our algorithms, it should be intuitively 
clear that these algorithms are admissible, i.e., if a so­
lution exists, they terminate with an optimal solution. 
Formal proofs can be found in [Kainz, 1995]. 

a, and penalty constants p, (associated with completing a job 
at time ti) are submitted to a one-machine job-shop. ti is the 
sum of the times aj of all jobs j on the currently evaluated 
path. The penalty function is Gi(t,) = pxt21. All the jobs must 
be sequenced on the machine in such a way that the sum 
of all penalties is minimized. Important properties of this 
domain are a symmetric graph topology and an asymmetric 
distribution of arc costs that is due to the quadratic penalty 
function. 

5.1 15-Puzzle 
Now let us have a look on specific experimental results 
for finding optimal solutions to a set of (sliding-tile) 15-
Puzzle problems.4 We compare our new algorithms BAI 
and BAI-Trans on these problems with other algorithms 
that achieve the best results known here yet without us­
ing domain-specific knowledge about the puzzle other 
than the Manhattan distance heuristic: IDA*, Trans 
[Reinefeld and Marsland, 1994] and IDPS* (perimeter 
search) [Dillenburg and Nelson, 1994]. RBFS has the po­
tential to be better than IDA* on the sliding-tile puzzle, 
but actually its results are slightly worse on this specific 
problem set according to [Korf, 1993] due to noise in the 
tie-breaking on the last iteration. 

Fig. 3 shows a comparison of these algorithms in terms 
of the average number of node generations and their run­
ning times. The data are normalized to the respective 
search effort of IDA*. Trans (using 256k nodes of mem­
ory) achieves savings of nearly half of the nodes com­
pared to IDA*, and although the effort for hashing slows 
it down, Trans is faster than IDA* since it utilizes its 
memory well.6 IDPS* saves even 73 percent of the nodes 

4 We used the complete set of 100 instances from [Korf, 
1985]. 

5In an efficient implementation of the 15-Puzzle, even 
checking of whether a node generated by IDA* is in the 
opposing search frontier means a measurable overhead, al­
though this can be done efficiently via hashing. The reason 
is that node generation and evaluation can be done very ef­
ficiently for the sliding-tile puzzles [Korf, 1993]. Even the 
machine architecture can influence the relative running time 
up to a certain degree. Therefore, we note that our data 
were gained using a Convex C3220. On this machine, IDA* 
searches 210k nodes per second. 

6 The data in the figure were gained using a re-
implementation of Trans based on efficient code provided by 
Jonathan Shaeffer. Note the different way of presenting the 
results: absolute data in our figure vs. relative to problem 
difficulty in [Reinefeld and Marsland, 1994]. We had to re­
implement Trans, since the detailed data in terms of node 
generation numbers provided by Alexander Reinefeld and the 
data reported in [Reinefeld and Marsland, 1994] were insuffi­
cient to get comparable data on the running times. Actually, 
Trans+Move is the best algorithm described in [Reinefeld 
and Marsland, 1994], but its absolute results are less than 
one percent better than those of Trans. Therefore, we did 
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generated by IDA*, but due to its wave-shaping overhead 
only 33 percent of the running time.7 

The results of our new algorithms shown in Fig. 3 
were generated by giving them also 256k nodes of mem­
ory, and determining the search direction via probing 
through IDA* searching its first three iterations (this 
generates only very few nodes but already indicates the 
better search direction with a relatively high reliability 
of 80 percent). BAIsaves more nodes than Trans, and it 
is also faster. The overhead through hashing is smaller 
due to our strategy of avoiding it if possible. Our combi­
nation BAI-Trans saves three quarters of IDA*ys nodes 
and 61 percent of its running time. This shows that the 
respective advantages of using memory in these differ­
ent ways nearly add up, although the available memory 
for each of its parts is just half of the memory given 
to each BAI and Trans, i.e., BAI-Trans altogether has 
256k nodes of memory available here. Although BAI-
Trans does not use wave shaping, it generates slightly 
fewer nodes than IDPS* with perimeter depth 2. Be­
cause of avoiding the overhead of wave shaping, BAI-
Trans is clearly faster than IDPS* (although with this 
perimeter depth this overhead is relatively very small). 
In order to make sure that these results are not due to 
chance fluctuations, we performed statistic tests.8 The 
superiority of BAI- Trans in terms of running time over 
pure IDA*, pure Trans and IDPS* as shown in the figure 
is statistically significant. 

Although the search space of the sliding-tile puzzle ap­
pears to be quite symmetric, it is interesting to see how 
much can be gained here just by selecting the search di­
rection dynamically. Therefore, we conducted a special 
experiment with a variant of IDA* that just uses our ap­
proach for selecting the search direction: IDA*-Probing. 
Fig. 3 shows that even this simple linear-space algorithm 
is slightly faster than Trans, since it has no overhead in 
running time. Moreover, the advantage of IDA*-Probing 
over pure IDA* is statistically significant. In order to 
see how well probing via three iterations already indi­
cates the better search direction, we compared its re­
sult with that of a perfect oracle. Using it would still 
generate 64 percent of IDA*'s nodes, i.e., IDA*-Probing 
with an overhead in generated nodes for determining the 

not re-implement Trans+ Move a.nd cannot include it into the 
figure, lacking data on the running times. 

7The results reported in [Dillenburg and Nelson, 1994] 
are based on runs using a different sample set of the 15-
Puzzle, and a different perimeter depth. Using the same 
perimeter depth (4), the results on Korf's set with our re-
implementation are even better in terms of the number of 
node generations, but very much slower in terms of running 
time (even slower than IDA*). In personal communication 
with John Dillenburg it turned out that their implementa­
tion of IDA* is slower than Korf's one that we are using by a 
factor of about 60 per generated node. In such an implemen­
tation the overhead especially of wave shaping does not show 
up that clearly as it does in an efficient one. Since smaller 
perimeter depth means fewer stored nodes and therefore less 
overhead through wave shaping, the perimeter depth 2 re­
sults in better running time, and consequently we show these 
data in our figure. 

8 More details on the statistic tests used can be found in 
[Kaindl et a/., 1994; Kaindl and Smetana, 1994]. 

Figure 4: Comparison on the Scheduling Problems. 

search direction of only less than 0.1 percent is overall 
just 3 percent worse than this. Systematically searching 
in the backward direction, however, is not significantly 
better due to high standard deviations, although it saves 
17 percent over systematically searching in the forward 
direction. 

In summary, instantiating our generic approach as de­
scribed lead to the fastest searches for finding optimal so­
lutions on the 15-Puzzle of all those using the Manhattan 
distance heuristic as the only knowledge source. While 
saving 61 percent of the running time of pure IDA* 
may not seem impressive, the difficulty of significantly 
improving its results may be appreciated when looking 
at the many less successful attempts with various algo­
rithms (see the section on related work below). 

5.2 Single Machine Scheduling 
The best results yet reported for the scheduling problem 
that we chose for our experiments are those of A* that 
searches systematically in the forward direction: finding 
optimal solutions to random problems of 28 jobs in an 
average of some few seconds each with less than 300k 
nodes of memory. As compared in [Sen and Bagchi, 
1993], these results signified a very strong improvement 
over previous approaches that did not utilize the graph 
structure of the search space. 

Fig. 4 shows A* data and the results of DFBB in com­
parison to the results that we achieved through instanti­
ating our generic approach appropriately. Except DFBB 
and DFBB-Reverse, all the algorithms were given the 
same amount of memory: 16k nodes.9 The data point 

9 We chose this amount of memory for showing the high 
efficiency of TCBB in regard to memory utilization. We 
used the same 100 randomly generated problem instances 
per "number of jobs" as [Sen and Bagchi, 1993], since Anup 
Sen made the generator available to us. The figure shows the 
results in terms of running time, but the numbers of gener­
ated nodes are quite the same, since computing the heuristic 
values dominates the running time. Note, that the data are 
shown on a logarithmic scale. 
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annotated in the figure via "A*" indicates the result with 
the previously best method. The main discovery was 
that systematically searching in the reverse direction— 
from the goal to the start—yields much better results: 
see the data of DFBB-Reverse and A*-Reverse. These 
results are very surprising since the graph topology of 
the search space is symmetric. According to current the­
ory, such a strong effect of reversing the search direction 
would have been attributed to a strong asymmetry of 
the graph topology. 

Actually, the reason for this phenomenon is due to 
the asymmetric distribution of arc costs induced by the 
quadratic penalty function in these problems. In order 
to find this reason, we made special experiments, and 
since this phenomenon also occurs without using heuris­
tic values, it is at least not primarily related to their 
accuracy. We can explain it as follows: when searching 
in the forward direction, many nodes must be generated 
in order to find that a path is bad since the arc costs 
are initially small; in the backward direction, however, 
the arc costs are initially large and vary strongly, which 
allows the identification of bad paths already after rela­
tively few node generations. 

Independently of search direction, A* still runs out of 
space with increasing problem difficulty, and pure DFBB 
cannot recognize transpositions and has excessive run­
ning times due to the huge number of nodes searched. 
Our algorithm BABE is better than A* insofar as it can 
continue searching when A* already has to quit due to 
lack of memory on difficult problems with many jobs. 
However, it does not utilize the given resources opti­
mally. 

Although A* is slightly faster than TCBB due to gen­
erating slightly fewer nodes, our new algorithm TCBB 
utilizes its memory much better than A* (and BABB). 
While A* runs out of 16k nodes of memory (in the for­
ward direction) even for problems with more than 20 
jobs, TCBB needs no more memory for problems of 32 
jobs. Even when it cannot store all of the searched nodes 
on more difficult problems, it still finds solutions. 

One reason for the better utilization of memory by 
TCBB compared to A* in this domain is that it is pos­
sible here for TCBB to find a good upper bound quickly 
that avoids storing all the nodes with a higher estimated 
cost. In contrast, A* is unaware of an upper bound and 
stores many nodes with bad values. Another reason is 
that in these problems the branching degree is relatively 
high, and TCBB can avoid storing many nodes, which 
reinforces the effect above. In contrast, A* stores all of 
them due to its strategy of generating and storing all the 
successors at once at node expansion. 

Due to the strong asymmetry of the arc cost distribu­
tion, this unidirectional search algorithm is even much 
better in the reverse direction: TCBB-Reverse—but the 
bidirectional view was necessary to discover the strong 
asymmetry in this domain. TCBB-Reverse can solve 
even problems with 60 jobs in an average of about 100 
seconds, which shows how well our approach scales up. 
While A*-Reverse is much better than A* in the for­
ward direction, it still runs out of 16k nodes of memory 
for problems with more than 36 jobs. 

In summary, we achieved very strong overall improve­

ments with our approach in this scheduling domain com­
pared to the best results reported in the literature. In 
particular, our approach can solve much more difficult 
problems with the same amount of memory and within 
reasonable time. 

6 Related work 
Originally, bidirectional heuristic search did not work as 
expected [de Champeaux, 1983; Kwa, 1989; Pohl, 1971]. 
Recent results show that bidirectional search has the po­
tential to improve on unidirectional search [Kaindl and 
Khorsand, 1994; Koll and Kaindl, 1993]. Unfortunately, 
traditional bidirectional search requires rather compli­
cated mechanisms that make it difficult to implement. 
Moreover, in domains that can be implemented with fast 
node generation and computation of the heuristic func­
tion like the 15-Puzzle, these mechanisms imply a cer­
tain overhead. Therefore, the generic approach in this 
paper tries to utilize key ideas of bidirectional search in 
an efficient manner. 

A bidirectional algorithm sketched in [Korf, 1985] em­
ploys DFID (depth-first iterative-deepening without us­
ing heuristic knowledge). Since its space requirement is 
still 0(6d/2), it cannot solve difficult problems. 

Perimeter search [Dillenburg and Nelson, 1994] is a 
non-traditional approach to bidirectional search that 
may look very similar to our algorithm BA1. However, 
the key difference is the use of a form of wave shaping 
in perimeter search, that makes it inefficient in terms of 
running time. 

Apart from bidirectional search there are some rela­
tions to unidirectional search algorithms with reduced 
space requirements: MREC [Sen and Bagchi, 1989], MA* 
[Chakrabarti et al., 1989], SMA* [Russell, 1992], ITS 
[Ghosh et a/., 1994], and the approach of using certain 
tables for IDA* [Reinefeld and Marsland, 1994]. From 
these, Trans and Trans-\-Move [Reinefeld and Marsland, 
1994] gave the best results on the 15-Puzzle in terms of 
running time that we are aware of. Similarly to some of 
this referenced work, our BAI algorithm can be viewed 
as saving nodes otherwise searched by IDA*. Our new 
algorithm TCBB is clearly analogous to Trans, but due 
to including DFBB instead of IDA* it is much more effi­
cient in domains with many distinct cost values and the 
possibility of getting reasonable upper bounds on the 
solution cost. 

7 Conclusion 
Our approach makes use of some known ideas and algo­
rithms. However, this paper contains several new ideas 
and results: 

• We developed a generic approach to heuristic search 
that utilizes limited memory effectively. 

• We categorize several different utilizations of given 
memory for heuristic search and identify a new one 
in our approach. 

• During experiments with instantiations of our ap­
proach in two different domains, we learned that 
even for nearly symmetric graph topology, selecting 
the search direction can be important. Especially 
the distribution of arc costs can be crucial. 
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• We found that—under certain conditions—available 
memory can be utilized much more effectively than 
by A*. 

* In both selected domains—the 15-Puzzle and a spe­
cial scheduling domain—we achieved significantly 
better results with our approach than those previ­
ously reported in the literature. 

In summary, our new generic approach to heuristic 
search integrates various strategies and includes ideas 
from bidirectional search. Due to insights into different 
utilizations of available memory, it allows the search to 
utilize limited memory effectively. 
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